圆锥曲线的统一定义 (2)
【K12学习】圆锥曲线的统一定义 教案(苏教版选修2-1)

圆锥曲线的统一定义教案(苏教版选修2-1)2.5 圆锥曲线的统一定义●三维目标 1.知识与技能(1)圆锥曲线统一定义及其应用. (2)圆锥曲线的准线及其应用. 2.过程与方法(1)通过对圆锥曲线的统一定义的研究,体会三种曲线的内在统一性,培养学生归纳、总结能力.(2)通过对圆锥曲线统一定义的应用,培养学生对圆锥曲线的准线的理解,培养学生转换角度,认识问题的能力.(3)通过例题变式训练的求解,培养学生数学建模、解决问题的能力.体会特殊到一般,具体到抽象的认识规律.3.情感、态度与价值观在寻求圆锥曲线定义与解题方法之间共同点的过程中,培养学生用“普遍联系”的观念分析事物之间的联系,培养学生严谨的科学态度,勇于探索和敢于创新的科学精神.●重点难点重点:圆锥曲线统一定义的推导.难点:对圆锥曲线统一定义的理解与运用.(教师用书独具)●教学建议以前已学过求圆锥曲线的标准方程和利用圆锥曲线方程研究曲线几何性质的初步知识.本节是在这个基础上学习圆锥曲线的统一定义,研究它们的共同性质,使学生掌握这三种曲线的特点,以及它们之间的区别与联系,进一步熟悉和掌握坐标法.通过设计导学提纲引导学生做好课前预习,明确本节的重难点,主动思考,发现问题,在课堂上分组讨论交流,合作探究,展示交流成果,学生主讲,学生板书,学生点评,当堂进行达标测试,及时反馈学生知识掌握水平,从而完成预定教学目标.引导学生在探究中发现问题、研究问题并解决问题.在感性活动的基础上,上升到理性的数学知识的形成,养成良好学习习惯和思维习惯.●教学流程设置情景,导入新课.上课开始,先回顾椭圆、双曲线、抛物线的定义,提出问题,平面内到一个定点F的距离和到一条定直线l的(F不在l上)距离的比等于1的动点P的轨迹是抛物线,那么,当比值是一个不等于1的常数时,动点P的轨迹又是什么呢?师生x-c2+y2c互动,探求新知.思考:在推导椭圆标准方程时,我们得到一个变形式:=a.a2-xc同学们能解释它的几何意义吗?设计说明:使学生学会从多个角度(如代数的、几何的角度)认识同一个对象.学生归纳圆锥曲线的统一定义:平面内到一个定点F的距离和到一条定直线l(F不在l上)的距离的比等于常数e的点的轨迹.当01时,它表示双曲线;当e=1时,它表示抛物线.设计说明:使学生对圆锥曲线的共同性质有理性的认识.通过例1及变式训练,使学生掌握已知准线求圆锥曲线方程的方法,领会准线、离心率与基本量之间的关系,掌握圆锥曲线统一定义的实质,认识到准线在统一定义中的重要性.通过例2及变式训练,使学生掌握圆锥曲线统一定义的应用,利用圆锥曲线的统一定义,可将曲线上一点到焦点与到准线的距离灵活转换,从而达到解题的目的.利用圆锥曲线的统一定义,在已知焦点坐标和准线方程情形下求解圆锥曲线的方程.通过例3及变式训练,使学生掌握焦点弦问题的求解方法,体会利用统一定义求解焦点弦长的简捷性,从而简化计算过程.通过易错易误辨析,体会圆锥曲线统一定义的严谨性,尤其对于椭圆、双曲线,利用统一定义时,要注意焦点与准线相对应.归纳整理,进行课堂小结,整体认识本节课所学知识.完成当堂双基达标,巩固基本知识,形成力基本能.课标解读 1.了解圆锥曲线的统一定义,掌握圆锥曲线的离心率、焦点、准线等概念.(重点) 2.理解并会运用圆锥曲线的共同性质,解决一些与圆锥曲线有关的简单几何问题和实际问题.(难点) 【问题导思】圆锥曲线的统一定义如何求圆锥曲线的统一方程呢?【提示】如图,过点M作MH⊥l,H为垂足,圆锥曲线的统一定义可知M∈{M||FM|=e|MH|}.取过焦点F,且与准线l垂直的直线为x轴,F(O)为坐标原点,建立直角坐标系.设点M的坐标为(x,y),则|OM|=x2+y2. |MH|=|x+p|. x2+y2=e|x+p|. 两边平方,化简得(1-e2)x2+y2-2pe2x-p2e2=0.这就是圆锥曲线(椭圆、双曲线、抛物线)在直角坐标系中的统一方程.1.平面内到一个定点F和到一条定直线l(F不在l上)的距离的比等于常数e的点的轨迹.当01时,它表示双曲线;当e=1时,它表示抛物线.其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线. x2y2a2y2x22.椭圆2+2=1(a>b>0)的准线方程为x=±,2+2=1(a>b>0)的准线方程为yabcaba2=±. cx2y2a2双曲线2-2=1(a>0,b>0)的准线方程为x=±。
利用几何画板辅助圆锥曲线曲线的统一定义

利用“几何画板”辅助圆锥曲线曲线的统一定义炎陵一中范林华圆锥曲线曲线的定义统一为:平面内与一个定点的距离和一条定直线的距离之比等于常数e的点的轨迹,当0<e<1时,它是椭圆;当e=1时,它是抛物线;当e>1时,它是双曲线。
利用几何画板这一动态几何工具辅助教学,能更好地揭示圆锥曲线的规律,利于学生的认识和掌握。
下面介绍该课件的制作方法和步骤:一、确定对称轴、焦点、准线。
1.1 打开《几何画板》,新建文件;1.2 画一条水平直线x;1.3 作出直线x对象上的点K、F(焦点);1.4 过K作直线x的垂线l(准线)。
二、设置离心率。
2.1 画一条线段AB;2.2 作出线段AB对象上的点E;2.3 通过度量、计算,求得线段AE与EB的比(离心率);2.4 将比值标签改为e。
三、设置作轨迹所需的动态半径。
3.1 过任一点D作出两条相交直线m、n;3.2 以D为圆心,AE为半径画圆交直线m于M;3.3 以D为圆心,EB为半径画圆交直线n于N;作直线MN;3.4 作直线m上一点G,过G作MN的平行线交n于H;3.5 作出线段DG、DH。
四、作出轨迹。
4.1 以F为圆心,线段DG为半径画圆;4.2 以K为圆心,线段DH为半径画圆交直线x于P、Q两点,分别过P、Q 作x的垂线p 、q;4.3 改变E的位置或改变F的位置使圆F与直线p、q都相交,交点分别为P1、P2、P3、P4;4.4 选取P1(或P2、P3、P4)、点G、直线m,构造轨迹,即可作出所需轨迹。
4.5 添加操作按钮、隐藏不必显示的对象。
(若轨迹失真,可增加图象的采样数量)。
圆锥曲线的统一定义2

(思考题)P为抛物线 y 4x上的一动点, 记点P到准线的距离为 d1 ,到直线 x 2 y 12 0 的距离为 d2 ,则 d1 d2 的最小值是___ 11 52y5Fra bibliotekE G
y
x y2 1 右支上 3
2
D H O
P A
x
3 | PA | | PF | 2 | PA | | PD |
F
| AH | 3 3 3 2 2
三、拓展延伸 2 2 x y 1.已知P为双曲线 1右支上的一点,F1 , F2 16 9 分别为左、右焦点,若PF1 : PF2 3 : 2,试求点
椭圆
求|PA|+|PB|的 最大值与最小值。
P A F1
x y 1 上运动。 4 3
2 2
|PA|+|PB| =|PA|+(2a-|PF1|) =|PA|+4-|PF1| =|PA|-|PF1|+4
· · ·
· B ·
10若|PA|>|PF1| 则|PA|+|PB| | AF1 | 4 1 4 5
x y 1 上运动,求|PA|+2|PB|的 4 3
2 2
最小值。
|PA|+2|PB| =|PA|+|PC|
AC ' 4 (1) 5
P
2 6 P( ,1) 3
C C’
A
·
O
· B
P
例3、已知P为双曲线 的一个动点,F为双曲线的右焦点,若点A 3 的坐标为(3,1) ,则 | PA | | PF | 2 的最小值是?
数学苏教版选修21圆锥曲线的统一定义教案

圆锥曲线的统一定义江苏省海州高级中学 成泽花教学目标1、了解圆锥曲线的统一定义;2、 掌握根据圆锥曲线的标准方程求准线方程的方法.教学重点,难点圆锥曲线的统一定义及准线方程.教学过程一、问题情境1.情境:我们知道,平面内到一个定点F 的距离和到一条定直线(l F 不在l 上)的距离的比等于1的动点P 的轨迹是抛物线.[设计意图]:以抛物线的定义作为新知识的生长点,设计了用电脑实验探索的问题情境,为猜想的形成提供足够的感性认识基础当这个比值是一个不等于1的常数时,动点P 的轨迹又是什么曲线呢?2.问题: 试探讨这个常数分别是12和2时,动点P 的轨迹? 二、学生活动探讨过程略(可以用课件演示); 可以得到:当常数是12时,得到的是椭圆;当常数等于2时得到的是双曲线; 问题:请大家回顾椭圆的标准方程的推导过程(可以用课件演示)[设计意图]:回忆推导椭圆的标准方程的过程,从中探索到定点距离与到定直线距离之 比为定值所蕴涵的关系,从而自然提出后面的思考。
在推导椭圆的标准方程时,我们曾得到这样的一个方程:222)(y c x a cx a +-=-将其变形为思考:你能解释这个方程的几何意义吗?c a x c=-[设计意图]:这个等式表明,椭圆上任意一点到焦点的距离与它到相应准线的距离之比是一个常数,这个常数就是椭圆的离心率。
从而使学生学会从多个角度(如代数的、几何的角度)认识同一个数学对象。
三、数学运用例题:已知点(,)P x y 到定点(,0)F c 的距离与它到定直线2:a l x c=的距离的比是常数c a(0)a c >>,求点P 的轨迹.变题:已知点(,)P x y 到定点(,0)F c 的距离与它到定直线2:a l x c=的距离的比是常数c a(0)c a >>,求点P 的轨迹.[设计意图]:双曲线的类似命题由学生思考、发现,从而引导学生建立圆锥曲线的统一定义。
四、知识建构类似地,我们可以得到:当点P 到定点(,0)F c 的距离和它到定直线2:a l x c=的距离的比是常数(0)c c a a>>时,这个点的轨迹是双曲线,方程为22221x y a b -=(其中222b c a =-),这个常数就是双曲线的离心率.这样,圆锥曲线可以统一定义为:平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹.当01e <<时,它表示椭圆;当1e >时,它表示双曲线;当1e =时,它表示抛物线.其中e 是圆锥曲线的离心率,定点F 是圆锥曲线的焦点,定直线l 是圆锥曲线的准线.根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,与焦点12(,0),(,0)F c F c -对应的准线方分别为22,a a x x c c=-=.五、随堂检测1、填空(见课本第53页感受⋅理解第一题)[设计意图]:对焦点在y 轴上的椭圆、双曲线(标准形式)的准线方程,让学生通过画图,独立探索) 2、已知某圆锥曲线的准线是1x =,在离心率分别取下列各值时,求圆锥曲线的标准方程:(1)12e = (2)1e = (3)32e =[设计意图]:此题是在学生学习了圆锥曲线的统一定义后的一道习题,目的在于学生首先根据离心率的大小来确定曲线是椭圆、双曲线还是抛物线,然后再求准线。
圆锥曲线的一个统一性质

圆锥曲线的一个统一性质
圆锥曲线是一种特殊的曲线,它的性质与普通的曲线有很大的不同。
它有一个共同的特性,即它们的线段是圆滑的,没有折点。
圆锥曲线的一个统一性质是它的曲线是由椭圆的切线组成的。
椭圆的切线是由两个相交的椭圆组成的,它们相交点的坐标是(
0,0),切线的形状是一条抛物线,抛物线的方程式是
y=ax^2+bx+c。
这里a,b,c分别是抛物线的系数,x是抛物线的参数。
圆锥曲线的参数是一条椭圆的参数,参数是由两个圆组成的,一个圆在x轴上,另一个圆在y轴上。
圆锥曲线的方程式是x^2/a^2+y^2/b^2=
1,这里a和b是圆锥曲线的参数。
圆锥曲线的另一个统一性质是它的切线是一条直线。
这个直线的方程是y=mx+c,m是直线的斜率,c是直线的截距。
圆锥曲线的切线斜率m可以由方程式算出,m=2ax+b。
圆锥曲线的另一个统一特性是它的曲线是完整的,没有折点,也就是说它们是平滑的。
这是由于圆锥曲线的方程式是一
个二次方程,它的解是一个完整的曲线,没有折点,没有断点,也就是说它是一个完整的曲线。
总之,圆锥曲线有几个统一性质,它的曲线是由椭圆的切线组成的,它的切线是一条直线,它的曲线是完整的,没有折点,也没有断点,这也是它的一个重要特性。
这些特性使得圆锥曲线在几何图形中有着重要的作用,并且在工程学、物理学、数学等领域都有着重要的应用。
三种圆锥曲线统一定义及动画演示

抛物线的定义 :
平面内到一个定点F和一条定直线L(F不在L 上)的距离相等的点轨迹叫做抛物线,定点F叫做 抛物线的焦点,定直线L叫做抛物线的准线.
(2)与椭圆、双曲线不同, 抛物线只有一个焦点和一条准线
可以用数学表达式来体现: 设平面内的动点为M ,有 MF=d(d为动点M到
直线L的ቤተ መጻሕፍቲ ባይዱ离)
抛物线的定义:
▪ 平面内与一个定点F的距离和一条定直线l (F不在l上)的距离相等的点的轨迹叫做抛物 线,定点F叫做抛物线的焦点,定直线l叫 做抛物线的准线
说明:(1)点F不能在直线l上, 否则其轨迹是过点F且与l垂直的直线
关于椭圆、双曲线、抛物线你了解多少? 在我们的实际生活中有这些曲线吗? 它们分别给我们什么印象?
椭圆?
汽车贮油罐的横截面的外轮廓线 的形状像椭圆.
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
椭圆
双曲线
抛物线
椭圆的定义
平面内到两定点 F1 ,F2的距离之和 为常数(大于F1 F2 距离)的点的轨迹 叫椭圆,两个定点 叫椭圆的焦点,两 焦点的距离叫做椭 圆的焦距.
说明: 若动点M到的距离之和为2a , | F1 F2| = 2c 则当a>c>0时,动点M的轨迹是椭圆; 当a = c>0时,动点M的轨迹是线段F1 F2 ; 当 0 < a < c时,动点M无轨迹
双曲线的定义 :
6.圆锥曲线的定义

,则点M的轨迹
是( A、椭圆
) B、双曲线
C、不存在
D、直线
2 已知定点 F1 ( −2, 0 ) ,F2 ( 2, 0 ) ,平面内满足下列 条件的动点P的轨迹中,为双曲线的是(
PF1 − PF2 =+ 3 A、 −
PF1 − PF2 = + 4 B、 −
)
C、PF1 − PF2 = 5
+ −
l(F 不在 l上) 的距离相等的点的轨迹。
圆锥曲线的统一定义: 二 圆锥曲线的统一定义:
平面内到一个定点F和一条定直线 l (F不 在l上)的距离之比是一个常数e
例题讲解: 三 例题讲解:
例1:设有两定点 F1 、 2 且 ︳1 F2 ︳= 4, 动点 F F
M 满足 MF1 + MF2 = 4 , 则动点 M的轨迹
是(
A.椭圆
)
B.直线
C.圆
D.线段
例2:若动圆M过定点A(-3,0),并且在定 2 2 圆B: (x-3) + y = 64 的内部与其内切, 求动圆圆心M的轨迹方程。
例3: 已知圆C1:(x +3) +y =1和圆C2:(x -3) +y =9,
2 2 2 2
动圆M同时与圆C1及圆C2相外切,求动圆 圆心M的轨迹方程。
例 4 : 圆 与 定 圆 ( x − 2 ) + y =1 外 切 , 动
2 2
又 与 直 线 x +1= 0 相 切 , 求 动 圆 圆心的轨迹方程。
四、课堂反馈练习: 课堂反馈练习:
1 若点P( x, y ) 在运动过程中,总满足关系式
x 2 + ( y + 3) + x 2 + ( y − 3) = 10
圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。
数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。
圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.5圆锥曲线的统一定义
教学目的: 1、知识与技能:
掌握椭圆、双曲线的第二定义以及准线的概念 2.过程与方法
类比抛物线的定义引出椭圆和双曲线的第二定义,借助几何画板等多媒体手段探究出轨迹的形成,进一步推导出椭圆和双曲线的方程。
3.情感、态度与价值观
通过本节课的学习,可以培养我们类比推理的能力,探究能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力.
教学重点:圆锥曲线的统一定义的形成 教学难点:圆锥曲线方程的推导 教学过程: 一.情境设置
复习回顾
1、抛物线的定义:
探究与思考:
1≠d
PF
呢 2、在推导椭圆的标准方程时,我们曾得到这样一个式子: 将其变形为:
你能解释这个式子的几何意义吗?
二、知识建构
例1.已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2
:=的距离的比是常数 c
a (a>c>0),求
P 的轨迹.
变题:已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2
:= 的距离的比是常数 c
a
(c>a>0),求P 的轨迹.
222)(y c x a cx a +-=-a c x c a y c x =-+-22
2)(
圆锥曲线的统一定义:平面内到一定点 F 与到一条定直线l 的距离之比为常数 e 的点的轨迹.( 点F 不在直线l 上)
(1)当 0< e <1 时, 点的轨迹是 (2)当 e >1 时, 点的轨迹是 (3)当 e = 1 时, 点的轨迹是
其中常数e 叫做圆锥曲线的离心率, 定点F 叫做圆锥曲线的焦点, 定直线l 就是该圆锥曲线的准线. 思考
1、上述定义中只给出了一个焦点,一条准线,还有另一焦点,是否还有另一准线?
2、另一焦点的坐标和准线的方程是什么?
3、题中的|MF|=ed 的距离d 到底是到哪一条准线的距离?能否随意选一条?
准线: 定义式:
)0(12222>>=+b a b y a x )
0,0(122
22>>=-b a b y a x
例2.求下列曲线的焦点坐标与准线方程:
注:焦点与准线的求解:判断曲线的性质→确定焦点的位置→确定a,c,p 的值,得出焦点坐标与准线方程. 例3已知双曲线 上一点P 到左焦点的距离为14,求P 点到右准线的距离.
辨析:点P 与定点F (2,0)的距离和它到定直线x=8的距离的比为1/2,求点P 的轨迹方程,并说明轨迹是什么图形。
1925)1(2
2=+y
x 164)2(22=+y x 19
25)3(22=-y x 164)4(22=-x y x y 16)5(2=y x 16)6(2-=136642
2=-y x 1
2
=
直译法: 动点P (x,y ),则
化简得:
所以动点P 的轨迹方程为: 轨迹 为椭圆 待定系数法: 由题意所求点的轨迹为椭圆,所以设为: )0(12
222>>=+b a b y a x 则 解得:
所以所求点P 的轨迹方程为: 以上两种做法都正确吗? 轨迹方程的思考:
例4.已知点P 到定点F(1,0)的距离与它到定直线5:=x l 的距离的比是常数5
5
,求P 的轨迹方程.
思考(1):已知点P 到定点F(1,0)的距离与它到定直线5:=x l 的距离的比是常数
5
7
求P 的轨迹方程.
(2)到点A (1,1)和到直线x+2y-3=0距离相等的点的轨迹方程为 。
椭圆的焦半径
例5、椭圆 上一点P (0,0y x ),21,F F 分别为椭圆的左、右焦点, 求证:01ex a PF +=,02ex a PF -=
双曲线焦半径公式及推导
双曲线上一点与其焦点的连线段叫做双曲线上这点的焦半径.
例.P(0,0y x )为双曲线122
22=-b
y a x 上一点,求证:|1PF |=|0ex a + |;|2PF |=|0ex a - |
2211612x y
+=2211612x y +=222
2/1/2c c a b a c ⎧=⎪=⎨⎪=-⎩221612a b ⎧=⎪⎨=⎪⎩22
1
1612x y +=22
221(0)
x y a b a b +=>>
练习
椭圆
的离心率为
A 、1/25
B 、1/5
C 、1/10
D 、无法确定
2、椭圆长轴长为10,短轴长为8,则椭圆上点到椭圆中心距离的取值范围是 A 、[8,10] B 、[4,5] C 、[6,10] D 、[2,8]
3、若椭圆的长轴长为200,短轴长为160,则椭圆上点到焦点距离范围是 A 、[40,160] B 、[0,100] C 、[40,100] D 、[80,100]
4、P 是椭圆 上点,F1、F2是两焦点,则|PF1|·|PF2|的最大值与最小值的差是
5.双曲线
的右支上有A,B,C 三个不同的点,若此三点关于右焦点的焦半
径成等差数列,则它们的横坐标m,n,p 满足的关系式为
例7.已知点A (1,2)在椭圆3x2+4y2=48内,F (2,0)是焦点,在椭圆上求一点P ,使|PA|+2|PF|最小,求P 点的坐标及最小值。
变题:已知双曲线 的右焦点为F,点A(9,2),试在此双曲线上求一点M,使
|MA|+ |MF|的值最小,并求出这个最小值.(与椭圆题型比较)
四、课堂小结:
1.圆锥曲线的共同性质;
2.圆锥曲线的准线定义与方程的求解(标准形式);
3.轨迹方程的思考.(定义法与直接法) 五、作业 创新训练
|348|25
x y ++=22
143x y +=22
221x y a b -=22
1916
x y -=3
5。