1_平均数_第二课时
20.1.1 平均数(第二课时)教案-人教版八年级数学下册

20.1.1 平均数(第二课时)【课标内容】研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们做出合理的推断和预测.【教材分析】本节课是人教版八年级数学下册第20章《数据的分析》中,第一节的内容.主要让学生认识数据统计中加权平均数,是一堂概念性较强的课,也是学生学会分析数据,作出决策的基础.本节课的内容与学生生活密切相关,能直接指导学生的生活实践.【学情分析】本节课以前在小学已经接触过,概念教学中,主要以生活实例为背景,从具体的事实上抽象出统计量的概念,通过统计量的计算与确定的练习帮助学生理解并巩固概念;在教学活动中主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法.【教学目标】1.加深对加权平均数的理解,会根据频数分布表求加权平均数,从而解决一些实际问题2.经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法.3.乐于接触社会环境中的数学信息,了解数学对促进社会进步和发展人类理解精神的作用.【重点难点】教学重点:根据频数分布表求加权平均数教学难点:加权平均数的概念及计算.【教学方法】五步教学法【教具准备】学案多媒体课件,展台【课时安排】2课时【教学过程】一、预学自检互助点拨1.自学课本P113—115页内容回答问题(1)请同学读P140探究问题,依据统计表可以读出哪些信息(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系.二、合作互学 探究新知例1:下表是校女子排球队队员的年龄分布:求校女子排球队队员的平均年龄(可使用计算器).解:答:校女子排球队队员的平均年龄为14.7岁 三、自我检测 成果展示1.某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表)(7.142541216515414113岁≈+++⨯+⨯+⨯+⨯=x该公司每人所创年利润的平均数是多少万元?2.下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?四、应用提升 挑战自我1.某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表 (1).第二组数据的组中值是多少?(2).求该班学生平均每天做数学作业所用时间五、经验总结 反思收获本节课你学到了什么?写出来【板书设计】频数组中值【备课反思】本节课是平均数的第二课时,主要是让学生体会运用样本平均数去估计总体平均数的意义,除了会运用样本平均数估计总体平均数外,在教学中还应增强数学应用意识。
八年级数学下册 20_1_1 平均数(第2课时)课件 (新版)新人教版

18
((21))这 从天表中5路你公1能0共1知≤汽x道<车1这2平1一均天每5班路的公载共111客汽量车是大多约少有多? 少1班5 次的载客量 在平均载客量以上吗?占全天总班次的百分比是多少?
学习新知
(1)知道了5路公共汽车每个运行班次的载客量. (2)组中值是指这个小组的两个端点的数的平均数. (3)第二组数据的频数是5. (4)每组数据的平均值和组中值基本是一致的. 根据频数分布表求加权平均数时,统计中常用各组的组 中值代表各组的实际数据,把各组的频数看作相应组中 值的权,例如在1≤x<21之间的载客量近似地看作组中值 11,组中值11的权是它的频数3.因此这天5路公共汽车平 均每班的载客量是
1 0 答:所抽查的西瓜的平均质量为5千克.
(2)目前西瓜的批发价约为每500克0.3元,若瓜 农
按此价格卖出,请你估计这亩地所产西瓜能 卖 解价即析多可:在少解(1答元)的.钱基.础上乘西瓜总数,即为总质量,然后乘单
这亩地所产西瓜大约能卖的钱数 =600×5÷0.5×0.3=1800(元).答:这亩地所产西瓜 的收入约是1800元.
八年级数学·下 新课标[人]
第二十章 数据的分析
20.1.1 平均数(第2课时)
学习新知
检测反馈
想一想
为了解5路公共汽车的运营情况,公交部门统计了某天5路公 共汽车每个运行班次的载客量,得到下表:
载客量/人
组中值
频数(班次)
1≤x<21
11
3
21≤x<41
31
5
41≤x<61
51
20
61≤x<81
—
x = x1 f1+x2 f2+ +xk fk n
八年级数学下册(人教版)20.1.2平均数(第二课时)教学设计

4.教学策略:
(1)关注学生个体差异,因材施教,提高学生平均数学习的有效性;
(2)注重启发式教学,引导学生主动探究,培养学生解决问题的能力;
(3)加强师生互动,营造轻松愉快的学习氛围,提高学生学习积极性;
(4)充分利用信息技术,提高课堂教学效果,帮助学生更好地理解平均数的知识。
月份|销售额(万元)
----|---------
1月| 20
2月| Байду номын сангаас5
3月| 22
4月| 28
5月| 24
(2)已知某班级学生的平均身高为1.6米,如果增加一个身高为1.8米的学生,计算新的平均身高。
4.思考题:
(1)为什么平均数在描述数据集中趋势时具有重要作用?
(2)在计算平均数时,如何处理含有异常值的数据集?
3.教学过程:
(1)教师给出讨论题目,如“如何计算某商店一周内每天销售额的平均值?”;
(2)学生分组讨论,共同探讨解决问题的方法,分工合作,完成计算;
(3)各小组汇报讨论成果,分享解题过程,教师给予评价和指导。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.教学方法:采用练习法、反馈法,了解学生对平均数的掌握程度。
5.课后阅读旨在拓展学生知识面,提高数学素养。
教师将根据学生的作业完成情况,了解学生的学习进度和存在的问题,以便在后续教学中进行针对性的辅导。同时,鼓励学生积极参与课堂讨论,分享解题心得,共同提高。
(1)教师讲解平均数的定义,让学生理解平均数的含义;
(2)通过例题演示,讲解平均数的计算方法,让学生学会如何求解平均数;
平均数(第二课时)

平均数(第2课时)教学目标:【知识与技能】1.掌握频数分布表(或频数分布直方图)中求这组数据的平均数的方法.2.理解并掌握用样本平均数对总体进行估计的思想方法.【过程与方法】经历探究、思考、推理与计算的过程,进一步加深学生对加权平均数中的权的理解,体验统计中的思维方式与数学思维方式的不同,加深用样本对总体进行估计的思想认识.【情感态度】进一步认识数学与人类生活的密切联系,增强数学应用意识和能力,激发学数学的热情.【教学重点】频数分布中的平均数的计算及用样本平均数估计总体平均数的思想.【教学难点】频数分布表(或直方图)中数据的确定及相应权的意义.教学过程:一、 情境导入,初步认识问题 下表是某班学生右眼视力的检查结果:你能求出该班学生右眼视力的平均水平吗?与同伴交流.二、 思考探究,获取新知在求n 个数的算术平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…f k =n ),那么这n 个数的算术平均数112212k k kx f x f x f x f f f ++⋯=++⋯叫x 1,x 2…xk 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2…,x k 的权.探究 为了解5路公共汽车的营运情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:这天5路公共汽车平均每班的载客量是多少?【教学说明】在不知道原始数据情况下,可以利用组中值和频数近似地计算一组数据的平均数.如在1≤x <21情况下,有3个班次,那么这3个班次的平均数为1212+=11,从而可以估计这天5路公共汽车的载客量在1≤x <21情况下的总数为11×3=33人;类似地可得到这天5路公共汽车载客总量应约为11×3+31×5+51×20+71×22+91×18+111×15,因而平均每个班次的载客量约为11331551207122911811115733520221815⨯+⨯+⨯+⨯+⨯+⨯≈+++++人. 试一试 为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示,计算这批法国梧桐树干的平均周长(精确到0.1cm ).三、 典例精析,掌握新知例 某灯泡厂为了测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯炮的平均使用寿命是多少?【分析】我们知道,当所考察对象很多,或考察对象带有破坏性时,统计中常常用样本的特征对总体进行估计,来获得对总体的认识,因而要想了解这批灯泡的平均使用寿命,可通过抽取的100只灯泡的平均使用寿命来对总体进行估计.这里的组中值应分别为800,1200,1600,2000,2400,它们的权依次为10,19,25,34,12,利用加权平均数可得到样本的平均使用寿命,并可用它当作这批灯泡的平均使用寿命.【教学说明】教师与学生一道分析后,应让学生感受到用样本估计总体的思想.解答过程由学生自己完成.试一试种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图.请估计这个新品种黄瓜平均每株结多少根黄瓜.四、师生互动,课堂小结1.本节中利用加权平均数求一组数据的平均数与上节有哪些不同?你是如何理解的?2.通过样本的特征对总体进行估计的原因是什么?谈谈你的想法,并与同伴交流.。
北师大版八年级数学上册《平均数》第2课时示范公开课教学课件

动作规范
动作整齐
一班
9
8
9
8
二班
10
9
7
8
三班
8
9
8
9
50%
30%
10%
10%
两种方案的结果不同说明了什么?
对“权”的进一步认识
“权”代表的是数据的“重要程度”,一组数据中,“权”越大,数据就越“重要”.
“权”的三种表现形式:
①各个数据出现的次数;
②比例的形式;
③百分比的形式.
分析:根据题意,小明的平均速度=总路程÷总时间,说明小明的平均速度受骑车的速度与步行速度影响 ,而骑车的时间与步行的时间可以看做是它们的权,可以根据加权平均数的公式计算出他的平均速度.
年龄(岁)
人数
分析:观察表格后可以发现不同年龄的获奖人数不一样,
权
权
每个年龄相对应的获奖人数就是该年龄的权.
使用加权平均数的公式即可计算出获奖者的平均获奖年龄.
权
获奖者的平均获奖年龄为35.6岁.
解:根据加权平均数的公式,获奖者的平均获奖年龄为:
(岁)
1.菲尔兹奖是数学领域的一项国际大奖,每四年颁发一次,从1936年到2010年,共有53人获奖,获奖者获奖时的年龄分布如下表,请计算获奖者的平均获奖年龄.(结果精确到0.1岁)
解:(1)20、32、45、50以0.25,0.25, 0.25,0.25为权数的平均数为:
20、32、45、50以0.25,0.25, 0.25,0.25为权数的加权平均数为36.75.
使用算术平均数公式列式:
使用加权平均数公式列式:
例 求20、32、45、50在不同权重下的加权平均数. (1)以0.25,0.25, 0.25,0.25为权数; (2)以0.4,0.3, 0.2,0.1为权数.
八年级数学下册 20.1.1《平均数(第二课时)》课案(教师用) 新人教版

课案(教师用)20.1.1平均数(第二课时)(新授课)【理论支持】布鲁纳认为,学习一门学科不仅是“学会什么”,更重要的是“知道怎样处理”,即“学会如何学习”.因此,本节课是在上节课的基础之上而设立的,根据学生已经获得的知识经验,如“什么是加权平均数”,“数据的权”来解决新问题,如果学生在第一节课上学会了怎么学,知道怎么处理问题,那么本节课的内容对学生来说,应该是水到渠成,事半功倍了.通过本节课的学习,使学生加深对加权平均数的理解, 会根据频数分布表求加权平均数,从而解决一些实际问题. 经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法.乐于接触社会环境中的数学信息,了解数学对促进社会进步和发展人类理解精神的作用.教学目标知识与技能1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,从而解决一些实际问题.3.会用计算器求加权平均数的值过程与方法经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法.情感态度与价值观乐于接触社会环境中的数学信息,了解数学对促进社会进步和发展人类理解精神的作用.【教学重难点】1.重点:根据频数分布表求加权平均数2.难点:根据频数分布表求加权平均数【课时安排】一课时【教学设计】课前延伸一、基础知识填空及答案(1)请同学们预习P128探究问题,依据统计表可以读出哪些信息.(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系.【答案】(1)组中值、频数.(2)载客量、每组两端点的平均数.(3)第二组数据的频数5指有5个班次.(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值应该相等.【设计说明】美国心理学家和教育家布鲁纳认为,儿童应该在教师的启发引导下按自己观察事物的特殊方式去表现学科知识的结构,借助于教师或教师提供的其他材料去发现事物。
20.1.1 平均数(第2课时)

为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车 每个运行班次的载客量,得到下表: 载客量/人 1≤x<21 21≤x<41 组中值 11 31 频数(班次) 3 5
41≤x<61
61≤x<81 81≤x<101 101≤x<121
51
71 91 111
20
22 18 15
这天5路公共汽车平均每班的载客量是多少?
11 3 31 5 51 20 71 22 9118 11115 x 73 (人) 3 15 20 22 18 15
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71 91 111
频数(班次)
3 5 20 22 18 15
?
思考
从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平 均载客量以上吗?占全天总班次的百分比是多少? 由表格可知, 81≤x<101的18个班次 和101≤x<121的15个班次 共有33个班次超过平均载客量,占全天总班次的百分比为33/83 等于39.8%
难点 “权”与“组中值”的确定
统计中也常把下面的这种算术平均数看成加权平均数。
在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,…,xk 出现fk次(这里f1+f2+…+fk=n)那么这n个数的算术平均数
x1 f1 x2 f 2 xk f k x n
也叫做x1,x2,…,xk这k个数的加权平均数,其中f1,f2,…,fk分别 叫做x1,x2,…,xk的权。
载客量/人 1≤x<21
组中值 11
20.1.1平均数第二课时

20.1.1平均数(第二课时)一、学习目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值 (一)温故互查:1、在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为 .2、某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环(二)、设问导读:例1: 为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:(1) 这天5路公共汽车平均每班的载客量是多少? (2)从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?组中值:数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数.结论: 1.当数据是以分组的形式出现时,用组中值代表每一组的数据; 2.每一组的频数看作每一组数据的权例例2某灯泡厂为了测量一批灯泡的使用寿命,从中抽查了100只灯泡,,它们的使用寿命如下表所示:解:(三)、自主检测1. 某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表(1)、第二组数据的组中值是多少?(2)、求该班学生平均每天做数学作业所用时间.2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?(四)巩固训练:1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 该公司每人所创年利润的平均数是多少万元?2.为了绿化环境,柳荫街引进了一批法国梧桐,三年后这些树的树干的周长情况如右图所示,计算这批法国梧桐树干的平均周长.(精确到0.1cm)(五)拓展延伸:1. 为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数.(六)课堂小结: (七)布置作业: (八)课后反思:60 噪音/分贝80 70 50 40 90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.1平均数(二)
教学目标:
(一)知识目标:
1、会求加权平均数,并体会权的差异对结果的影响。
2、理解算术平均数和加权平均数的联系与区别,并能利用它们解决一些现实问题。
(二)能力目标:
1、通过利用平均数解决实际问题,发展学生的数学应用能力。
2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异的思维。
(三)情感目标:通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:加权平均数中权对结果的影响及与算术平均数的联系与区别。
教学难点:探索算术平均数和加权平均数的联系和区别。
教学方法:探讨教学
教学过程:
一、引入新课:
1、什么是算术平均数?加权平均数?
2、算术平均数与加权平均数有什么联系与区别吗?(引入)
二、讲授新课:
1、例题讲解:
我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。
一天,三个班级的各项卫生成绩分别如下:
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。
解:(1)一班的卫生成绩为:
95×15%+90×10%+90×35%+85×40%=88.75
二班的卫生成绩为:
90×15%+95×10%+85×35%+90×40%=88.75
三班的卫生成绩为:
85×15%+90×10%95×35%+90×40%=91
因此,三班的成绩最高。
(2)分组讨论交流
小结:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。
2、议一议:
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?
问:如何求今年的总支出比去年总支出的百分比呢? 百分比=今年总支出—去年总支出
去年总支出 以下是小明和小亮的两种解法?谁做得对?
小明: (9%+30%+6%)=15%
小亮: =9.3%
由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他
三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小美的求法是对的。
三、课堂练习:
1、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少? 2、某市七月中旬各天的最高气温统计如下:
求该市七月中旬的最高气温的平均数。
1
3
9%×3600+30%×1200+6%×7200 3600+1200+7200。