41 钢在加热冷却时的组织转变PPT课件
合集下载
钢的热处理——加热和冷却的组织变化课件

淬火工艺与应用
总结词
淬火是一种通过快速冷却来提高金属硬度和耐磨性的 热处理工艺。
详细描述
淬火是将加热到奥氏体化温度的金属迅速冷却至室温的 过程。淬火的目的是使金属保持其奥氏体状态,从而提 高其硬度和耐磨性。淬火过程中,金属内部的原子或分 子的运动速度非常快,导致原子之间的平均距离变小, 从而使金属的晶格结构变得更加紧密和稳定。淬火工艺 广泛应用于各种工具钢、结构钢、不锈钢等金属材料。 通过选择不同的淬火介质和冷却方式,可以获得不同硬 度和组织结构的金属材料。
加热到一定温度并保温一段时间,以消除内应力并稳定组织。
不锈钢的热处理案例
总结词
不锈钢是一种具有优良耐腐蚀性能的钢材,其组织稳 定性较高。通过适当的热处理,可以进一步提高不锈 钢的性能。
详细描述
不锈钢在加热时,奥氏体晶粒会逐渐长大并发生相变。 为了获得最佳的耐腐蚀性能和组织稳定性,通常采用固 溶处理,即将钢材加热到奥氏体状态并保温一段时间, 使碳化物充分溶解到奥氏体中,然后快速冷却,使碳化 物来不及析出。此外,为了提高不锈钢的硬度、耐磨性 和韧性,可以采用时效处理,即将钢材加热到一定温度 并保温一段时间,使金属间化合物得以析出并均匀分布。
总结词
退火是热处理的一种基本工艺,主要用于消除金属材 料的内应力、降低硬度并改善切削加工性能。
详细描述
退火是将金属加热到适当温度,保持一段时间,然后缓 慢冷却的过程。其主要目的是改变金属的晶格结构,使 其变得更加均匀和稳定。退火可以细化金属的晶粒,提 高其塑性和韧性,从而改善金属的机械性能。在退火过 程中,金属内部的原子或分子的运动速度会增加,导致 原子之间的平均距离变大,从而使金属的晶格结构变得 更加稳定。退火工艺广泛应用于各种金属材料,如钢铁、 铝合金、铜合金等。
热处理PPT课件

5
6
第一节 钢在加热和冷却时的组织转变
一、钢在加热时的组织转变
由Fe—Fe3C状态图可知,钢加热至稍高于727°C(PSK线或A1线) 时,将发生珠光体向奥氏体的转变。这种转变过程伴随着铁原子和碳原 子的扩散,所以其转变过程属于一种扩散型的转变。
以共析钢为例,分析奥氏体形成的过程。其基本过程可描述为四个步 骤
9
第一节 钢在加热和冷却时的组织转变
10
第一节 钢在加热和冷却时的组织转变
二、钢在冷却时的组织转变
钢经加热获得奥氏体组织后,如在不同的冷却条件 下冷却,最后可使钢获得不同的力学性能。例如用45 钢制造的直径为15mm的轴,经840°C加热后,若在 空气中冷却,其表面硬度小于HBS209;若在油中冷 却,其表面硬度可达HRC45左右;若在水中冷却, 其表面硬度可达HRC65左右。为了解这些差别的原 因,必须了解奥氏体在冷却过程中的组织变化规律。
16
第一节 钢在加热和冷却时的组织转变
过冷到550℃~350℃之间的转变组织为上贝氏
体半扩散型(B上),Fe不扩散,羽毛状碳化物分
布在F间,韧性差,过冷到350℃~MS之间的转变组
织为下贝氏体(B下) ,C原子有一定的扩散能力,
针状碳化物分布在F内,韧性高,综合机械性能好。
③低温转变产物 共析钢奥氏体过冷到 Ms230℃~Mf-50℃之间的转变产物,马氏体(M) 组织。是含碳过饱和的α —固溶体。由于马氏体中 溶入过多的碳使晶格严重扭曲,从而增加了变形抗 力,所以马氏体具有很高的硬度。含碳量越高其硬 度越大。马氏体是单相亚稳定的组织。
热处理工艺都是由加热、保温和冷却三个阶段所组 成的。因此,热处理工艺过程可用“温度—时间” 为坐标的曲线图表示,此曲线称为热处理工艺曲线。
6
第一节 钢在加热和冷却时的组织转变
一、钢在加热时的组织转变
由Fe—Fe3C状态图可知,钢加热至稍高于727°C(PSK线或A1线) 时,将发生珠光体向奥氏体的转变。这种转变过程伴随着铁原子和碳原 子的扩散,所以其转变过程属于一种扩散型的转变。
以共析钢为例,分析奥氏体形成的过程。其基本过程可描述为四个步 骤
9
第一节 钢在加热和冷却时的组织转变
10
第一节 钢在加热和冷却时的组织转变
二、钢在冷却时的组织转变
钢经加热获得奥氏体组织后,如在不同的冷却条件 下冷却,最后可使钢获得不同的力学性能。例如用45 钢制造的直径为15mm的轴,经840°C加热后,若在 空气中冷却,其表面硬度小于HBS209;若在油中冷 却,其表面硬度可达HRC45左右;若在水中冷却, 其表面硬度可达HRC65左右。为了解这些差别的原 因,必须了解奥氏体在冷却过程中的组织变化规律。
16
第一节 钢在加热和冷却时的组织转变
过冷到550℃~350℃之间的转变组织为上贝氏
体半扩散型(B上),Fe不扩散,羽毛状碳化物分
布在F间,韧性差,过冷到350℃~MS之间的转变组
织为下贝氏体(B下) ,C原子有一定的扩散能力,
针状碳化物分布在F内,韧性高,综合机械性能好。
③低温转变产物 共析钢奥氏体过冷到 Ms230℃~Mf-50℃之间的转变产物,马氏体(M) 组织。是含碳过饱和的α —固溶体。由于马氏体中 溶入过多的碳使晶格严重扭曲,从而增加了变形抗 力,所以马氏体具有很高的硬度。含碳量越高其硬 度越大。马氏体是单相亚稳定的组织。
热处理工艺都是由加热、保温和冷却三个阶段所组 成的。因此,热处理工艺过程可用“温度—时间” 为坐标的曲线图表示,此曲线称为热处理工艺曲线。
钢在加热时的转变 ppt课件

测定奥氏体的 转变量与时间 的关系
24
热 处 理 原 理
共析钢奥氏体等温形成图(TTA)
Time-Temperature-Austenitization
参考《钢的热处理》P23合金钢等温TTA曲线
25
热
处
4.2 连续加热时奥氏体形成特征
理 原
理
实际生产中,绝大多数情况下奥 氏体是在连续加热过程中形成的。
➢ 一般认为奥氏体在铁素体和渗碳体交界面上形成 晶核。
➢ 奥氏体晶核也可以在以往的粗大奥氏体晶界上 (原始奥氏体晶界)形核并且长大,由于这样的 晶界处富集较多的碳原子和其他元素,给奥氏体 形核提供了有利条件。
➢ 下图b)所示为在原始粗大奥氏体晶界上开始形成 许多细小的奥氏体晶粒。
16Biblioteka 热 处 理 原 理➢临界点A3和Acm也附加脚标c,r,即:Ac3、Ar3、 Accm、Arcm。
13
热
处
加热和冷却时的临界点
理 原
理
《钢的热处理》P15
14
热
处
3.1 奥氏体形成的热力学条件
理 原
理
➢驱动力
珠光体和奥氏体的自由能随温度变化的示意图
《钢的热处理》P15
15
热
处
3.2 奥氏体晶核的形成
理 原
理
3.2.1 形核地点
➢因此,一般来说 奥氏体形成后总是剩下渗碳体。 之后,进行渗碳体的溶解过程。
➢虽然珠光体中铁素体片厚度比渗碳体片大得多 (约7倍),仍然是铁素体先消失。
《钢的热处理》P25 扩散定律
33
热 处 理 原 理
4.4 影响奥氏体形成速度的因素
一切影响奥氏体的形核率和增大 速度的因素都影响奥氏体的形成 速度。
钢在加热及冷却时和组织转变共38页PPT

Байду номын сангаас 谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
钢在加热及冷却时和组织转变
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
55、 为 中 华 之 崛起而 读书。 ——周 恩来
钢的热处理钢在加热和冷却时组织转变课件

钢在冷却时的组织转变
珠光体的形成
总结词
珠光体是钢在冷却过程中形成的一种组织,由铁素体和渗碳体的层片状交替排 列构成。
详细描述
当钢在冷却时,奥氏体中的碳原子开始扩散并偏聚在铁素体和渗碳体的界面处, 形成富碳的铁素体和贫碳的渗碳体。随着温度的降低,这些富碳的铁素体和贫 碳的渗碳体会逐渐形成层片状结构,最终形成珠光体。
马氏体的转变
总结词
马氏体是钢在冷却过程中形成的一种组织,其特点是具有较 高的硬度和强度。
详细描述
当钢在冷却时,如果冷却速度足够快,奥氏体中的碳原子来 不及扩散,就会形成一种过饱和的固溶体,即马氏体。马氏 体的硬度高、强度大,因此在制造高强度、耐磨性好的刀具、 模具等产品时具有重要的应用。
贝氏体的转变
奥氏体的形成是一个扩 散过程,需要一定的时 间和温度。
04
奥氏体的形成与钢的成 分、加热速度和温度等 因素有关。
奥氏体晶粒的长大
01
02
03
04
随着温度的升高,奥氏体晶粒 逐渐长大。
晶粒的大小对钢的性能有重要 影响,晶粒越细,钢的强度和
韧性越好。
加热温度和时间是影响奥氏体 晶粒大小的主要因素。
为了获得细小的奥氏体晶粒, 通常采用快速加热和短时间保
回火
总结词
回火是一种将淬火后的金属重新加热至低温 并保持一段时间的过程,主要用于消除淬火 过程中产生的内应力、提高金属的韧性和塑 性。
详细描述
回火的主要目的是通过低温加热使金属内部 组织结构发生转变,消除淬火过程中产生的 内应力,提高金属的韧性和塑性。回火工艺 通常包括将淬火后的金属加热到低温回火温
开裂
是指热处理过程中,由于内应力过大 或组织转变不均匀,导致钢的表面出 现裂纹。开裂可以通过优化热处理工 艺、控制冷却速度和改善材料成分来 减少。
钢的热处理 PPT课件

组织:球化珠光体(球粒状渗碳体 +铁素体)。
球 化 退 火
目的:消除应力,使钢的渗碳体球状化, 以降低硬度,改善切削加工性,并为以后 的热处理工序作好组织准备。 应用:主要用于共析碳钢、过共析碳钢 和合金工具钢。
加热温度:再结晶温度以上(一般为650 ~700℃
再 结 晶 退 火
目的:消除加工硬化,恢复塑性。
热处理 ቤተ መጻሕፍቲ ባይዱ类
整体热处理:退火、正火、淬火、回火 感应加热 表面淬火 火焰加热 电接触加热 激光加热 表面热处理 渗碳 渗氮 化学热处理 碳氮共渗 渗金属等
热处理工艺曲线
热处理的基本过程都是由加热、保温和冷却三个 阶段组成的,其工艺过程用温度-时间坐标系中的 曲线图表示,这种曲线称为热处理工艺曲线。
应用:主要用于经冷塑性加工,如冷轧、 冷冲、冷拔而发生加工硬化的钢件。
去 应 力 退 火
加热温度:Ac1以下某一温度(一般为 500~650℃)
目的:消除由于塑性变形、焊接、切 削加工、铸造等形成的残余应力。
工艺方法:将工件加热到高温(1050~ 1150℃),并长时间保温,然后缓慢冷却 的退火工艺。
第 3章
一、概述
钢的热处理
二、钢在加热时的组织 三、钢在冷却时的组织 四、钢的退火与正火 五、钢的淬火 六、钢的回火
七、钢的表面热处理
八、热处理工艺的应用
概述
热处理的概念 将固态金属采用适当的方式进行加热、保温 和冷却以获得所需组织与性能的工艺。 热处理的目的
(1)提高钢的力学性能;
(2)改善钢的工艺性能。 热处理的理论依据:铁碳合金相图
温 度 加热 保 温 冷却
0
热处理工艺曲线
时间
一、钢在加热时的组织转变
球 化 退 火
目的:消除应力,使钢的渗碳体球状化, 以降低硬度,改善切削加工性,并为以后 的热处理工序作好组织准备。 应用:主要用于共析碳钢、过共析碳钢 和合金工具钢。
加热温度:再结晶温度以上(一般为650 ~700℃
再 结 晶 退 火
目的:消除加工硬化,恢复塑性。
热处理 ቤተ መጻሕፍቲ ባይዱ类
整体热处理:退火、正火、淬火、回火 感应加热 表面淬火 火焰加热 电接触加热 激光加热 表面热处理 渗碳 渗氮 化学热处理 碳氮共渗 渗金属等
热处理工艺曲线
热处理的基本过程都是由加热、保温和冷却三个 阶段组成的,其工艺过程用温度-时间坐标系中的 曲线图表示,这种曲线称为热处理工艺曲线。
应用:主要用于经冷塑性加工,如冷轧、 冷冲、冷拔而发生加工硬化的钢件。
去 应 力 退 火
加热温度:Ac1以下某一温度(一般为 500~650℃)
目的:消除由于塑性变形、焊接、切 削加工、铸造等形成的残余应力。
工艺方法:将工件加热到高温(1050~ 1150℃),并长时间保温,然后缓慢冷却 的退火工艺。
第 3章
一、概述
钢的热处理
二、钢在加热时的组织 三、钢在冷却时的组织 四、钢的退火与正火 五、钢的淬火 六、钢的回火
七、钢的表面热处理
八、热处理工艺的应用
概述
热处理的概念 将固态金属采用适当的方式进行加热、保温 和冷却以获得所需组织与性能的工艺。 热处理的目的
(1)提高钢的力学性能;
(2)改善钢的工艺性能。 热处理的理论依据:铁碳合金相图
温 度 加热 保 温 冷却
0
热处理工艺曲线
时间
一、钢在加热时的组织转变
钢的加热转变 ppt课件

24
图2.7 共析钢等温形成动力学图 (Time-Temperature-Austenitization,TTA图)
ppt课件
25
3亚共析钢和过共析钢碳钢奥氏体等温形成图
P
(a)过共析钢(WC1.2% )奥氏体等温形成图
(b)亚共析钢(WC0.45%) 奥氏体等温形成图
ppt课件
26
2.3.2 连续加热时奥氏体形成动力学
保温不同时间后,迅速水淬;
用金相法测定奥氏体的转变量与时间的关系(实 际上是测定奥氏体水淬后转变成马氏体的量与 时间的关系)。
上一页 下一页
ppt课件
22
图2.6 共析钢奥氏体等温形成动力学曲线
上一页ppt下课一页件
23
2. 曲线的特点
奥氏体形成需要一定的孕育期。加热温度愈高, 孕育期愈短。
图2.3 珠光体和奥氏体自由能与温度的关系
上一页 下一页ppt课件
11
加热和冷却时的临界点
加热: A1-Ac1 A3-Ac3
Acm-Acmcm 冷却:A1-Ar1
A3-Ar3 Acm-Arcm
图2.4 加热和冷却速度为0.125℃/min
时相变点的变动
ppt课件
12
2.2 奥氏体形成机理
珠光体 马氏体
等温转变开始阶段,转变速度渐增,在转变量 约为50%时最快,之后逐渐减慢。
加热温度越高,奥氏体的形成速度越快。因为 随着温度的升高,过热度增加,使临界晶核半 径减小,所需的浓度起伏也减小。
加热温度越高,奥氏体等温形成动力学曲线就
越向左移,奥氏体等温形成的开始及终了时间
缩短。
上一页ppt下课一页件
塑性好,屈服强度低,易于加工变形
钢在加热及冷却时和组织转变ppt课件.ppt

(1)550~350℃: B上; 40~45HRC;脆性大,几乎无价值。
过饱和碳α-Fe条状 羽毛状
B上 =过饱和碳 α-Fe条状 + Fe3C细条状
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
上贝氏体形貌
在光镜下呈羽毛状. 在电镜下为不连续棒状的渗碳体分布于自奥
230~ - 50℃; 低温转 变区; 非扩散型转变; 马氏体 ( M ) 转变区。
10
102
103
104
时间(s)
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1)、珠光体型转变—高温转变(A1~550 ℃
)
残余Fe3C溶解
4)奥氏体成分均匀化
延长保温时间,让碳原子 充分扩散,才能使奥氏体 的含碳量处处均匀。
A 均匀化
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
一、钢在加热时的组织转变 共析钢奥氏体化过程
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
电镜下
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
上贝氏体强度与塑性都较低,无实用价值。 下贝氏体除了强度、硬度较高外,塑性、韧性也较好,即具有良
好的综合力学性能,是生产上常用的强化组织之一。
过饱和碳α-Fe条状 羽毛状
B上 =过饱和碳 α-Fe条状 + Fe3C细条状
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
上贝氏体形貌
在光镜下呈羽毛状. 在电镜下为不连续棒状的渗碳体分布于自奥
230~ - 50℃; 低温转 变区; 非扩散型转变; 马氏体 ( M ) 转变区。
10
102
103
104
时间(s)
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1)、珠光体型转变—高温转变(A1~550 ℃
)
残余Fe3C溶解
4)奥氏体成分均匀化
延长保温时间,让碳原子 充分扩散,才能使奥氏体 的含碳量处处均匀。
A 均匀化
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
一、钢在加热时的组织转变 共析钢奥氏体化过程
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
电镜下
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
上贝氏体强度与塑性都较低,无实用价值。 下贝氏体除了强度、硬度较高外,塑性、韧性也较好,即具有良
好的综合力学性能,是生产上常用的强化组织之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Ac3
G Ar3
S
温度高于Accm时, A+F P
P
Fe3CⅡ才完全溶解。
F+P
E Accm A+Fe3CⅡ Arcm
Ar1
Ac1
P+Fe3CⅡ
WC/%
3、晶粒的长大及其影响因素 Grain growth and its control
(1)奥氏体的晶粒度 指将钢加热到相变点以上某一温度, 并保温一定时间后所得到的奥氏体晶 粒大小。
表示多晶体晶粒大小的一种指标,采 用标准晶粒度级别表示。
GB6394-81 00、0、1、2…10共12级。
1~3级为粗晶粒,4~6级为中等晶粒, 7~8级为细晶粒,>8级为超细晶粒。
本质晶粒度—在规定的加热条件下 (930℃±10 ℃ ,保温3~8h),奥氏体
的晶粒度。反映奥氏体晶粒长大的倾向性, 而不是实际奥氏体晶粒大小的度量。
0.77
2.11
4.3
6.69
5
10 15 20
30 40 50 60 70 80 90 100 Wc%
图5-4 简化的Fe—Fe3C相图
2、奥氏体化过程 Austenitizing process
包括奥氏体的形核与长大,残余渗碳体的 溶解和奥氏体成分的均匀化。
图6-3 共析钢中奥氏体的形成过程 Fig.6.3 Formation process of austenite in eutectoid steel
表面热处理 表面淬火(感应加热、火焰加热)
化学热处理 渗碳、渗氮、渗硼、碳氮共渗等。
§4.1 钢在加热与冷却时的组织转变
一、加热时组织转变
1、加热转变的理论依 据——Fe-Fe3C相图 奥氏体化(austenitizing) 钢加热形成奥氏体的过 程。 A1-PSK
A3-GS Acm-ES
温度/℃
的惰性气体、控制炉内碳势)、火焰燃烧炉(使炉气呈还
奥氏体化过程
共析钢加热Ac1以上,α-Fe→γ-Fe 1)在F和Fe3C晶界处,A晶核形成、长大; 2)F→A后,保温,残余Fe3C溶解; 3)进一步保温,C原子扩散,A成分均匀化。 亚共析钢Ac1开始转变为A,直到Ac3以上先析 出F才完全消失。
过共析钢
温度/℃
Ac1~Accm之间为 A+Fe3CⅡ
4、加热缺陷及控制
(一)过热现象 1.一般过热:加热温度过高或在高温下保温
时间过长,引起奥氏体晶粒粗化称为过热。粗 大的奥氏体晶粒会导致钢的强韧性降低,脆性 转变温度升高,增加淬火时的变形开裂倾向。 而导致过热的原因是炉温仪表失控或混料(常 为不懂工艺发生的)。过热组织可经退火、正 火或多次高温回火后,在正常情况下重新奥氏 化使晶粒细化。
2.断口遗传:有过热组织的钢材,重新加热淬 火后,虽能使奥氏体晶粒细化,但有时仍出现 粗大颗粒状断口。产生断口遗传的理论争议较 多,一般认为曾因加热温度过高而使MnS之类 的杂物溶入奥氏体并富集于晶界,而冷却时这 些夹杂物又会沿晶界析出,受冲击时易沿粗大 奥氏体晶界断裂。
3.粗大组织的遗传:有粗大马氏体、贝氏体、 魏氏体组织的钢件重新奥氏化时,以慢速加热 到常规的淬火温度,甚至再低一些,其奥氏体 晶粒仍然是粗大的,这种现象称为组织遗传性。 要消除粗大组织的遗传性,可采用中间退火或 多次高温回火处理。
第四章 钢的热处理
Heat treatment of steels
定义: 以适当的方式对金属材料或工件 加热、保温、冷却,获得预期的组织结 构与性能的工艺方法。 机床工业中60~70%的零件,汽车工 业中70~80%,量具、刃具、模具、 轴承几乎100%要进行热处理
热处理方法
整体热处理 退火、正火、淬火、回火
加热时,钢表层的铁及合金与元素与介质(或气氛
中的氧、二氧化碳、水蒸气)等发生反应生成氧化物膜
的现象称为氧化。高温(一般570度以上)工件氧化后尺
寸精度和表面光亮度恶化,具有氧化膜的淬透性差的
钢件易出现淬火软点。
防止措施:工件表面涂料,用不锈钢箔包装密封
加热、采用盐浴炉加热、采用保护气氛加热(如净化后
(二)过烧现象
加热温度过高,不仅引起奥氏体晶粒 粗大,而且晶界局部出现氧化或熔化, 导致晶界弱化,称为过烧。
钢过烧后性能严重恶化,淬火时形成 龟裂。过烧组织无法恢复,只能报废。 因此在工作中要避免过烧的发生。
(三)脱碳和氧化
钢在加热时,表层的碳与介质(或气氛)中的氧、氢、 二氧化碳及水蒸气等发生反应,降低了表层碳浓度称 为脱碳。脱碳钢淬火后表面硬度、疲劳强度及耐磨性 降低,而且表面形成残余拉应力易形成表面网状裂纹。
1
在1点时
3 A+Fe3CII
727
Fe3CII +Fe3C
2
4
Ld
Q
P
F+P
P+Fe3CII
F+ Fe3CIII
L
1227
D 1点以上 F
Fe3CII +Fe3C A
K
1点—2点
温度 t /℃ P
Ld’
100
0 0.2 0.0218
0
2点以下
0.4 0.6 0.8 1.0
1.5
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Wc%
工业上将先共析的片(针)状铁素体或 片(针)状碳化物加珠光体组织称魏氏组 织,用W表示。前者称α-Fe魏氏组织, 后者称碳化物魏氏组织 。
魏氏组织是在珠光体基体上针状铁 素体或渗碳体分布于晶界上向晶内延伸。 这种组织的形成主要是热加工时过热或 焊接时温度过高和冷却速度略快速造成 的,它严重降低钢的冲击韧性。在亚共 析钢中针状是铁素体,在过共析钢中针 状是渗碳体。
此规定加热保温条 件下1~4级的钢为 本质粗晶粒钢, 5 ~8级的钢为本质 细晶粒钢。
晶粒度
本质粗晶粒钢
本质细晶粒钢
Ac1
930 温度/℃
(2)晶粒度大小的控制
①合理选择加热温度和保温时间 温度↑ ,保温时间↑,晶粒粗大↑。
②加热速度 V↑,可获得细化的晶粒
③钢中碳及合金元素的影响 碳化物及Cr、W、Mo、V等阻碍晶粒长 大。
A
G
Ac3 A3
Ar3
S
A+F P
E
Accm Acm A+Fe3CⅡ Arcm
P
Ar1 A1 Ac1
ቤተ መጻሕፍቲ ባይዱ
F+P
P+Fe3CⅡ
WC/%
ⅠⅡⅢ
Ⅳ
1500 A 1538 1400 1300 1200 1100 1000 912 900 G
F+A FP
700
1
1
2 2
A
3
S
4
3
1
L+A
2
E
L A+FLe3C
1148 C