DCDC变换器的发展及应用
DCDC变换器技术现状发展趋势

DC/DC变换器技术现状及发展趋势(一)文中主要介绍DC/DC变换器发展过程及以下发展方向,实际工程应用可以更好的了解与选用DC/DC变换器。
在文章结束我们也为你介绍了一些世界著名DC/DC开发制造商的产品特色,以供选用。
分布式电源系统应用的普及推广以及电池供电移动式电子设备的飞速发展,其电源系统需用的DC/DC电源模块越来越多。
对其性能要求越来越高。
除去常规电性能指标以外,对其体积要求越来越小,也就是对其功率密度的要求越来越高,对转换效率要求也越来越高,文中主要介绍DC/DC变换器发展过程及以下发展方向,实际工程应用可以更好的了解与选用DC/DC变换器。
在文章结束我们也为你介绍了一些世界著名DC/DC开发制造商的产品特色,以供选用。
分布式电源系统应用的普及推广以及电池供电移动式电子设备的飞速发展,其电源系统需用的DC/DC电源模块越来越多。
对其性能要求越来越高。
除去常规电性能指标以外,对其体积要求越来越小,也就是对其功率密度的要求越来越高,对转换效率要求也越来越高,也即发热越来越少。
这样其平均无故障工作时间才越来越长,可靠性越来越好。
因此如何开发设计出更高功率密度、更高转换效率、更低成本更高性能的DC/DC转换器始终是近二十年来电力电子技术工程师追求的目标。
例如:二十年前Lucent公司开发出第一个半砖DC/DC时,其输出功率才30W,效率只有78%。
而如今半砖的DC/DC输出功率已达到300W,转换效率高达93.5%。
从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。
发热增多,体积缩小,难过高温关。
因为当时MOSFET 的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。
工程师们开始研究各种避开开关损耗的软开关技术。
虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。
DCDC变换器的发展和应用

DCDC变换器的发展和应用DC-DC变换器是一种能够将直流电能进行高效转换并输出不同电压的电子器件。
随着电子设备的普及和无线通信技术的发展,DC-DC变换器在能源转换和供电控制领域得到了广泛的应用。
本文将从DC-DC变换器的发展历程和应用领域两个方面进行介绍。
首先,我们来看一下DC-DC变换器的发展历程。
DC-DC变换器的起源可以追溯到20世纪60年代。
当时,由于无线通信技术的需求,人们开始尝试利用领域效应晶体管(FET)来实现高效率的DC-DC变换。
在70年代,随着功率半导体器件的快速发展,人们逐渐采用开关管实现了DC-DC变换器,进一步提高了转换效率。
80年代,随着集成电路的发展,人们开始研究和设计了各种拓扑结构的DC-DC变换器,比如升压、降压和升降压等不同的转换方式。
90年代以后,随着微电子技术和数字控制技术的成熟,DC-DC变换器的集成程度越来越高,体积越来越小,效率和性能也得到了大幅度的提升。
接下来,我们来了解一下DC-DC变换器的应用领域。
DC-DC变换器在电源管理和能源转换方面具有广泛的应用。
首先,在电子设备中,DC-DC变换器被广泛应用于供电模块,如电视机、电脑、手机等。
通过DC-DC变换器可以将电池的低电压转换为设备需要的工作电压,从而实现电子设备的正常运行。
其次,在通信领域,无线通信基站、微波设备和雷达等大功率设备通常需要高电压的供应,而DC-DC变换器可以将低电压转换为高电压,满足设备的供电需求。
此外,在新能源中,DC-DC变换器也起到了重要的作用。
比如在太阳能发电系统中,通过DC-DC变换器可以将太阳能电池板输出的直流电能转换为交流电能,并将其注入到电网中。
再比如在电动汽车中,DC-DC变换器可以将电池组的电能转换为电机驱动所需要的电能,实现电动汽车的运行。
总结起来,DC-DC变换器是一种能够将直流电能进行高效转换并输出不同电压的电子器件。
随着电子设备的普及和无线通信技术的发展,DC-DC变换器在能源转换和供电控制领域得到了广泛的应用。
DCDC转换器工作原理及用途

DCDC转换器工作原理及用途
DC-DC转换器,即直流-直流转换器,是一种将直流电源转换为不同电压或电流的电子设备。
其主要工作原理是通过改变输入端电压的波形、频率、极性和振幅,然后将这些改变应用到输出端,从而实现对电源电压的转换。
DC-DC转换器的工作原理如下:
1.输入端电源进行整流,将交流电转换为直流电。
2.通过谐振电容和电感元件构成一个振荡电路,产生高频振荡信号。
3.将高频振荡信号输入到变压器变压器中,通过变换器将输入端电压进行变换,然后输出到输出端。
4.输出端通过后级电路进行输出过滤,以获得所需要的电压或电流。
DC-DC转换器的用途广泛,以下为几个主要的应用领域:
1.电子设备:用于手机、平板电脑、笔记本电脑等电子产品的电源管理,将电池或外部电源的电压转换为所需的电压供应给电子设备。
2.电力系统:用于电力系统的直流输电、直流-交流逆变、直流-直流变换等。
3.汽车电子:用于汽车电子系统中的电源管理、电动车辆的能量转换和储存等。
4.太阳能电源系统:用于太阳能光伏电池组的能量转换和储存,将太阳能电池的直流电转换为交流电或其他所需的电压和电流。
5.工业控制与自动化:用于工业控制设备的电源管理,提供稳定的工
作电压或电流。
6.通信设备:用于通信基站、无线设备、卫星通信等设备的电源管理,提供所需的电压和电流。
总结:DC-DC转换器是一种能够将直流电源转换为不同电压或电流的
电子设备,其工作原理是通过改变输入端电压的波形、频率、极性和振幅,然后将这些改变应用到输出端。
它在电子设备、电力系统、汽车电子、太
阳能电源系统、工业控制与自动化、通信设备等领域有着广泛的应用。
DCDC直流变换器

第一章绪论本章介绍了双向DC/DC变换器(Bi-directionalDC/DCConverter,BDC)的基本原理概述、研究背景和应用前景,并指出了目前双向直流变换器在应用中遇到的主要问题。
1.1双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输入、输出电压极性不变的情况下,根据具体需要改变电流的方向,实现双象限运行的双向直流/直流变换器。
相比于我们所熟悉的单向DC/DC变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上一般都需要二极管,因此单个变换器能量的流通方向仍是单向的,且这样的连接方式会使系统体积和重量庞大,效率低下,且成本高。
所以,最好的方式就是通过一台变换器来实现能量的双向流动,BDC就是通过将单向开关和二极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2双向直流变换器的研究背景在20世纪80年代初期,由于人造卫星太阳能电源系统的体积和重量很大,美国学者提出了用双向Buck/Boost直流变换器来代替原有的充、放电器,从而实现汇流条电压的稳定。
之后,发表了大量文章对人造卫星应用蓄电池调节器进行了系统的研究,并应用到了实体中。
1994年,香港大学陈清泉教授将双向直流变换器应用到了电动车上,同年,F.Caricchi等教授研制成功了用20kW水冷式双向直流变换器应用到电动车驱动,由于双向直流变换器的输入输出电压极性相反,不适合于电动车,所以他提出了一种Buck-Boost级联型双向直流变换器,其输入输出的负端共用。
1998年,美国弗吉尼亚大学李泽元教授开始研究双向直流变换器在燃料电池上的配套应用。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应用具有很大的推动力,而开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳大利亚FelixA.Himmelstoss发表论文,总结出了不隔离双向直流变换器的拓扑结构。
DCDC变换器的发展和应用

DCDC变换器的发展和应用DC-DC变换器是一种电力变换装置,用于在直流电源之间变换电压或调整电源电压。
它是各种电子设备中非常重要的组件,广泛应用于电力电子、通信、工业控制、光电子和医疗设备等领域。
在直流电源应用的早期,人们主要使用线性稳压器来获得恒定电压输出。
然而,线性稳压器效率低下,且对于输入电压变化敏感,使得电源效率低下。
为了解决这个问题,人们开始研究开发DC-DC变换器。
DC-DC变换器的最早应用可以追溯到上世纪60年代,那时候主要使用的是线性稳压器和大功率真空管。
随着半导体技术的进步,人们逐渐发展出了各种类型的DC-DC变换器。
现代DC-DC变换器的发展主要集中在提高效率、减小尺寸和降低成本方面。
为了提高效率,人们开始采用高频开关技术,如脉冲宽度调制(PWM)和降低开关损耗的瞬态电压调制(TVS)技术。
此外,还引入了电感电容混合滤波技术,以减小输入电源的电流纹波。
随着微电子技术的发展,人们可以将更多的功能集成到单个芯片上。
例如,现在常见的DC-DC变换器芯片集成了功率开关器件、控制电路和监测电路。
这种集成化设计大大减小了电路的体积,提高了可靠性,并减少了制造成本。
DC-DC变换器的应用非常广泛。
在电力电子领域,DC-DC变换器主要用于能源转换装置,如电动机驱动器和UPS系统。
在通信领域,它被广泛应用于基站和网络设备中,用于电源管理和信号调节。
此外,在车载系统、航天器和医疗设备等领域也有广泛的应用。
总之,DC-DC变换器的发展经历了从线性稳压器到高效率、紧凑型集成芯片的演进。
它在电力电子、通信、工业控制、光电子和医疗设备等领域都扮演着重要的角色。
随着技术的不断进步和需求的不断增长,相信DC-DC变换器将会继续迎来更多的创新和应用。
DCDC变换器的发展与应用.

DC/DC变换器的发展与应用1引言直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。
按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。
进入20世纪90年代,DC/DC 变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。
由于微处理器的高速化,DC/DC 变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC 变换器在远程和数字通讯领域有着广阔的应用前景。
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。
用直流斩波器代替变阻器可节约20%~30%的电能。
直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。
DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。
随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。
目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
电子产业的迅速发展极大地推动了开关电源的发展。
高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。
在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。
一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。
DCDC变换器的发展及应用

DCDC变换器的发展及应用DC-DC变换器是一种能够将直流电压转换为不同电压等级的电器的装置。
它被广泛应用于电源系统中,如通信设备、计算机、工业设备等领域。
DC-DC变换器的发展经历了多个阶段,如线性稳压器、开关稳压器和多级变换器等。
在早期,线性稳压器被广泛使用。
然而,线性稳压器的效率较低,因为它将输入电压降低到所需电压时,会将多余的能量以热量的形式消耗掉。
为了提高效率,开关稳压器开始被引入。
开关稳压器通过控制功率开关器件的开关,将输入电压转换为高频脉冲信号,然后通过滤波器进行平滑,输出所需电压。
开关稳压器的效率可以达到90%以上,提高了能量利用率。
为了满足不同的电压要求,多级变换器逐渐兴起。
多级变换器包括升压变换器、降压变换器和升降压变换器。
升压变换器可以将低电压提升到高电压,适用于一些特定的应用,如太阳能系统、电动车等。
降压变换器可以将高电压降低到低电压,适用于大多数电子设备。
而升降压变换器则可以实现电压的双向转换,适用于需要电源切换的场景。
DC-DC变换器的应用非常广泛。
在通信设备领域,DC-DC变换器用于供应各种电子设备的电源,如手机、路由器、交换机等。
在计算机领域,DC-DC变换器用于提供CPU、显卡和主板等电子设备的电源。
在工业设备领域,DC-DC变换器用于供应各种机械设备的电源,如电机、传感器等。
此外,DC-DC变换器还广泛应用于汽车电子、医疗器械、航空航天等领域。
随着科技的不断发展,DC-DC变换器也在不断创新。
新型的DC-DC变换器采用了一些新的技术,如芯片级封装、高频分析算法、数字控制等。
这些创新可以提高DC-DC变换器的效率、可靠性和稳定性,满足新一代电子设备对电源的要求。
总的来说,DC-DC变换器在电源系统中发挥着重要作用。
随着技术的不断进步,DC-DC变换器不断创新,以满足不同领域的需求。
在未来,DC-DC变换器将继续发展,为电子设备的发展提供更加高效、稳定的电源。
《DCDC变换器》课件

提高电源系统的稳定性和 可靠性
降低电源系统的成本和维 护费用
提高电源系统的效率和性 能
提高电源系统的灵活性和 适应性
卫星电源系统:为 卫星提供稳定的电 源
航天器电源系统: 为航天器提供稳定 的电源
航空电子设备:为 航空电子设备提供 稳定的电源
导弹武器系统:为 导弹武器系统提供 稳定的电源
用于控制系统的电源供应 电机驱动和控制 传感器信号处理 工厂自动化设备的能源管理
数字化控制技术在DCDC变 换器中的应用
数字化控制技术的发展趋 势和挑战
软开关技术的概念:通过控制开关的导通和关断时间,实现开关的软切换,降低开关损耗。 软开关技术的分类:包括零电压开关(ZVS)、零电流开关(ZCS)和零电压零电流开关 (ZVZCS)。
软开关技术的应用:在DCDC变换器中,软开关技术可以提高变换器的效率和稳定性。
DCDC变换器广泛应用于各种 电子设备和电源系统中
它具有效率高、体积小、重 量轻等优点
实现直流电压的转换
为负载提供稳定的直流电压
添加标题
添加标题
用于分布式电源系统
添加标题
添加标题
提高电源利用效率和可靠性
按工作原理分类: 升压型、降压型 和升降压型
按输入输出电压 关系分类:隔离 式和非隔离式
按控制方式分类: 脉宽调制(PWM) 和脉冲频率调制 (PFM)
DCDC变换器的技 术发展
提高转换 效率:采 用新型拓 扑结构、 控制策略 等
降低损耗: 优化电路 设计、材 料选择等
提高稳定 性:采用 先进的控 制算法、 保护措施 等
提高可靠 性:采用 冗余设计、 故障诊断 等
提高集成 度:采用 模块化设 计、集成 电路等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DC/DC变换器的发展与应用周志敏(莱芜钢铁集团公司动力部,山东莱芜271104)摘要:介绍电压调整模块(VRM)技术、软开关技术和高频磁技术在DC/DC变换器中的应用,分析DC/DC变换器发展的关键技术,并探讨其发展的趋势。
关键词:电压调整模块;软开关;高频磁技术1引言直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。
按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。
进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。
由于微处理器的高速化,DC/DC 变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领域有着广阔的应用前景。
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。
用直流斩波器代替变阻器可节约20%~30%的电能。
直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。
DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。
随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。
目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
电子产业的迅速发展极大地推动了开关电源的发展。
高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。
在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。
一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。
目前,在电子设备中用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。
近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因为电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。
一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。
因为电子设备容量的不断增加,其电源容量也将不断增加。
2电力电子器件功率变换技术高速发展的基础是电力电子器件和控制技术的高速发展,在21世纪,电力电子器件将进入第4代即智能化时代,具有如下显著的特征。
2.1高性能化高性能化主要包括高电压、大容量、降低导通电压低损耗、高速度和高可靠性等4个方面。
如IGBT的电流可达2kA~3kA、电压达到4kV~6kV,降低损耗是所有复合器件的发展目标。
预计在21世纪IGBT、智能化功率模块(IPM)等器件的导通电压可降到1V以下,而MOSFET、IBGT、MCT等器件的应用频率将达到兆赫数量级。
2.2智能化和集成化智能化的发展是系统智能集成(ASIPM),即将电源电路、各种保护以及PWM控制电路等都集成在一个芯片上,制成一个完整的功率变换器IC。
集成电力电子模块(IPEM)是将驱动、自动保护、自诊断功能的IC与电力电子器件集成在一个模块中。
由于不同的元器件、电路、集成电路的封装或相互连接产生的寄生参数已成为决定电力电子系统性能的关键,所以采用IPEM方法可减少设计工作量,便于生产自动化,提高系统质量、可靠性和可维护性,缩短设计周期,降低产品成本。
IPEM与IPM或PIC的不同之处在于后者是单层单片集成,一维封装;而前者是高电压、大电流、多层多片集成,三维封装,结构更复杂,多方向散热,其热设计也更加重要。
IPEM研究课题中有待解决的基本问题是结构的确定和通用性,新型电力电子器件评估的主要方面是开关单元、拓扑结构、高电压大电流功率器件的单片集成。
大功率无源器件集成、IPEM三维封装(控制寄生参数,将寄生影响控制在最小范围)、热管理、IPEM设计软件、接口与系统的兼容性、IPEM性能预测、可靠性冗余和容错等都需要跨学科研究。
因为与现代电力电子学相关的学科十分广泛,包括基础理论学科,如固体物理、电磁学、电路理论;专业理论学科如电力系统、电子学、系统与控制、电机学及电气传动、通信理论、信号处理、微电子技术;及电磁测量、计算机仿真、CAD等,覆盖了材料、器件、电路与控制、磁学、热设计、封装、CAD集成、制造、电力电工应用等专业技术。
就目前我国电力电子技术发展的现状而言,迫切需要跨学科并运用多种专业技术进行联合研究,以适应当今国际电力电子科技前沿技术的发展。
2.3模块化模块化有两方面的含义,其一是指功率器件的模块化,其二是指单元的模块化。
常见的功率器件模块含有1单元、2单元、6单元直至7单元,包括开关器件和与之串并联的续流二极管,实质上都属于"标准"功率模块(SPM)。
近年来,有些公司把开关器件的驱动保护电路也装到功率模块中构成IPM,不但缩小了整机的体积,而且更加方便了整机的设计与制造。
实际上,由于频率不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。
为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,产品性能优良。
它类似于微电子电路中的用户专用集成电路(ASIC)。
只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。
由此可见,模块化的目的不仅在于使用方便,可缩小整机体积,更重要的是取消了传统连线,把寄生参数值降到最小,从而把器件承受的电应力降至最低,提高了系统的可靠性。
另外,大功率的开关电源,由于器件容量的限制和冗余度的增加,从提高可靠性方面考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。
这样,不但提高了功率容量,在有限的器件容量情况下可满足大电流输出的要求,而且通过增加相对于整个系统来说功率很小的冗余电源模块,极大地提高了系统的可靠性,即使万一出现单个模块故障,也不会影响系统的正常工作,而且可提供充分的时间进行修复。
3新的DC/DC变换器技术3.1VRM技术就DC/DC变换器而言,由于现代微处理器和一些超高速大规模集成电路芯片,如Intel、Pentium、Pro等,要求在低电压(2.4V~3.3V)、大电流(>13A)状态下工作,而其直流母线电压通常为5V~12V。
这样,就需要将直流母线电压通过DC/DC变换器进行变换,通常用VRM来实现。
显然,随着芯片集成密度、工作速度的进一步提高,芯片的工作电压将进一步下降,工作电流进一步增大。
人们对VRM提出了新的挑战,要求VRM具有非常快速的负载电流响应,在保证足够小的体积的同时,还要具有高效率。
要使VRM具有快速的负载电流动态响应,传统的解决办法是在VRM的输出端并联很多容量很大、等效串联电阻很小的退耦电容器。
显然,该方法存在如下问题:1)退耦电容器体积很大,而现代微处理器对VRM的体积有着严格的要求。
2)退耦电容器仅能改善动态响应的影响阶段,对后阶段及总的动态响应时间没有作用。
一种交错叠加型准方波抵消纹波的变换拓扑结构是其最新的解决方案,如图1所示,该结构在保证要求输出纹波的前提下,不但可以大大减少输出滤波电容器的容量,而且能大大减少VRM输出滤波电感的电感量。
除此以外,为了提高VRM的动态响应,还必须力求减小供电母线的引线电感,其最有效的解决方案是将VRM作成“装在印刷板上”的直流分布式电源形式,直接装在负载附近。
另一方面,还要求VRM本身具有十分小的引线电感,为了保证VRM具有足够的效率,必须采用同步整流器和漏感很小的超薄型变压器。
3.2软开关技术为了缩小DC/DC变换器的体积,提高功率密度,改善动态响应,高频化是DC/DC变换器技术发展的必然趋势。
但高频化又会产生新的问题,如开关损耗及无源元件的损耗增大,高频寄生参数及高频EMI问题等。
应用各种软开关技术(包括无源无损软开关技术,有源软开关技术)可以减少开关损耗,提高效率。
1994年2月,IEEE电力电子学会组织“功率变换技术2000年展望专题研讨会”,就DC/DC及AC/DC功率变换器的发展趋势与需求进行探讨,指出高功率密度DC/DCZVS开关变换器与器件性能、无源元件、封装技术等有很大关系。
与1994年对比,2000年,在保证可靠性增加一倍的基础上,这种变换器功率密度提高一倍,成本降低一半。
进入20世纪90年代,各种软开关技术,如ZVS/ZCS—PWM、ZVT/ZCT—PWM、移相全桥ZVS—PWM、有源箝位ZVS—PWM等的开发和应用都有较大的发展。
美国Vicor公司生产的48V/600WDC/DC开关变换器模块,由于采用高频软开关技术,功率密度达到7.32W/cm3,效率为90%,而3MHz、低电压(1V)输出的便携式DC/DC 变换器也正在研究开发中。
3.3高频磁技术随着电力电子电路与系统的高频化,在低频下可以忽略的某些寄生参数,在高频下将对某些电路性能(开关尖峰能量、噪声水平等)产生重大影响,尤其是磁元件的涡流、漏电感、绕组交流电阻(Rac)和分布电容等在低频和高频下的表现有很大不同。
20世纪90年代高频磁技术研究的另一项成果是适用于薄型高频开关变换器的薄型平面变压器,其厚度小于1cm,呈扁平状。
绕组采用铜箔或板型印刷电路,省去绕组骨架,有利于散热,漏感小,集肤效应损耗小。
2000年,磁性材料研究的主要方向是:(1)高温超导;(2)将铁氧体或其它薄膜材料高密度集成在硅片上或硅材料集成在铁氧体上;(3)录音磁头用薄膜材料高密度集成在硅片上或硅材料集成在铁氧体上。