换元法在不定积分和定积分中的联系与区别
不定积分与定积分换元法

dx x + x4 + 1
1 1 令 x = , dx = − dt . 于是 则 t t2
I=∫ dx x + x4 + 1 = −∫ 1 ( + 4 + 1 )t 2 t t dt 1
= −∫
dt t + t2 +1
= −I
因为 I = − I ,
所以 I = 0 .
这个结论显然是错误的,但是问题发生在哪里? 这个结论显然是错误的,但是问题发生在哪里?
对于积分 ∫ f ( x )dx 进行换元 x = ϕ ( t ) ,
求出 ∫ f (ϕ ( t ))ϕ ′( t )dt = G ( t ) + c 之后, 必须用反函数 t = ϕ −1 ( x ) 回代 ,
1 . ∫ f ( x )dx = G (ϕ − ( x )) + c 才能得出最后结果
这个例题说明: 这个例题说明:
利用换元法 x = ϕ (t ) 计算定积分时 ,
必须注意新变量 t 的变化范围 , 明确 t 和 x 的取值对应关系 .
这一不仅关系到积分上下限的确定, 这一不仅关系到积分上下限的确定, 还可能涉及到被积函数的形式的确定. 还可能涉及到被积函数的形式的确定.
关于两个换元积分法的小结
积分换元法
不定积分换元法 定积分换元法 联系与区别 实例分析
定理1 (不定积分换元法) 定理1:(不定积分换元法)
假设 f ( x ) 连续 , 单调,连续, 函数 x−1 ( x ) . 如果 ∫ f (ϕ ( t ))ϕ ′( t )dt = G ( t ) + c , 则有
2 2 a
( a > 0)
详细分析不定积分换元法和定积分换元法的异同. 详细分析不定积分换元法和定积分换元法的异同 计算两种积分都需要作换元 x = a sin t dx = a cos tdt (1)两者的第一个区别是: (1)两者的第一个区别是: 两者的第一个区别是
不定积分和定积分的关系

不定积分和定积分的关系
(原创版)
目录
一、不定积分和定积分的定义
二、不定积分和定积分的关系
三、举例说明不定积分和定积分的实际应用
正文
一、不定积分和定积分的定义
不定积分,又称为反常积分,是微积分学中的一个重要概念。
其主要用途是为了求解变化率、面积、体积等问题。
不定积分的符号表示为∫,它表示的是一个函数在某一区间内的累积量。
而定积分则是求解不定积分的一种方法,它是将一个函数在某一区间内分成无数个微小的部分,然后对每个部分进行求和,最后得到一个总和的结果。
定积分的符号表示为∫,它表示的是一个函数在某一区间内的平均值。
二、不定积分和定积分的关系
不定积分和定积分是微积分学中密切相关的两个概念,它们之间的关系可以从以下几个方面进行阐述:
1.定积分可以看作是不定积分的一种特殊形式。
当一个函数在某一区间内是恒定的时候,它的不定积分就等于该函数在该区间内的定积分。
2.不定积分是求解定积分的一种方法。
通过求解不定积分,我们可以得到一个函数在某一区间内的累积量,然后再对该累积量进行积分,就可以得到定积分的结果。
3.不定积分和定积分都是微积分学中的重要工具,它们在实际应用中有着广泛的应用。
三、举例说明不定积分和定积分的实际应用
假设有一个函数 f(x)=x^2,我们需要求解该函数在区间 [0,2] 内的定积分。
首先,我们需要求解该函数的不定积分,即∫f(x)dx=x^2+C。
然后,根据定积分的定义,我们可以得到该函数在区间 [0,2] 内的定积分为∫[0,2]f(x)dx=∫[0,2]x^2dx=(2^2-0^2)/2=2。
不定积分与定积分的区别与联系

不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。
象各种电子邮箱,qq等。
在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。
在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。
它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。
实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。
把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。
不定积分两类换元法的关系

不定积分两类换元法的关系
不定积分的两类换元法,即第一类换元法和第二类换元法,它们之间的关系主要体现在以下两个方面:
1. 核心思想:两类换元法的核心思想都是通过变量代换的方法来简化不定积分。
第一类换元法是通过将f(x)转化为复合函数导数的形式,从而方便计算;而第二类换元法则是在被积函数中出现根号或无理函数时,通过变量代换消去根式,使其转化为容易计算的积分。
2. 换元公式:在第一类换元法中,换元公式是u=φ(x),通过这个公式可以
将f(x)转化为f[φ(x)]φ'(x)的形式。
而在第二类换元法中,换元公式是
x=ψ(t),通过这个公式可以将原函数代换成关于t的函数,方便后续积分计算。
虽然两种换元法的形式不同,但它们的目的是相同的,都是为了简化计算。
总的来说,不定积分的两类换元法在核心思想和换元公式上都有一定的联系。
在实际应用中,可以根据不同的积分情况选择合适的换元法,以便更快速、准确地计算不定积分。
不定积分与定积分

不定积分与定积分在微积分学中,积分是一个重要的概念,它可以分为不定积分和定积分两种。
不定积分和定积分虽然有相同的思想基础,但在计算方法、应用场景以及符号表示上有所不同。
一、不定积分不定积分又称原函数或不定积分,是对导数的逆运算。
给定一个函数f(x),如果存在一个函数F(x)满足F'(x)=f(x),那么我们就称F(x)是f(x)的一个原函数。
并且,我们用∫f(x)dx表示f(x)的不定积分,其中∫是积分符号。
不定积分没有明确的上下限,其计算结果是一个函数加一个常数。
这个常数称为积分常数,因为不定积分只关心函数的变化情况,而不关心具体的数值。
不定积分的计算方法有很多种,常见的有用基本积分公式、换元法、分部积分法等。
这些方法可以根据具体的题目要求选择合适的计算工具,以求得准确的结果。
二、定积分定积分也称为积分或定积分,是将函数在一个确定的区间上进行积分运算。
给定一个函数f(x),如果在[a,b]区间上存在一个常数A,使得A等于函数f(x)在[a,b]区间上的面积,那么我们就称A是f(x)在[a,b]上的定积分。
定积分的计算方法主要有用定积分的定义式、换元法、分部积分法、几何法等。
这些方法可以根据具体的题目要求选择合适的计算工具,以求得准确的结果。
与不定积分不同的是,定积分计算出来的结果是一个具体的数值,表示了函数在某一区间上的累积变化量。
定积分可用于求函数曲线与坐标轴之间的面积、质量、体积、平均值等物理和数学问题。
三、不定积分与定积分的关系不定积分和定积分之间存在着密切的联系。
根据微积分的基本定理,如果一个函数F(x)是f(x)的一个原函数,那么f(x)的定积分可以通过F(x)在[a,b]区间的不定积分来计算。
具体来说,设F(x)是f(x)的一个原函数,则根据牛顿-莱布尼茨公式,有:∫[a,b]f(x)dx=F(b)-F(a)这个公式将不定积分与定积分联系在了一起,使得我们可以通过求不定积分来计算定积分。
定积分和不定积分的区别和应用

定积分和不定积分的区别和应用积分是微积分理论的重要内容,分为定积分和不定积分两种形式。
定积分和不定积分虽然有些相似,但是在本质上还是有很大的区别。
本文将介绍这两种积分形式的区别及其在实际应用中的意义。
一、定积分的概念与特点在数学中,定积分指的是在一定范围内的函数面积,可以理解为是函数在这个区间内的平均值,也可以说是连续函数在区间内的曲线积分。
定积分的记号是∫,被积函数称为被积分函数。
表示在区间[a,b]内对函数f(x)求积分的过程,即∫a^b f(x)dx。
定积分具有以下的特点:1、定积分与趋近于零的区间长度无关;2、函数f(x)必须在区间[a,b]内连续;3、定积分的值是一个具体的数;4、定积分的值可以表示区间[a,b]内的函数面积;5、定积分可以用于确定曲线下面的面积。
二、不定积分的概念与特点不定积分指的是对于一个函数f(x),可以求出它的导数F(x),则称函数F(x)是f(x)的不定积分,并记为∫f(x)dx=C。
不定积分的概念可理解为反函数的求解。
不定积分的特点如下:1、不定积分表示的是数量关系,没有具体的数值;2、不定积分仅仅能确定函数的形式,而不能确定函数所代表的定值。
3、不定积分的系数C称为积分常数。
三、定积分和不定积分的联系与区别相同之处:定积分和不定积分都是关于积分的概念,用于求某种量的大小。
不同之处:1、定积分的结果可以是一个具体的数,而不定积分仅仅能确定函数的形式;2、不定积分是积分的一种形式,是某个函数的导数,而定积分是某个函数在区间内的平均值或曲线积分;3、定积分的结果可以表示为对应的区间内的面积,而不定积分没有这个含义;4、使用方法的不同:求定积分要确定被积函数和积分范围,在对被积函数进行积分;而不定积分是求导数的反过程,先确定函数的导数再求原函数。
四、应用举例1、定积分应用举例:用定积分计算出在 y=x-x^2 函数中 x=[0,1] 区间内正负值面积的差。
解:设该函数为f(x) = x-x^2,x=[0,1]。
不定积分第二类换元法

不定积分第二类换元法
第二类换元法的目的是为了消去根号,化为简单函数的不定积分。
它分为根式换元和三角换元。
可以令x=以另外变量t的函数,把这个函数代入原被积表达式中,即可得到一个以t为积分变量的不定积分,这个不定积分若容易求设结果为F(t)+C,则要把这个结果中的t换回x的函数。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分,若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在,若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
不定积分的换元法

不定积分的换元法不定积分是微积分的重要内容,其中换元法是计算不定积分的一种常用方法。
换元法是指将被积函数中的变量通过代换,转化为新的自变量的函数形式进行积分求解。
一、基本概念在介绍换元法之前,首先需要了解一些基本概念。
1. 不定积分:指对一个函数进行求导的逆运算,即对于函数f(x),若F(x)是其导数,则F(x)是函数f(x)的一个不定积分,记为∫f(x)dx。
不定积分中的积分符号∫表示对变量的积分,dx表示被积函数中的自变量。
2. 原函数:指函数f(x)的一个不定积分F(x),即F(x)是f(x)的原函数。
3. 积分变量:指被积函数中的自变量。
4. 积分限:指积分区间的起点和终点。
5. 积分常数:表示积分时所得到的结果中的常数项,因为不定积分中存在无限个解,所以需要添加积分常数来求得特定的解。
二、换元法的原理假设对于被积函数f(x),想要将其变为一个与变量t有关的函数g(t),即f(x) = g(t),则可通过以下步骤进行换元:1. 选取一个可导函数u(x),并令t = u(x),则有t' = u'(x)。
2. 则原式∫f(x)dx = ∫g(t)dt。
3. 将自变量x换成新的自变量t,被积函数中的自变量x的所有出现均用对应的t代替。
4. 将x关于t求导,将t'代入被积函数中dt中,并将dx用du 表示。
5. 对新的函数∫g(t)dt进行求解。
6. 最后将所得解中的t用x表示,并加上积分常数C。
三、实例分析以求解∫2x/(1+x^2)dx为例,借助于换元法进行求解。
1. 令t = 1 + x^2,则有dt/dx = 2x,可以得出dx = dt/2x。
2. 将原式转化为∫2x/(1+x^2)dx = 2∫(1+x^2)/(1+x^2) * 1/(1+x^2) dt = 2∫(1/(t/2))dt。
3. 对新的函数2∫(1/(t/2))dt进行求解,解得结果为2ln|t| + C,其中|t|表示t的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换元法在不定积分和定积分中的联系与区别
1. 第一换元法在不定积分和定积分中的联系与区别
1.1不定积分中第一换元法的定理形式
定理1 若f (x )=g(φ(x ))φ′(x ),且∫g (u )du 的原函数容易求出,记
∫g (u )du =G (u )+c ,
则
∫f (x )dx =G(φ(x ))+c .
证明 若f (x )=g(φ(x ))φ′(x ),令u =φ(x ),于是有
∫g(φ(x ))du =G(φ(x ))+c ,du =φ′(x )dx
因而
∫f (x )dx =∫g(φ(x ))φ′(x )dx =∫g(φ(x ))du =G(φ(x ))+c
得证。
1.2定积分中第一换元法的定理形式
定理2 若f (x )连续,φ(x )在[a,b ]上一阶连续可导,且f (x )=g(φ(x ))φ′(x ),g (u )在α和β构成的区间上连续,其中φ(a )=α,φ(b )=β,则
∫f (x )b a dx =∫g (u )βαdu .
证明 令u =φ(x ),由于g (u )在α和β构成的区间上连续,记∫g (u )du =G (u )+c ,则
∫f (x )b a dx =∫g(φ(x ))φ′(x )b a dx
=G(φ(x ))|a b =
G (u )|αβ=∫g (u )βαdu 得证。
1.3 第一换元法在不定积分和定积分中的联系与区别
区别:第一换元法在定积分中对未知量x 给出了定义范围,要求换元函数φ(x )在该定义域内一阶连续可导即可,对积分要求变弱。
联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数f (x )的任意一个原函数F (x ),再用原函数在定义域的上下限的函数值取差值。
例1 求∫√1+x 20
.
解 因为 x
√1−x 2=−12d (−x 2)√1−x 2=−12d (1−x 2)√1−x 2 =−12∙2(1−x 2)12+C =−(1−x 2)12+C
即√1−x 2
有一个原函数−(1−x 2)1
2,所以 ∫
x √1−x 210
=−(1−x 2)12|01=1. 例2 计算积分∫cos (3x +5)π
20dx .
解 由于
∫cos (3x +5)dx =13∫cos (3x +5)d (3x +5)=13
sin (3x +5)+C, 于是
∫cos (3x +5)π20dx =13sin (3x +5)|0π2=13sin (3π2+5)−13sin 5.
2. 第二换元法在不定积分和定积分中的联系与区别
2.1不定积分中第二换元法的定理形式
定理3 设f (x )连续,x = φ(t )及φ‘(t )都连续,x = φ(t )的反函数t = φ−1(x )存在且连续,并且
∫f(φ(t ))φ‘(t )dt =F (t )+c ,
(1) 则
∫f (x )dx =F(φ−1(x ))+c (2)
证明 将(2)式右端求导同时注意到(1)式,得
d dx
[F(φ−1(x ))+c]=F ′(t )∙[φ−1(x )]′ =f [φ(t )]φ‘(t )∙1φ‘(t )= f (x ),
这便证明了(2)式。
2.2定积分中第二换元法的定理形式
定理 4 设f (x )在[a,b ]连续,作代换x = φ(t ),其中φ(t )在α和β构成的区间上有连续导数φ‘(t ),且φ(α)=a ,φ(β)=b ,则
∫f (x )b a dx =∫f [φ(t )]φ‘(t )dt βα.
证明 设F (x )是f (x )的一个原函数,则F(φ(t ))是f [φ(t )]φ‘(t )的一个原函数。
于是
∫f (x )b
a dx =F (
b )−F (a ),
∫f [φ(t )]φ‘(t )dt βα=F [φ(β)]−F [φ(α)]=F (b )−F (a ).
定理得证。
2.3 第二换元法在不定积分和定积分中的联系与区别
区别:由不定积分中第二换元法的证明过程可知,不定积分中第二换元法要求变换x = φ(t )的反函数存在且连续,并且φ‘(t )≠0。
而在定积分的第二换元法则不这样要求,它通
过换元法写出关于新变量的被积函数与新变量t的积分上下限后可以直接求职,不像不定积分的计算最终需要对变量进行还原。
例3用第二换元法求解∫
√1−x2
解令x=cos t,于是dx=−sin t dt,其中t∈[3π
2
,2π],则
∫
x
√1−x2
1
0=∫
cos t
√1−(cos t)2
2π
3π
2
−sin t)dt
=∫
cos t (−sin t)
2π3π2(−sin t)dt=∫cos t
2π
3π
2
dt=sin t|3π
2
2π=1.。