百分数的一般应用题(通用5篇)
百分数应用题

百分数应用题(一)―――百分率、利息问题剖析:百分数表示一个数是另一个数的百分之几。
百分数也叫做百分率或百分比。
百分数应题一般有三种类型:1、已知一个数,求这个数的几分之几是多少?用乘法解;2、已知两个数,求一个数是另一个数的几分之几,用除法解;3、已知一个数的几分之几是多少,求这个数是多少,用除法解。
把整体的数量用单位“1”的量表示,部分的数量占整体数量的百分之几叫百分率,部分量叫百分率的对应量。
存入银行的钱叫本金;取回时银行多支付的钱叫利息;利息与本金的比值叫做利率,利息=本金×利率×时间。
例题讲解:例1 学校合唱团有女生120人,男生人数比女生人数少20%,男生占全合唱团的百分之几?例2 把一些核涛桃分装在四个盒子里,其中的20%放入1号盒子里,31放入2号盒子里,放入3号盒的核桃数是1、2号两盒总数的75%,4号盒放了10个,这些核桃共有多少个?例3 豆豆三次打完一份稿件,第一次打了200个字,第二次比第一次多打5%,第三次打的是第二次打的76,也是全稿的36%。
这份稿件共有多少个字?练习一 1、王萌买棉衣花了150元,又买了一双鞋,所花的钱数比棉衣少40%。
王萌买鞋的钱数占这两样所花钱数的百分之几?2、六年级三班学生分组做标本实验,第一组做了总数的25%,第二组做的是一、二组总数的80%,第四组做了19个,这四组共做了多少个标本?3、杨长江在线圈了缠线,第一次他缠了200cm ,第二次缠的比第一次多8%,第三次缠的是第二次的97,正好是线的全长的20%。
这条线全长有多少米?例4 六年级二班有学生88人,女生占全班人数的37.5%,后来又转来几名女生,这时女生人数正好是全班人数的187,转来了几名学生?例5 陈叔叔把20000元钱存入银行,存期为半年,年利率为3.78%,到期时本金和税后利息陈叔叔共得多少元?(国家规定,存款的利息按5%的税率纳税)例6 六年级一班共有学生80人,在一次数学检验中,有20人成绩在90分以上,44人成绩在89~80分之间,14人成绩在79~60分之间,有2 人成绩在59分以下,规定90分以上为优秀,80~89分之间为良好,60分以上为及格,那么六年级一班这次成绩的优秀率、及格率各占多少?练习二 1、六年级四班有84名学生,其中男生占全班人数的50%,后来又转来几名男生,这时男生人数恰好是全班人数的4322,则转来几名男生?2、袁奶奶把10000元钱存入银行,存期半年,年利率为3.78%,到期时本金和税后利息共得多少元?(存款的利息按5%的税率纳税)3、在一次英语测验中,六年级五班一共有60人参加考试,其中有21人成绩,3人成绩没有合格,则六年级五班在这次英语测验中优秀率是多少?合格率是多少?。
百分数例题

20道百分数例题一、求一个数是另一个数的百分之几1.某班有学生50 人,其中男生25 人,男生人数占全班人数的百分之几?-解析:男生人数占全班人数的比例为25÷50 = 0.5,转化为百分数为0.5×100% = 50%。
2.商店运来80 千克苹果,卖出60 千克,卖出的苹果占运来苹果的百分之几?-解析:卖出的苹果占运来苹果的比例为60÷80 = 0.75,转化为百分数为0.75×100% = 75%。
二、求一个数的百分之几是多少3.一本书有200 页,看了全书的40%,看了多少页?-解析:看的页数为200×40% = 200×0.4 = 80 页。
4.某工厂有工人300 人,其中女工人占30%,女工人有多少人?-解析:女工人人数为300×30% = 300×0.3 = 90 人。
三、已知一个数的百分之几是多少,求这个数5.一个数的25%是50,这个数是多少?-解析:这个数为50÷25% = 50÷0.25 = 200。
6.某数的60%是180,这个数是多少?-解析:这个数为180÷60% = 180÷0.6 = 300。
四、百分数的增减问题7.某商品原价100 元,现在涨价20%,现在的价格是多少?-解析:涨价后的价格为100×(1 + 20%) = 100×1.2 = 120 元。
8.某产品原价80 元,现降价15%,降价后的价格是多少?-解析:降价后的价格为80×(1 - 15%) = 80×0.85 = 68 元。
9.一种商品先涨价10%,再降价10%,现在的价格是原价的百分之几?-解析:设原价为1,涨价后的价格为1×(1 + 10%) = 1.1,再降价后的价格为1.1×(1 - 10%) = 0.99,现在的价格是原价的0.99÷1×100% = 99%。
百分数典型应用题练习

百分数典型应用题练习百分数典型应用题练习「篇一」百分数一、考点1、百分数定义:百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。
百分数表示的是两个数之间的关系,一般不带单位。
2、百分数与分数的联系与区别:联系:百分数与分数都可以表示两个量之间的倍数关系。
区别:意义不同。
百分数只表示两个数的倍比关系,不能带单位名称,分数表示倍比关系时不带单位名称,表示一个具体数值时带单位名称。
百分数的分子可以是整数,也可以是小数,而分数的分子不能是小数;百分数不可以约分,而分数一般要化到最简。
3、互化:A.百分数化小数:去掉%后,小数点向左移动两位。
B.小数化成百分数:小数点先向右移动两位,再添上%。
C.分数化百分数:先把分数化成小数,再化成百分数。
如果分数化成小数是无限小数,一般除到小数部分的第四位,保留三位小数再化成百分数。
D.把百分数化成分数:先把百分数改写成用100做分母的分数,能约分的直接化到最简分数。
百分数一般有三种情况:①可以大于100%,如:增长率、增产率等。
②只能100%以下,如:出油率、出粉率、出米率等。
③最大只能100%,如:正确率,合格率,发芽率、成活率、达标率等。
二、典型例题(一)求百分率。
【求各种百分率,实质就是求一个数是另一个数的百分之几,只是在计算时要乘100%把结果化成百分数。
】1、王老师用500粒小麦种子做发芽试验,结果有480粒种子发芽了。
小麦种子的发芽率是多少?类型题:(二)求一个数比另一个数多(或少)百分之几。
【求一个数比另一个数多(或少)百分之几实质就是求两个数的差量占另一个数(单位“1”)的百分之几。
如果用a和b分别表示两个量的话,其解法是:(a-b)÷b a÷b-1。
】一种电视机,原来每台1800元。
现在每台降价270元,降价百分之几?类型题:1、某厂今年生产机床620台,比去年增产150台,比去年增产百分之几?2、一批零件,贾师傅单独做8天完成,徐师傅单独做12天完成。
百分数的应用题及答案

百分数的应用题及答案百分数的应用题及答案百分数是数学学习中的重点,那么相关的应用题又是怎么出题的呢?下面是小编推荐给大家的百分数的应用题及答案,希望大家有所收获。
百分数的应用题及答案1一、天君第一周读书160页,比第二周少读20%,而第三周比第二周多读10%,问天君第三周读书多少页?解: 设天天君第二周读书的页数为"1",则第三周读了1+10%,第一周读了1-20%,而实际上第一周读了160页,故第三周读了:160÷(1+10%)×(1-20%)=220(页)答:天君第三周读书220页。
二、某校四年级人数比三年级多25%,五年级人数比四年级少10%,六年级人数比五年级多10%,如果六年级人数比三年级人数多38人,那么该校三至六年级共有学生多少人?解:设三年级人数为"1",则四年级人数为1+25%,五年级人数为(1+25%)×(1-10%),六年级人数为(1+25%)×(1-10%)×(1+10%),于是三年级的人数为:38÷[(1+25%)×(1-10%)×(1+10%)-1](人)从而四年级人数为160×(1+25%)=200(人)五年级人数为200×(1-10%)=180(人)六年级人数为180×(1+10%)=198(人)于是,总人数为 160+200+180+198=738(人)答:该校三至六年级共有学生738人。
三、甲、乙、丙、丁四人合做一批零件,甲做的个数为其他人总数的一半,乙做的人数为其他人的,丙做的个数为其他人的,丁做了390个,求四人共做了多少个零件?解:设这批零件的总数为"1",则甲做了总数的,乙做了总数的,丙做了总数的,从而丁做了总数的1- - - 。
因而四人共做了:390÷(1- - - )=390÷ =1800(个)答:四人共做了1800个零件。
百分比的应用题六年级上册

以下是几个关于百分比的六年级上册应用题示例:
1.
题目:某商店上个月营业额为80万元,这个月营业额比上个月增加了10%。
这个月的营业额是多少万元?
答案:80万元× (1 + 10%) = 88万元。
所以这个月的营业额是88万元。
2.
题目:学校图书馆有图书500本,其中科技书占了20%。
图书馆有多少本科技书?
答案:500本× 20% = 100本。
所以图书馆有100本科技书。
3.
题目:小明家上个月电费是150元,这个月电费降低了15%。
这个月的电费是多少元?
答案:150元× (1 - 15%) = 127.5元。
所以这个月的电费是127.5元。
4.
题目:一件上衣原价是200元,商场打八折出售。
打折后这件上衣的售价是多少元?
答案:200元× 80% = 160元。
所以打折后这件上衣的售价是160元。
5.
题目:小刚参加了数学竞赛,他答对了80%的题目。
如果竞赛总共有50道题,那么小刚答对了多少道题?
答案:50道× 80% = 40道。
所以小刚答对了40道题目。
这些题目旨在帮助学生理解百分比的基本概念,以及如何在日常生活中应用百分比进行计算。
通过解答这些题目,学生可以加深对百分比的理解,提高解决实际问题的能力。
百分数应用题和答案

百分数应用题和答案百分数应用题和答案「篇一」1、甲数比乙数少20%,那么乙数比甲数多百分之几?2、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?3、一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?4、商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?5、把一个正方形的一边减少20%,另一边增加2公尺,得到一个长方形,他与原来的`正方形面积相等,那么正方形的面积是多少平方公尺?6、已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之几?7、把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?8、某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加5%,今天共1995人出席会议,昨天参加会议的有多少人?9、有甲、乙两家商店,如甲店的利润增加20%,乙店的利润减少10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?10、有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?参考答案。
1.20%÷(1-20%)=25%。
2.16÷(1-25%)÷25%―(1―45%)÷45%、=9(块)。
3.(1+1/2)×(1+1/2)×6、÷(1×1×6)-1 = 125%。
4.45×60%-18×25%÷(1-25%)、 = 6(个)。
5.2×(1-20%)÷20%、2 = 64(平方公尺)。
6.40%×30%+(1-42%)、÷(1+40%)= 50%。
一般百分数应用题

一般百分数应用题例1:牛的只数比羊的只数多25%,羊的只数比牛少百分之几?例2:书店运进一批儿童故事书,第一天卖了30%,第二天卖得相当于第一天的120%,比第一天多买30本。
书店运进的故事书一共有多少本?例3:某工厂去年的水费比前年增加了5%,今年采取节约用水措施,水费预计比去年减少5%。
这个工厂今年的水费预计是前年的百分之几?例4:有一桶油,第一次取出了40%,第二次比第一次多取出了5千克,这时桶里还有15千克。
这桶油重多少千克?例5:电子仪器厂原来每天生产200个零件,合格率为85%。
技术革新后,每天的产量增加,合格率为98%,。
已知原来每天不合格的比现在多21个,现在每天生产多少个合格的零件?练习:1、果园里桃树的棵树是比梨树少20%,梨树的棵树比桃树多百分之几?2、甲产量比乙厂多25%,乙厂产量比甲厂少百分之几?3、六年级参加小提琴培训班的人数是没有参加的20%,没有参加的人数比参加的多32人。
六年级一共有多少人?4、某商场将一批毛衣按原价的80%打折销售,每件现售96元。
现在卖一件这样的毛衣可比原来便宜多少元?5、某工厂三月份电费比二月分增加了15%,四月份实行节约用电措施,电费比三月少了20%。
四月份电费十二月的百分之几?6、某工厂去年产量比前年减少了20%,今年比去年增加了30%,今年比前年增加了百分之几?7、一个粮仓,第一次运出30%的粮食,第二次比第一次的2倍还多5吨,这时粮仓中还剩下20吨粮食。
这个粮仓原来有多少吨粮食?8、一个粮仓,第一次运出30%的粮食,第二次运出的比第一次的2倍少10吨,这时粮仓中还剩下50吨粮食。
第二次比第一次多云出多少吨粮食?9、张村秋季植树500课、棵,成活率为85%,春季植树的成活率为95%。
已知秋季植的比春季多死了25棵,那么春季植树活了多少棵?10、兴旺小学五年级有140人,体育达标率为95%,六年级学生体育达标率为98%,五年级体育不达标的学生比六年级多2人。
适合小学生练习的百分数应用题

适合小学生练习的百分数应用题基本概念题一个班级有50名学生,其中25名是女生。
请问女生占全班的百分比是多少?(答案:50%)简单计算题如果一本书原价是100元,现在打8折出售,那么打折后的价格是多少元?(答案:80元)百分比增长小明上个月零花钱是100元,这个月增加到120元。
请问小明的零花钱增长了百分之多少?(答案:20%)百分比减少小红上次考试成绩是90分,这次降到81分。
请问小红的成绩下降了百分之几?(答案:10%)实际应用题一个果园里苹果树占了60%,梨树占了30%,其余是桃树。
如果果园总共有100棵树,苹果树、梨树和桃树各有多少棵?(答案:苹果树60棵,梨树30棵,桃树10棵)百分数与分数转换将3/5转换为百分数是多少?(答案:60%)百分数与小数转换0.75转换为百分数是多少?(答案:75%)百分比比较甲班有80%的学生通过了数学考试,乙班有85%的学生通过。
哪个班的通过率更高,高了多少个百分点?(答案:乙班更高,高了5个百分点)百分比分配如果小明有200元,他想把其中的30%用来买书,40%用来买文具,剩下的存起来。
那么他分别会用多少钱买书、买文具和存起来?(答案:买书60元,买文具80元,存起来60元)百分比计算总价一件商品成本是50元,商家希望在成本上增加40%的利润出售,那么售价应该是多少元?(答案:70元)百分比折扣一件衣服原价200元,现在进行“满200减20%”的活动,实际支付金额是多少元?(答案:160元)混合运算一个数的75%是150,这个数的20%是多少?(答案:40)百分比与比例如果A是B的80%,而B是C的50%,那么A是C的百分之多少?(答案:40%)实际应用题学校图书馆有1000本书,其中科幻书占20%,历史书占30%。
如果学校再购进200本科幻书,科幻书将占所有书籍的百分之多少?(答案:约28.6%)综合应用题小明家上个月水电费是150元,这个月通过节约用水电,费用减少了10%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百分数的一般应用题(通用5篇)百分数的一般应用题篇1百分数的一般应用题六上教学内容教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题.教学目的在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力.教学过程一、复习1.把下面各数化成百分数.0.63,1.08,7,0.044,,,,2.解答下面的应用题,并导入新课.“一个乡去年原计划造林12公顷,实际造林14公顷.实际造林是原计划的百分之几?”学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:14÷12=116.7%提问:为什么这样列式?要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算.提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?教师将复习题问题改变后成为例3.二、新课1.帮助学生理解题意.(1)指名学生读题.(2)提问:例3的问题与复习题有什么不同?你怎样理解“实际造林比原计划多百分之几”这句话?(引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几.)(3)在学生回答的同时,教师完成下面线段图.(4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?2.讨论算法并列出算式.提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么?列式:(14-12)÷12让学生计算出结果,教师板书并写出答案.3.想一想,这道题还有其他解法吗?引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数.学生列式,教师板书:14÷12×100%-100%4.将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?(1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?(引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”.必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几.)(2)学生列式,教师板书:(14-12)÷14如果有学生列出14÷14-12÷14也是允许的.(3)观察比较:将例3的第一种列式及改变问题后的第一种列式进行比较.不同点在什么地方?为什么除数不一样?通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化.解答这种题时,仍然要注意找准单位“1”.5.引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题.三、巩固练习1.提问:求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么.)解答此类应用题必须注意什么?(找准单位“1”.)2.独立解答第30页“做一做”的题目.订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几.九月份用水吨数为单位“1”,作除数.学生口述算式,教师板书:(800-700)÷800.教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700.然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系.四、课堂练习1.学生做练习三十的第1题.集体订正时要提问算法.2.学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中.教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正.五、作业练习三十的第2、4题.百分数的一般应用题篇2百分数的一般应用题六上课件课题一:百分数的一般应用题(一)(a)教学内容教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题.教学目的使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题.教具准备将复习中的第1题图画在小黑板上,第2题写在黑板上.教学过程一、复习1.看图,回答下面的问题.(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?先让学生想一想,然后,再指定学生回答.2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题.核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几.然后提问:“解答这样的题目关键是什么?”“关键是应该以谁作单位‘1’?”“用什么方法计算?怎样列式?”教师:这是我们过去学过的分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).二、新课1.教学例1.出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”请学生读题,提问:“这道题和上面复习中的第2题有什么不同?”“解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160=0.75=75%教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:“这道题怎样列式?”让学生讨论一下.学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.3.教学例2.教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用.口述并板书发芽率计算公式:发芽率=×100%教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”.我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”.下面我们看教科书第27页例2,齐读题目后,提问:“这道题求玉米种子的发芽率,实际就是求什么?”(求发芽的288棵玉米种子占用来进行发芽试验的300棵玉米种子的百分之几.)“怎样列式计算?”“这道题的得数是百分之九十六.有单位名称吗?为什么?”可以多让几个学生发表意见.教师:这道题求的是玉米的发芽率,实际求的是两个数的比,也就是求两个数相除的商所化成的百分数,这是没有单位名称的,这一点很重要,大家要特别注意.4.其他百分数的计算.教师:前面我们学习了发芽率的计算,在实际生活和生产中,还有很多百分数的计算问题.比如,我们吃的面粉是由小麦加工的,那么面粉的重量占小麦重量的百分之几就是小麦的出粉率;工人生产的产品有的是合格品,有的是不合格品,那么合格的产品数占产品总数的百分之几就是产品的合格率;实际出勤人数占应出勤人数的百分之几就是出勤率.让学生看教科书第27页.“你还能说出在实际生活中一些求百分数的例子吗?”可以多让一些学生说一说.教师:刚才大家说得很好,像稻谷的出米率、花生米的出油率、油菜籽的出油率等,都是百分数在实际生活中的一些应用.三、课堂练习做第113页下面“做一做”中的题目和练习八的第3题.先让每个学生独立做,然后再集体核对.核对练习八的第3题时,可以先让学生说一说是怎样做的,再问一问有没有其他做法,或者提问:“列式为15÷500,对不对?为什么?”帮助学生进一步明确发芽率的概念.四、作业练习二十九的第1、2、4题.百分数的一般应用题篇3预设目标:使学生理解和掌握求一个数是另一个数的百分之几的应用题的解题思路和方法。
理解百分数的含义,掌握有关百分率的计算方法。
教学重难点:理解掌握求一个数是另一个数的百分之几的解题思路和方法;掌握求有关百分率的计算方法。
依据分数与百分数应用题的内在联系,培养学生的迁移类推能力。
是本节课的教学重点。
正确分析题里的数量关系,正确列式。
教具、学具准备:投影片。
教学过程:一、铺垫1.复习。
(1)、(2)题用投影出示,(3)题在小黑板上出示)(1)4是5的几分之几?5是4的几倍?(2)一根钢管长12米,截去8米。
截去全长的几分之几?(3)五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?(1人板演)订正时,提问:谁和谁比?谁为单位“1”?2.揭示课题:同学们已经掌握了分数应用题的解答方法,在此基础上,我们学习百分数一般应用题的解答方法。
板书:百分数的一般应用题二、探究新知1.教学例1(1)将复习题中问题的“几分之几”改为“百分之几”成为例1:五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?(2)教师启发:例1和复习题比较,已知条件和数量关系都没有变,只是表示两数倍数关系的形式从几分之几变为百分之几。
同学们想一想,这两道题的解题思路和方法有没有变化?(没有)也就是说关于百分数的应用题的解法和分数应用题相同。
那么我们运用解分数应用题思路和方法解答例1。
(3)提问:①根据这道题的问题,想一想:谁与谁比?谁是单位“1”?根据求一个数是另一个数的几分之几的解答方法,怎样计算?②计算结果应是什么数?(4)请学生说出解题过程,教师板书:120÷160=0.75=75%答:占六年级人数的75%。