高中物理光学知识点总结
高中物理光学知识点总结

光学知识点复习一折射率1.定义:光从真空射入某种介质,入射角的正弦跟折射角的正弦之比,叫做介质的折射率.注意:指光从真空射入介质.2.公式:n=sini/sin γ(光从真空进入介质) n 0sin 1C v c ='==λλ,折射率总大于1.即n >1.3种介质相比较,折射率较大的叫光密介质,折射率较小的叫光疏介质.二全反射1.全反射现象:光照射到两种介质界面上时,光线全部被反射回原介质的现象. 2.全反射条件:光线从光密介质射向光疏介质,且入射角大于或等于临界角. 3.临界角公式:光线从某种介质射向真空(或空气)时的临界角为C , 则sinC=1/n 4.光导纤维全反射的一个重要应用就是用于光导纤维(简称光纤)。
光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。
光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。
这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出 三、棱镜与光的色散 1.棱镜对光的偏折作用一束白光经三棱镜折射后发生色散现象,在光屏上形成七色光带(红光偏折最小,紫光偏折最大。
) 2学结论:紫光折射率最大,频率最大;波长,在介质中的波速、双缝干涉条纹间距、全反射临界角最小 四、光的干涉1定义:两列波在相遇的叠加区域,某些区域使得“振动”加强,出现亮条纹;某些区域使得振动减弱,出现暗条纹。
振动加强和振动减弱的区域相互间隔,出现明暗相间条纹的现象。
这种现象叫光的干涉现象。
2产生稳定干涉的条件:两列波频率相同,相位差恒定。
(两个振动情况总是相同的波源,即相干波源)3⑴亮纹,两束光叠加干涉加强; ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍时,两束光叠加干涉减弱, 条纹间距[相邻亮纹(暗纹)间的距离] 公式x=dLλ. (缝屏间距L ,双缝间距d) 单色光作双缝干涉实验时,屏的中央是亮纹,两边对称地排列明暗相同且间距相等的条纹用白光作双缝干涉实验时,屏的中央是白色亮纹,两边对称地排列彩色条纹,离中央白色亮纹最近的是紫色亮纹。
高中物理光学部分知识点总结

物理知识点一、光源1.定义:能够自行发光的物体.2.特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播.物理知识点二、光的直线传播1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3³108m/s;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v<c。
< p="">2.本影和半影(l)影:影是自光源发出并与投影物体表面相切的光线在背光面的后方围成的区域.(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.3.用眼睛看实际物体和像用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只凸透镜。
发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。
理知识点三、光的反射1.反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.2.反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.3.分类:光滑平面上的反射现象叫做镜面反射。
发生在粗糙平面上的反射现象叫做漫反射。
镜面反射和漫反射都遵循反射定律.4.光路可逆原理:所有几何光学中的光现象,光路都是可逆的.物理知识点四.平面镜的作用和成像特点(1)作用:只改变光束的传播方向,不改变光束的聚散性质.(2)成像特点:等大正立的虚像,物和像关于镜面对称.(3)像与物方位关系:上下不颠倒,左右要交换物理光学知识点汇总:双缝干涉(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象.(2)产生干涉的条件两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.(3)双缝干涉实验规律①双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为 .若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3…),P点将出现暗条纹.②屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹.③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹.④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即 .在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.⑤用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于.物理光学知识点汇总:薄膜干涉(1)薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹.(2)薄膜干涉的应用①增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的.②检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象.。
高中物理光学知识点总结

高中物理光学知识点总结一、光的直线传播光的直线传播是光学的基础原理之一。
当光线传播时,可以假设光沿着一条直线传播。
如果没有阻碍,光线会一直沿着直线传播。
这个原理在很多日常生活中的现象都有体现,比如太阳的光线穿过窗户、电灯的光线在房间里传播等等。
二、光的速度在空气中,光的速度约为3.0×10^8m/s。
光速在不同介质中的速度不同,这是由于光在不同介质中的传播速度受到介质折射率的影响。
光在真空中的速度是最快的,这也是物理学上一些重要的原理所依赖的。
三、光的反射光的反射是光学研究的一个重要知识点。
当光线照射到一个光滑的表面上时,光线会以相同的角度反射回去。
这一现象可以用光滑的镜子来进行实验观察。
四、光的折射当光线进入到一个介质中时,由于介质的折射率不同,光线方向会发生改变。
折射定律指出,入射角、折射角和介质折射率之间存在着一定的关系。
这一定律对于制作透镜、棱镜等光学元件是非常重要的。
五、光的色散光的色散是指,当白光通过某些介质或器件时,不同颜色的光会分散出来。
这是因为不同波长的光在介质中的折射率各不相同。
这也是彩虹的形成原理之一。
六、光的衍射光的衍射是光学研究中的一个重要课题。
衍射是指光线通过一个缝隙或孔径时,会呈现出一种特殊的光条纹模式。
这一现象是由于光本身的波动特性所决定的。
七、光的干涉光的干涉是光学中的一个重要现象。
当两束光经过衍射或交叠时,会出现一系列的干涉条纹。
这一现象是由于光波的相长干涉或相消干涉所引起的。
八、光的偏振光的偏振是指光波的振动方向不同,这就导致光呈现出不同的偏振特性。
偏振光在一些特定的实验和应用中是非常重要的。
九、光的吸收当光线照射到物体上时,部分光能会被物体所吸收。
这一现象可以通过实验来验证,反射光和折射光的能量往往比照射光要小。
十、光的色温光的色温是指光源的颜色偏向于冷色调还是暖色调。
这与光源的光谱特性有关,也是针对照明工程中非常重要的一个参数。
十一、光的波粒二象性光既有波动性又有粒子性,也就是说光既有波动模型也有粒子模型。
高中物理光学知识点总结

高中物理光学知识点总结光学是物理学中一个重要的分支,研究光的产生、传播和作用的规律。
高中物理光学知识点的学习,对于理解光的性质和应用具有重要意义。
本文将对高中物理光学知识点进行总结,帮助读者巩固和扩展对光学的理解。
一、光的传播和成像1. 光的传播:光是一种电磁波,在真空中传播速度为光速,约为3×10^8 m/s。
光的传播遵循直线传播原理,即光在介质中沿着直线路径传播。
2. 光的反射:光在遇到界面时,部分能量会返回原来的介质,这种现象称为光的反射。
根据反射定律,入射角等于反射角。
3. 光的折射:光从一种介质进入另一种介质时,会改变传播方向,这种现象称为光的折射。
根据折射定律,入射角的正弦与折射角的正弦成比例。
二、光的色散和光的成像1. 光的色散:光在物质中传播时,不同波长的光具有不同的折射率,使得光的组成部分被分离出来,形成彩色的现象。
这种现象称为光的色散。
2. 光的成像:光通过透镜或反射镜时,会产生实像或虚像。
成像的规律由薄透镜成像公式和反射镜成像公式描述。
三、光的干涉和衍射1. 光的干涉:当两束或多束光同时照射到同一区域时,它们会发生叠加干涉现象。
根据干涉现象的不同特点,可以分为等厚干涉、等斜干涉和薄膜干涉等。
2. 光的衍射:光波在遇到障碍物或通过狭缝时,会发生弯曲和扩散的现象。
这种现象称为光的衍射。
衍射现象在日常生活中广泛应用于光栅、CD和DVD等光学器件。
四、光的波动-粒子二象性和光的偏振1. 光的波动-粒子二象性:根据光的天然显示和干涉、衍射等现象,光既具有波动性又具有粒子性。
这一概念由爱因斯坦的光量子假说得到了证实,揭示了光的微观本质。
2. 光的偏振:光波中电矢量的振动方向有多种可能。
当光波只在一个特定方向上振动时,称为偏振光。
偏振光在光通信、太阳眼镜和液晶显示器等方面有着广泛应用。
五、光的介质与光的速度1. 光的介质:不同的物质对光的传播具有不同的影响。
根据物质对光的传播速度的影响,介质可以分为透明介质、不透明介质和半透明介质。
(完整版)高中物理光学、原子物理知识要点

光学一、光的折射1.折射定律:2.光在介质中的光速:3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。
4.真空/空气的n等于1,其它介质的n都大于1。
5.真空/空气中光速恒定,为,不受光的颜色、参考系影响。
光从真空/空气中进入介质中时速度一定变小。
6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。
二、光的全反射1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为.2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射.3.全反射反映的是折射性质,折射倾向越强越容易全反射。
即n越大,临界角C越小,越容易发生全反射。
4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)三、光的本质与色散1.光的本质是电磁波,其真空中的波长、频率、光速满足(频率也可能用表示),来源于机械波中的公式。
2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小.3.将混色光分为单色光的现象成为光的色散.不同颜色的光,其本质是频率不同,或真空中的波长不同。
同时,不同颜色的光,其在同一介质中的折射率也不同。
4.色散的现象有:棱镜色散、彩虹。
频率f(或ν)真空中里的波长λ折射率n同一介质中的光速偏折程度临界角C红光大大大紫光大大大原因n越大偏折越厉害发生全反射光子能量发生光电效应双缝干涉时的条纹间距Δx发生明显衍射红光大容易紫光容易大容易原因临界角越小越容易发生全反射波长越大越有可能发生明显衍射四、光的干涉1.只有频率相同的两个光源才能发生干涉。
2.光的干涉原理(同波的干涉原理):真空中某点到两相干光源的距离差即光程差Δs.当时,即光程差等于半波长的奇数倍时,由于两光源对此点的作用总是步调相反,叠加后使此点振动减弱;当时,即光程差等于波长的整数倍,半波长的偶数倍时,由于两光源对此点的作用总是步调一致,叠加后使此点振动加强。
版高中物理几何光学知识点总结归纳完整版

版高中物理几何光学知识点总结归纳完整版高中物理的几何光学主要涉及光的反射、折射和光的成像三个方面的知识。
下面是对这些知识点进行完整归纳总结的1200字以上的版本。
一、光的反射1.反射定律:入射光线、反射光线和法线三者在同一平面内,入射角等于反射角。
2.镜面反射:光线在光滑的表面上发生反射,形成镜面反射。
镜面反射的特点是:入射角等于反射角,光线在反射后保持平行。
3.图像特点:镜面反射的图像特点是:与物体呈对称,与物体等大,正立,视距相等。
二、平面镜1.焦距和焦点:平面镜的焦点是与镜中心呈等角的光线经过反射后所交于的点,与镜面的交点为焦点,并且焦点在镜面两侧等距离的位置上。
与该平面镜的焦点相应的距离叫做平面镜的焦距。
2.成像性质:平面镜成像的特点是:呈现真实、位置对称、正立、视距等大的图像,左右位置颠倒。
三、球面镜1.球面镜的分类:球面镜分为凸面镜和凹面镜两种。
2.光的折射定律:光线由空气射向球面镜,根据光的折射定律,由大到小的折射角,则光线会聚于球面镜的焦点,形成实像;由小到大的折射角,则光线会发散,无法交于焦点,形成虚像。
3.凸面镜成像:凸面镜会使光线会聚,形成实像。
当物体在焦点以外,成像为倒立、缩小、实像;当物体在焦点以内,成像为正立、放大、虚像。
4.凹面镜成像:凹面镜会使光线发散,无法交于焦点,形成虚像。
凹面镜成像的特点是:倒立、缩小、虚像。
四、薄透镜1.薄透镜的种类:薄透镜分为凸透镜和凹透镜两种。
2.透镜成像:光线经过透镜折射后形成的图像叫做透镜成像。
凸透镜成像的特点是:当物体在光轴上方,成像为倒立、缩小、实像;当物体在光轴下方,成像为正立、放大、虚像。
凹透镜成像的特点与凸透镜相反。
3.焦距和焦点:薄透镜的焦点是平行光线经过透镜折射后所交于的点,焦点的位置与透镜的光心及两个球面半径有关。
五、光的色散1.光的色散原理:光的色散是光通过多个介质界面时,不同频率的光分散出不同的方向。
色散现象是由于不同波长的光在介质中的折射率不同所引起的。
高中物理光学复习要点

高中物理光学复习要点高三通常是各种练习、试卷纷至沓来,大量的习题令人眼花缭乱。
面对“无边题海”何去何从?通常各人方法各异而效果也相距甚远。
小编在这里整理了相关资料,希望能帮助到您。
高中物理光学复习要点一、重要概念和规律(一)、几何光学基本概念和规律1、基本规律光源:发光的物体.分两大类:点光源和扩展光源. 点光源是一种理想模型,扩展光源可看成无数点光源的集合. 光线——表示光传播方向的几何线. 光束通过一定面积的一束光线.它是通过一定截面光线的集合. 光速——光传播的速度。
光在真空中速度最大。
恒为C=3×108 m/s。
丹麦天文学家罗默第一次利用天体间的大距离测出了光速。
法国人裴索第一次在地面上用旋转齿轮法测出了光这。
实像——光源发出的光线经光学器件后,由实际光线形成的. 虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。
本影——光直线传播时,物体后完全照射不到光的暗区. 半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.2.基本规律(1)光的直线传播规律:先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律:光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律:反射线、入射线、法线共面;反射线与入射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律:折射线、入射线、法线共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射率n=sini/sinr=c/v。
全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理:光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.3.常用光学器件及其光学特性(1)平面镜:点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
教资_高中物理知识点整理_光学

光学基本概念1. 光强:光的强弱由平均能流密度(I)的大小决定的,而平均能流密度和电场强度幅值的平方()呈正比,在波动光学中,同一介质中常把幅值的平方所表征的光的强度定义为:2. 光速 u、频率 f、波长、介质中的折射率 n 之间的关系:,表明光在介质中的传播速率、波长均为真空中的;;在介质中,f 不变;f 越大,则 n 越大,u 越小,越小。
(感觉上,介质对频率大的光阻碍效果更大)3. 光程:定义:光波在一介质中所经过的几何路程和该介质的折射率的乘积定义为光程,即:光程 =;物理意义:光程,可以看出,光程表示在相同时间内,光在真空中走过的路程。
(进一步地,由于两束光在介质中走过的时间不同,导致了光程差,进而产生了相位差)平行光经过透镜时,光程相等。
光的全反射1. 概念:由光密介质光疏介质(如玻璃空气)时,随着入射角的增大,折射角完全消失(全被反射了),称为光的全反射注:题目中出现 “光从玻璃射入到空气中” 时,要考虑有没有全反射2. 临界角:光发生全反射时,使折射角 = 90时的入射角被称为临界角,记为;,即(用于计算临界角)当入射角 > 时,发生全反射(前提:光密介质光疏介质)光的干涉(干涉是波的叠加)1. 干涉的3个条件:频率相同、光矢量振动方向相同、相位差恒定2. 频率相同、方向相同的两束光在某一点上的光矢量和强度的叠加计算:如果是两束独立光源(光子具有独立性和随机性),其相位差也具有随机性,且在上分布概率相同,因此相互抵消,有:;如果是相干光(相位差恒定),则强度不仅与本身强度有关,还取决于两束光的相位差,表现为某些地方光强加强(),某些地方光强减弱()。
3. 相位差与光程差的关系:两束同相位的相干光分别在不同折射率介质中传播,最终为某一点相遇,并在该点产生相位差;该相位差与两束光的光程差的关系表达为:,该处的波长为真空中的波长;当时,干涉相长(变亮);当时,干涉相消(变暗)。
4. 杨氏双缝干涉实验:实验原理图(一般的):光程差:;分析:当时,得到明条纹;当时,得到暗条纹;分别对应第 k级明纹,第零级明纹又叫中央明纹(暗纹次序在明纹之前)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理光学知识点总结。
目录
高中物理光学知识点
高中物理光学重点
高中物理光学要点
★高中物理光学知识点
几何光学以光的直线传播为基础,主要研究光在两个均匀介质分界面处的行为规律及其应用。
从知识要点可分为四方面:一是概念;二是规律;三为光学器件及其光路控制作用和成像;四是光学仪器及应用。
(一)光的反射
1.反射定律
2.平面镜:对光路控制作用;平面镜成像规律光路图及观像视场。
(二)光的折射
1.折射定律
2.全反射临界角。
全反射棱镜(等腰直角棱镜)对光路控制作用。
3.色散。
棱镜及其对光的偏折作用现象及机理
应用注意:
1.解决平面镜成像问题时,要根据其成像的特点(物像关于镜面对称),作出光路图再求解。
平面镜转过α角,反射光线转过2α
2.解决折射问题的关键是画好光路图,应用折射定律和几何关系求解。
3.研究像的观察范围时,要根据成像位置并应用折射或反射定律画出镜子或遮挡物边缘的光线的传播方向来确定观察范围。
4.无论光的直线传播,光的反射还是光的折射现象,光在传播过程中都遵循一个重要规律:即光路可逆。
(三)光导纤维
全反射的一个重要应用就是用于光导纤维(简称光纤)。
光纤有内外两层材料,其中内层是光密介质,外层是光疏介质。
光在光纤中传播时,每次射到内外两层材料的界面,都要求入射角大于临界角,从而发生全反射。
这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。
(四)光的干涉
光的干涉的条件是有两个振动情况总是相同的波源,即相干波源。
(相干波源的频率必须相同)。
形成相干波源的方法有两种:(1)利用激光(因为激光发出的是单色性极好的光)。
(2)设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。
(五)干涉区域内产生的亮暗纹
1.亮纹:屏上某点到双缝的光程差等于波长的整数倍(相邻亮纹(暗纹)间的距离)。
用此公式可以测定单色光的波长。
用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹,各级彩色条纹都是红靠外,紫靠内。
(六)衍射
注意关于衍射的表述一定要准确。
(区分能否发生衍射和能否发生明显衍射)
1.各种不同形状的障碍物都能使光发生衍射。
2.发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。
(七)光的电磁说
1.麦克斯韦根据电磁波与光在真空中的传播速度相同,提出光在本质上是一种电磁波?D?D这就是光的电磁说,赫兹用实验证明了光的电磁说的正确性。
2.电磁波谱。
波长从大到小排列顺序为:无线电波红外线可见光紫外线X射线γ射线。
各种电磁波中,除可见光以外,相邻两个波段间都有重叠。
各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线可见光紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的(伴随
αβ衰变而产生)。
3.各种电磁波的产生特性及应用。
(八)光的偏振
光的偏振也证明了光是一种波,而且是横波。
各种电磁波中电场E的方向磁场
(九)光电效应
1.在光的照射下物体发射电子的现象叫光电效应。
(下图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。
)光效应中发射出来的电子叫光电子。
ν0,只有ν0才能发生光电效应;②光电子的初动能与入射光的强度无关,只随入光的频率增大而增大;③当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比;④瞬时性(光电子的产生不超过10-9s)。
3.爱因斯坦的光子说。
光是不连续的,是一份一份的,每一份叫做一个光子,光子的能量成正比:E=hν
4.爱因斯坦光电效应方程:h-W(W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。
)
(十)康普顿效应
在研究电子对X射线的散射时发现:有些散射波的波长比入射波的波长略大。
康普顿认为这是因为光子不仅有能量,也具有动量。
实验结果证明这个设想是正确的。
因此康普顿效应也证明了光具有粒子性。
(十一)光的波粒二象性
干涉衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象性。
返回目录
★高中物理光学重点
光源
1.定义:能够自行发光的物体.
2.特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播.
物理知识点二光的直线传播
1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3³108m/s;
各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v c。
p= 2.本影和半影
(l)影:影是自光源发出并与投影物体表面相切的光线在背光面的后方围成的区域.
(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.
(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.
(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.
3.用眼睛看实际物体和像
用眼睛看物或像的本质是凸透镜成像原理:角膜水样液晶状体和玻璃体共同作用的结果相当于一只
凸透镜。
发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。
物理知识点三光的反射
1.反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.
2.反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.
3.分类:光滑平面上的反射现象叫做镜面反射。
发生在粗糙平面上的反射现象叫做漫反射。
镜面反射和漫反射都遵循反射定律.
4.光路可逆原理:所有几何光学中的光现象,光路都是可逆的.
物理知识点四.平面镜的作用和成像特点
(1)作用:只改变光束的传播方向,不改变光束的聚散性质.
(2)成像特点:等大正立的虚像,物和像关于镜面对称.
(3)像与物方位关系:上下不颠倒,左右要交换
返回目录
★高中物理光学要点
物理光学知识点汇总:双缝干涉(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象.
(2)产生干涉的条件
两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.
(3)双缝干涉实验规律
①双缝干涉实验中,光屏上某点到相干光源的路程之差为光程差,记为 .
若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍
(n=0,1,2,3…),P点将出现暗条纹.
②屏上和双缝距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹.
③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹.
④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即
.在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.
⑤用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于.
返回目录
高中物理光学知识点。