物理光学期末复习重点
高二物理总结光学部分复习重点

高二物理总结光学部分复习重点如下是根据题目要求书写的高二物理总结光学部分复习重点的文章:光学是物理学的一个重要分支,研究光的传播、干涉、衍射等现象。
在高二物理课程中,学生们学习了光的基本性质和光的反射、折射、色散等内容。
以下是关于光学部分的复习重点。
希望对同学们的复习有所帮助。
一、光的反射1. 反射定律:光线的入射角等于反射角,即入射角i等于反射角r。
2. 镜面反射:光线在光滑的镜面上发生反射,反射光线和入射光线在法线上的投影是相等的。
3. 理想平面镜成像规律:平行光经过理想平面镜反射后,光线会汇聚到镜面上的一个点上,成为实像。
虚像则是通过反向延长光线找到的。
二、光的折射1. 折射定律(斯涅尔定律):在两种介质间传播的光线,入射角的正弦与折射角的正弦之比是一个常数,即n₁sin(i) = n₂sin(r),其中n₁和n₂分别是两种介质的折射率。
2. 反向追踪法:借助反向延长光线和延长入射光线在界面上的交点,确定折射光线的方向。
3. 折射的应用:光的折射现象在实际生活中有许多应用,如光的折射可解释为为什么水中的物体看起来更浅、杯底破坏等。
三、光的色散1. 色散现象:将白光通过三棱镜等透明介质,可以看到光线被分解为不同颜色组成的光谱。
2. 折射率和色散关系:不同颜色的光在不同介质中的速度和折射率不同,导致光线通过透明介质时会偏折。
3. 彩虹形成原理:彩虹的形成是阳光经过水滴,发生多次反射、折射和内反射后形成的。
在特定条件下,才能观察到美丽的彩虹。
四、透镜1. 凸透镜和凹透镜:凸透镜呈现凸状,中间较厚;凹透镜呈现凹状,中间较薄。
2. 像的位置:凸透镜成像有两种情况:物距大于二倍焦距时为实像,位于凸透镜的前方;物距小于二倍焦距时为虚像,位于凸透镜的后方。
3. 公式关系:凸透镜的成像公式是1/f = 1/u + 1/v,其中f是透镜的焦距,u是物像距离,v是像物距离。
五、光学仪器1. 显微镜:利用两个透镜(目镜和物镜)的成像放大物体的原理,可以看到微小的物体。
物理光学知识归纳总结

物理光学知识归纳总结一、光的本质与传播光的实质是电磁波,它是由电场和磁场相互垂直并向垂直传播的电磁波所组成。
光的传播具有直线传播、波动传播和光线传播三种形式。
二、光的反射与折射1. 光的反射:当光线从一种介质射向另一种介质时,遇到分界面时会发生反射。
根据入射角与法线的夹角关系,可以得到反射角与入射角相等的经验规律。
2. 光的折射:当光线从一种介质射向另一种介质时,遇到分界面时会发生折射。
根据斯涅尔定律,可以得到入射角、折射角及两种介质的折射率之间的关系。
三、光的干涉与衍射1. 光的干涉:当两束或多束光线同时作用于同一位置时,会产生干涉现象。
根据干涉现象可以推导出叠加原理和干涉条纹的产生。
2. 光的衍射:当光通过一个小孔或者通过障碍物的边缘时,会出现衍射现象。
衍射现象可以解释光的直线传播的限制性和光的波动性。
四、光的偏振与旋光现象1. 光的偏振:光的振动方向,可以沿任意方向存在的非偏振光,也可以沿一个特定方向振动的偏振光。
偏振光可以通过偏光片进行选择性透过或者阻挡。
2. 光的旋光现象:某些物质具有旋光性质,当光通过旋光物质时,光的振动方向会发生旋转。
五、光的色散与光的色彩1. 光的色散:光线在不同介质中传播时,不同频率的光会有不同的折射率,从而导致光的色散现象。
2. 光的色彩:光的色彩由不同波长的光组成,根据太阳光的色散现象,可以得到光的色彩顺序为红橙黄绿蓝靛紫。
六、光的成像与光学仪器1. 光的成像:光通过凸透镜或者凹透镜时,可以形成实像或者虚像。
根据薄透镜成像公式可以计算出物距、像距和透镜焦距之间的关系。
2. 光学仪器:利用光的传播、折射和成像原理,可以制造出各种光学仪器,如显微镜、望远镜、投影仪等。
七、光的衍射光栅与光的激光1. 光的衍射光栅:光通过光栅时,会出现衍射现象。
光栅是由很多平行的有规律的线条或者孔洞组成的光学元件,可以分散多种频率的光,并形成光的衍射光谱。
2. 光的激光:激光是一种具有高度相干性和单一频率的光。
物理光学知识点汇总

物理光学知识点汇总1、全反射:光从光密介质入射到光疏介质,并且当入射角大于临界角时,在两个不同介质的分界面上,入射光全部返回到原介质中的现象,就叫全反射。
2、折射定律:①折射光位于由入射光和法线所确定的平面内。
②折射光与入射光分居在法线的两侧。
③折射角与入射角满足。
3、XXX判据:定义一:一个点物衍射图样的中央极大与近旁另一点物衍射图样的第一极小重合,作为光学系统的分辨极限,认为此时系统恰好可以分辨开两个点物,称此分辨标准为瑞利判据。
定义二:两个波长的亮条纹只有当它们合强度曲线中央极小值低于两边极大值的0.81时才能被分辨开。
4、干涉:在两个(或多个)光波叠加的区域,某些点的振动始终加强,另一些点的振动始终减弱,形成在该区域内稳定的光强强弱分布的现象。
5、衍射:通俗的讲,衍射就是当入射光波面受到限制后,将会背离原来的几何传播路径,并呈现光强不均匀分布的现象。
6、XXX:沿着第二介质表面流动的波。
7、光拍现象:光强随时间时大时小变化的现象。
8、相干光束会聚角:对应干涉场上某一点P的两支相干光线的夹角。
9、干涉孔径角:对于干涉场某一点P的两支相干光线从光源发出时的张角。
10、缺级现象:当干涉因子的某级主极大值刚好与衍射因子的某级极小值重合,这些主极大值就被调制为零,对应级次的主极大就消失了,这种现象就是缺级。
11、坡印亭矢量(34、辐射强度矢量):它表示单位时间内,通过垂直于传播方向的,单位面积的电磁能量的大小。
它的方向代表的是能量流动的方向。
12、相干长度:关于光谱宽度为的光源而言,能够产生干涉现象的最大光程差。
13、发光强度:辐射强度矢量的时间均匀值。
14、全偏振现象(15、布儒斯特角):当入射光是自然光,入射角满足时。
即反射光中只有波,没有波,这样的现象就叫全偏振现象。
此时的入射角即为布儒斯特角,16、马吕斯定律:从起偏器出射的光通过一检偏器,透过两偏振器后的光强随两器件透光轴的夹角而变化,即称该式表示的关系式为马吕斯定律。
物理光学知识点

物理光学知识点物理光学是光学的一个重要分支,主要研究光的本性、光的传播以及光与物质的相互作用等方面。
下面我们来详细了解一些关键的物理光学知识点。
一、光的波动性1、光的干涉光的干涉是指两列或多列光波在空间相遇时,相互叠加,在某些区域始终加强,在另一些区域始终减弱,从而形成稳定的强弱分布的现象。
杨氏双缝干涉实验是证明光具有波动性的经典实验。
在杨氏双缝干涉中,相邻明条纹或暗条纹的间距与光的波长、双缝间距以及双缝到光屏的距离有关。
2、光的衍射光在传播过程中遇到障碍物或小孔时,偏离直线传播路径而绕到障碍物后面传播的现象称为光的衍射。
衍射现象表明光具有波动性。
单缝衍射、圆孔衍射等都是常见的衍射现象。
衍射条纹的宽度与障碍物或小孔的尺寸以及光的波长有关。
3、光的偏振光的偏振现象表明光是一种横波。
自然光通过偏振片后会变成偏振光。
偏振光在很多领域都有重要应用,如立体电影、偏振光显微镜等。
二、光的粒子性1、光电效应当光照射到金属表面时,金属中的电子吸收光子的能量,从而逸出金属表面的现象称为光电效应。
光电效应的实验规律无法用经典物理学来解释,爱因斯坦提出了光子说,成功解释了光电效应。
光电效应方程为:$h\nu =W +\frac{1}{2}mv^2$,其中$h$为普朗克常量,$\nu$为光的频率,$W$为金属的逸出功,$m$为电子质量,$v$为电子逸出后的速度。
2、康普顿效应康普顿效应进一步证实了光的粒子性。
当 X 射线光子与物质中的电子碰撞时,光子的能量和动量发生改变,散射后的 X 射线波长变长。
三、光的传播1、光速真空中的光速是一个常量,约为$3\times 10^8$米/秒。
光在不同介质中的传播速度不同,且满足$v =\frac{c}{n}$,其中$v$为光在介质中的速度,$c$为真空中的光速,$n$为介质的折射率。
2、折射与反射当光从一种介质进入另一种介质时,会发生折射和反射现象。
折射定律为:$n_1\sin\theta_1 = n_2\sin\theta_2$,其中$n_1$和$n_2$分别为两种介质的折射率,$\theta_1$和$\theta_2$分别为入射角和折射角。
物理光学知识点总结

物理光学知识点总结1. 光的基本概念- 光是一种电磁波,具有波动性和粒子性(光子)。
- 可见光谱是人眼能够感知的光的范围,大约在380纳米至750纳米之间。
2. 光的传播- 光在均匀介质中沿直线传播。
- 光速在不同介质中不同,真空中的光速约为299,792,458米/秒。
- 光的传播遵循光的折射定律和反射定律。
3. 反射定律- 入射光线、反射光线和法线都在同一平面内。
- 入射角等于反射角,即θi = θr。
4. 折射定律(Snell定律)- n1 * sin(θ1) = n2 * sin(θ2),其中n1和n2是两种介质的折射率,θ1和θ2分别是入射角和折射角。
5. 光的干涉- 干涉是两个或多个光波相遇时,光强增强或减弱的现象。
- 干涉条件是两束光的频率相同,且相位差恒定。
- 常见的干涉现象有双缝干涉和薄膜干涉。
6. 光的衍射- 衍射是光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。
- 单缝衍射、圆孔衍射和光栅衍射是常见的衍射现象。
7. 光的偏振- 偏振光是电磁波振动方向受到限制的光。
- 线性偏振、圆偏振和椭圆偏振是偏振光的三种类型。
- 偏振片可以用来控制光的偏振状态。
8. 光的散射- 散射是光在传播过程中遇到粒子时发生方向改变的现象。
- 散射的强度与粒子大小、光波长和入射光强度有关。
- 常见的散射现象有大气散射,导致天空呈现蓝色。
9. 光的颜色和色散- 颜色是光的另一种表现形式,与光的波长有关。
- 色散是光通过介质时不同波长的光因折射率不同而分离的现象。
- 棱镜可以将白光分解成不同颜色的光谱。
10. 光的量子性- 光电效应表明光具有粒子性,光子的能量与其频率成正比。
- 波恩提出的波函数描述了光子的概率分布。
- 量子光学是研究光的量子性质的学科。
11. 光的相干性和光源- 相干光具有固定的相位关系,激光是一种高度相干的光源。
- 光源可以是自然的,如太阳,也可以是人造的,如激光器和灯泡。
12. 光学仪器- 望远镜、显微镜、光纤和光学传感器都是利用光学原理工作的仪器。
物理光学知识点

物理光学知识点物理光学是物理学的一个分支,研究光的传播、反射、折射、干涉、衍射、偏振等现象以及与物质的相互作用。
在本文中,我们将介绍物理光学的一些重要知识点。
1. 光的传播速度光在真空中的传播速度是一个常数,即光速。
根据现行国际单位制的定义,光速的数值约为每秒299,792,458米。
这是一个非常快的速度,足以让光在一秒内绕地球走7.5圈。
2. 光的波动性和粒子性光既可以表现出波动性,也可以表现出粒子性。
这种“波粒二象性”是量子力学的基本原理之一,也被称为光的量子论。
根据光的具体实验条件,我们可以采用波动或粒子模型来解释和预测光的行为。
3. 光的反射和折射光在与界面接触时会发生反射和折射。
反射是指光从界面上的垂直方向弹回,形成镜面反射。
折射是指光从一种介质传播到另一种介质时发生方向改变。
根据斯涅尔定律,光的入射角和折射角之间存在特定的关系。
4. 光的干涉和衍射当两束或多束光波相遇时,会发生干涉现象。
干涉分为构造干涉和破坏干涉。
构造干涉是指光的相位叠加导致明暗相间的干涉条纹,例如杨氏双缝干涉实验。
破坏干涉是指光的相位差引起的干涉现象,例如红外夜视摄像机。
光通过狭缝或物体边缘时,会发生衍射现象。
衍射是光波的波前在遇到障碍物时发生弯曲并扩散的现象。
衍射过程中光波的相位和强度分布规律与观察距离和衍射孔径的大小有关。
5. 光的偏振光波在传播过程中,振动方向不随时间变化的现象称为偏振。
光可以是线偏振、圆偏振或者椭圆偏振的。
线偏振光的振动方向只在一个平面上,圆偏振光的振动方向沿着一个圆周,而椭圆偏振光的振动方向沿着一个椭圆。
6. 光的色散色散是指光在透明介质中传播时,不同波长的光的折射率不同而导致的色彩分离现象。
著名的实验是牛顿的光的色散实验,他将一束白光通过一个三棱镜,观察到光被分成了七种颜色的光谱。
7. 光的吸收和透射物质对光的吸收和透射是光与物质相互作用的重要现象。
当光通过物质时,会与物质中的原子或分子相互作用,一部分光被吸收,一部分光通过物质并被透射出来。
高中物理光学复习要点

高中物理光学复习要点高中物理中的光学部分是比较难理解的,但是它是非常重要的一门学科,因为我们的日常生活中充满着光。
复习光学时,一定要有一个系统的复习计划。
下面,本文将为大家介绍几个光学复习要点。
1. 光的传播与光源光可以被认为是一种波动形式,其传播速度是光速。
光的起源可以是自然或人造的光源,如太阳、灯泡等。
人类发现最早的光源是太阳。
良好的光源需要具有稳定性、亮度、色温等特性。
2. 光的反射和折射光束遇到边缘时可能会经历反射或折射。
镜子或其他光滑而有光反射能力的表面可以反射光。
折射是当光从一个媒介到另一个媒介时改变方向的现象。
在空气中,光是直线传播的,但在其他媒介中,如水和玻璃,光传播时会发生弯曲。
这种现象由光速不同引起的。
3. 光的成像成像是描述物体被物体前的透镜(如眼镜或相机中的透视镜头)所呈现在感光体(如眼睛或相机中的感光后器)上的过程。
物体和透视镜头之间的距离影响透镜的倍率。
透镜和眼睛的焦点距离影响眼睛的后物距和视力。
如果相片或图像的焦点不是正确的距离,那么图像会失去清晰度。
4. 光的波动性当光遇到障碍物时,有一种现象,称为光衍射。
光线的光束,经过缝隙或其他不在光路上的障碍物时,会向侧方弯曲。
衍射出的光往往是一个清晰的周围,被称为衍射图。
这是由于光的波动性所引起的。
5. 光的颜色我们可以从彩虹和色彩电视机来了解颜色。
太阳在被云彩挡住的时候,可以发现一个个美丽的五颜六色的环带,这就是彩虹。
彩虹的出现是由于太阳光在雨水珠中的折射、反射、折射而形成的,造成了光的不同波长分离的现象。
以上是一些关于高中物理光学部分的复习要点,希望大家在备考过程中可以充分掌握这些知识点,以便更好地实现目标。
高三物理光学知识点总结

高三物理光学知识点总结物理光学是高中物理中的重要内容之一,涉及到光的传播、反射、折射、干涉等多个知识点。
下面将对高三物理光学的相关知识进行总结,以便同学们复习和掌握。
一、光的传播速度光在真空中传播的速度是一个常量,被称为光速。
光速的数值约为每秒3×10^8米。
在介质中,光束的传播速度会受到介质的折射率的影响,一般情况下会减小。
二、光的反射光在遇到平面镜或光滑的界面时会发生反射。
光的反射遵循反射定律,即入射角等于反射角。
反射定律可以用来解释镜面成像的原理。
三、光的折射光在从一种介质传播到另一种介质时会发生折射。
光的折射遵循斯涅尔定律,即入射光线与法线的夹角的正弦比等于两个介质的折射率之比。
根据斯涅尔定律可以解释光在透明介质中的传播路径和折射现象。
四、光的色散光的色散是指光在通过介质时发生频率不同的波长的分离现象。
这是因为不同波长的光在折射时受到介质折射率的依赖程度不同所致。
色散现象在光谱仪、彩虹等自然现象中都有体现。
五、光的干涉光的干涉是指两束或多束光波相遇时,由于波的叠加作用产生的明暗条纹的现象。
光的干涉可以分为构成干涉与破坏干涉两种情况。
其中,构成干涉包括两束光波的相长干涉和相消干涉,而破坏干涉则是两束光波的干涉后消除的现象。
光的干涉可以应用于光栅衍射、薄膜干涉和双缝干涉等实验和技术中,广泛用于科学研究和工程应用。
六、光的偏振光的偏振是指光波沿特定方向传播,并具有同一振动方向的性质。
光的偏振可以通过偏振器来实现。
常见的偏振光有线偏振光和圆偏振光。
光的偏振现象在偏光镜、太阳眼镜、3D电影等领域都有应用。
七、光的衍射光的衍射是指光通过细缝、狭缝或障碍物之后发生偏差和扩散的现象。
光的衍射是波动光学的重要内容之一,它可以解释光的散射、色散和干涉等现象。
光的衍射在显微镜、望远镜、衍射光栅等光学仪器和技术中有广泛应用。
八、镜片成像镜片成像是利用透镜或反射镜使光线经过折射或反射而成像的过程。
根据透镜的形状可以分为凸透镜和凹透镜,根据反射镜的形状可以分为凹面镜和凸面镜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理光学复习要点第一章 光的电磁理论一、电磁理论1.光是电磁波,具有波动和粒子的两重性质,称为波粒二象性。
2.物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。
3. Maxwell 方程组:积分形式、微分形式4.物质方程:5.波动方程6.介质的折射率:r r cn μευ==≈7. 边值关系:21212121()0()0()0()0n E E n H H n D D n B B ⎧⨯-=⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩8. 波(阵)面:将某一时刻振动相位相同的点连接起来,组成的曲面叫波阵面 9. 波长:简谐波具有空间周期性,波形变化一个周期时波在空间传播的距离称为波的空间周期,一维简谐波的空间周期为波的波长;即为λ,具有长度的量纲L 。
10. 空间频率:空间周期即波长的倒数称为空间频率;f=1/λ11.空间角频率:k =±2πf ,在数值上等于空间频率的2π倍,所以也称为传播数,k 的符号表示一维波的传播方向,当k >0时,表示波沿着+z 的方向传播;当k <0时,表示波沿着-z 的方向传播。
12. 时间参量与空间参量的关系为:k ωυ=t B E ∂∂-=⨯∇ρ=⋅∇D 0=⋅∇B t D J H ∂∂+=⨯∇ ⎰⎰⎰⋅∂∂-=⋅A C s d t B l d E ⎰⎰⎰⎰⎰=⋅V A dv s d D ρ 0=⋅⎰⎰A s dB ⎰⎰⎰⋅∂∂+=⋅A C ds tD J l d H )(B Hμ1=ED ε=E J σ=222t E E ∂∂=∇ με222t BB ∂∂=∇ με22221E E tυ∂∇=∂22221H H t υ∂∇=∂μευ1=13. 坡印廷矢量S 称为能流密度矢量或者称为坡印廷矢量,它的大小表示电磁波所传递的能流密度,它的方向代表能量流动的方向或电磁波传播的方向。
14. 电磁波强度(光强)的定义是:能流密度S 在接收器可分辨的时间间隔(即响应时间)τ内的时间平均值。
1I S Sdt ττ=<>=⎰二、菲涅尔公式15. 折射和反射定律的内容是:时间频率ω是不变的;反射波和折射波均在入射面内;反射角等于入射角。
16. 折射定律:折射介质折射率与折射角正弦之积等于入射介质折射率与入射角正弦之积。
(1122sin sin n n θθ=) 17.菲涅耳公式18. 布儒斯特定律:2121190tan n n θθθ+==, 19. 能流比:通过界面上某一面积的入射光、反射光和折射光通量之比 20. 将菲涅尔公式代入反射比和透射比的公式,得21E EB uv S μεμ===BE S ⨯=μ12221122112sin ()sin ()s s s s A R r A θθθθ⎛⎫'-=== ⎪+⎝⎭222222211111cos cos cos cos s s s s A n n T t A n n θθθθ⎛⎫== ⎪⎝⎭22222121112cos 4sin cos cos sin ()n n θθθθθθ=+()()2211222112p p p p A tg R r A tg θθθθ⎛⎫'-=== ⎪ ⎪+⎝⎭222222211111cos cos cos cos p p p p A n n T t A n n θθθθ⎛⎫== ⎪ ⎪⎝⎭22222122111212cos 4sin cos cos sin ()cos ()n n θθθθθθθθ=+-21. 全反射临界角sin θc= n 2/n 122. 隐矢波:全反射时全部光能都反回第一介质,光波将透入第二介质很短的一层表面(深度约为光波波长,并沿界面流动约半个波长再返回第一介质。
第二介质表面的这个波称为隐矢被。
三、光的色散和吸收23. 光的吸收:光通过介质时,介质吸收了部分入射光能量(不同于金属表面的吸收),其光强度随进入介质的深度而减弱的现象,若入射的是单色简谐光波,表现为该波函数的振幅减小。
24. 色散:介质的折射率随光的频率或波长而变化的现象25. 散射:光通过介质时,介质中出现了向其它方向发散的光线第二章 光波的叠加分析掌握同频率同振动方向的光波的叠加1. 光波的独立传播原理:当从光源A 和光源B 发出的两列光波在同一空间区域传播时,它们之间互不干扰,每一列光波如何传播,都按各自的规律独立进行,完全不受另一列光波的影响。
2. 光波的叠加原理:光波在媒质中传播时,必然引起空间各点的扰动。
当两个或多个光波同时在该区域内传播时,空间各点都将同时受到各个光波的作用,如果光波的独立传播原理成立,则它们叠加的空间区域内,相遇点产生的和振动是各个光波单独存在时该点振动的矢量之和。
3. 将波在其中传播时服从叠加原理和独立传播原理的媒质称为‘线性媒质’; 不服从叠加原理和独立传播原理的媒质称为‘非线性媒质’。
4. 两个频率相同、振动方向相同而传播方向相反的单色光波产生叠加后形成驻波。
5. 调制波光强为确定数值的点的传播速度就是调制波的“位相速度”-群速度。
群速度是指某个光强值在空间的传播速度,因此它表示拍频波能量的传播速度。
6. 载波零位相点(或位相值为其它数值的点)的传播速度就是载波的位相速度;第三章 光的干涉和干涉仪1. 当两个或两个以上振动方向相同、频率相同的单色光波在空间产生叠加时,叠加区域内将出现周期性的强度分布图象,这就是光的干涉。
2. 光的干涉问题包括光源、干涉装置和干涉图形等三个要素3. 干涉的三个必要条件:两叠加光波的频率相同、振动方向相同、位相差恒定。
满足这三个条件的光波称为相干光波,相应的光源为相干光源 4. 在非相干叠加时,光强是均匀分布的。
5. 单个原子发光是间歇的,持续时间约10-9秒。
前后光波是完全独立的,初相位没有固定关系。
不同原子发出的波列也如此。
6. 如果在观察时间 内,相位差保持恒定,则合成光强在空间形成强弱相间的稳定分布。
这是相干叠加的重要特征。
7. 光波分离基本方法:分波阵面法和分振幅法;分波阵面法:把光波的波面(波前)分为两部分。
如杨氏双缝干涉实验分振幅法:利用反射和折射把原光波振幅分为两部分。
如薄膜干涉、等厚干涉 无论是分波前法还是分振幅法,只有光程差小于光波的波列长度,才能满足位相差恒定的条件。
杨氏干涉实验 8.光强分布21204cos 2I I I I δδ=++= 212()r r k πδλ=-=D2210()4cos []r r I I πλ-==== 204cos []xdI I Dπλ=(0,1,2,)m D x m d λ==±±亮纹 1()(0,1,2,)2D x m m dλ=+=±±暗纹任何两条相邻的明(或暗)条纹所对应的光程差之差一定等于一个波长值。
9. 干涉条纹的表征: 干涉级m条纹间距e :D e dλ=;由条纹间距e 与两孔间距d 的反比关系可知,要使干涉条纹易于观察,两孔间距应尽可能小。
会聚角d D ϖ=;条纹间距与光束的会聚角成反比。
因此,会聚角应尽可能小。
10. 杨氏双缝干涉属于非定域干涉。
11. 干涉条纹的清晰程度用条纹的对比度表示。
定义是M mM mI I K I I -=+条纹的对比度取决于以下三个因素:光源大小、光源的非单色性、两相干光波的振幅比。
平行平板产生的干涉12. 条纹定域:能够得到清晰干涉条纹的区域。
非定域条纹:在空间任何区域都能得到的干涉条纹。
定域条纹:只在空间某些确定的区域产生的干涉条纹。
点光源照明产生非定域条纹当利用扩展光源进行干涉实验时,将得到定域干涉,也可以说,定域干涉是扩展光源的特征。
在扩展光源情况下:能够得到清晰条纹的特定平面域称为定域面。
所观察到的条纹为定域条纹。
在平行平板的干涉中,光程差只取决于折射角,相同折射角的入射光构成同一条纹,称等倾条纹 13. 光程差计算()(1)2 cos hn AB BC n AN AB BC θ'∆=+-==其中:考虑半波损失:()222212cos +2sin +22nh nhnn λλθθ'∆=∆=-或:无半波损失()222212cos 2sin nh nhnn θθ'∆=∆=-或:14. 1212 2cos I I I I I k =++∆双光束干涉:120,1,2,m m m λλ∆=⎛⎫∆=+ ⎪⎝⎭=为亮条纹;为暗条纹。
称为条纹的级数。
对于不同的干涉装置,明暗纹条件一致。
16. 圆形等倾条纹: 等倾条纹的形状与观察方位有关。
当望远镜光轴与平板法线平行时,即望远镜焦平面与平板表面平行时,等倾条纹是一组同心圆条纹,圆心位于透镜的焦点。
条纹特点: 形状:一系列同心圆环; 条纹间隔分布:内疏外密。
楔形平板产生的干涉:分振幅等厚干涉17. 平行光入射非均匀薄膜,入射角θ 相同。
厚度不均匀的薄膜形成的干涉条纹的级次仅随薄膜的厚度变化。
这种干涉叫等厚干涉 。
18. 垂直入射到劈尖上:022nh λ∆=+明条纹: 22nh m λλ∆+==暗条纹: ()1222nh m λλ∆+=+=劈棱处h=0,只是由于有半波损失,两相干光相差为,因此形成暗条纹。
条纹间距02e n λ≈α19. 干涉条纹分布的特点:当有半波损失时,在h=0劈棱处为暗纹,否则为一亮纹; 干涉条纹是平行于棱边的直条纹; 楔角愈小,干涉条纹分布就愈稀疏;当用白光照射时,将看到由劈棱开始逐渐分开的彩色直条纹。
20. 牛顿环:将一块半径很大的平凸镜与一块平板玻璃叠放在一起,用单色平行光垂直照射,由平凸镜下表面和平板玻璃上表面两束反射光干涉。
产生的等厚干涉条纹称牛顿环牛顿环干涉图样是以接触点为圆心的一组明、暗相间的同心圆环,有半波损失时,中间为一暗斑。
21. 牛顿环明暗纹条件由下式决定:(1,2,3,)2221)(0,1,2,)2m m nh m m λλλ=⎧⎪∆=+=⎨+=⎪⎩明纹(暗纹22. 透镜曲率半径2r R N λ=23.第N 个暗环满足的光程差条件:1222h N λλ⎛⎫+=+ ⎪⎝⎭24. 干涉级高的环间的间距小,即随着r 的增加条纹变密,即:条纹不是等距分布。
25. 迈克尔孙干涉仪光程差212()Δd d =- 2d N λ=法布里-珀罗干涉仪 多光束干涉26. 干涉场的强度随R 和δ而变,在特定R 的情况下,则仅随δ而变;4cos nh πδθλ=光强度只与光束倾角θ有关。
倾角θ相同的光束形成同一个条纹,是等倾条纹。
当透镜的光轴垂直于平板时,等倾条纹是一组同心圆环。
27. 在反射光方向形成亮条纹和暗条纹的条件: 亮条纹:()21m δπ=+;暗条纹:2m δπ=透射光方向相反28. 条纹的锐度用它们的位相半宽度来表示,亮条纹中强度等于峰值强度一半的两点间的距离,记为Δδ。