人教版高中数学必修三教案(全套).
人教课标版高中数学必修三《算法案例(第3课时)》教案(1)-新版

⼈教课标版⾼中数学必修三《算法案例(第3课时)》教案(1)-新版1.3 算法案例第3课时⼀、教学⽬标 1.核⼼素养在学习古代数学家解决数学问题的⽅法的过程中培养严谨的逻辑思维能⼒,在利⽤算法解决数学问题的过程中培养理性的精神和动⼿实践的能⼒. 2.学习⽬标(1)1.3.3.1理解进位制的概念,掌握各种进位制与⼗进制之间的转换规律.(2)1.3.3.2掌握⼗进位制转化为各种进位制的除k 余法. 3.学习重点各种进位制与⼗进制之间的转换规律. 4.学习难点不同进位制之间的转化规律及其思想⼆、教学设计(⼀)课前设计 1.预习任务任务1阅读教材P40-P45,思考:各种进位制与⼗进制之间转换的规律是什么?任务2你可以熟练的进⾏各进位制之间的转换吗? 2.预习⾃测1.在2进制中,0+0,0+1,1+0,1+1的值分别是多少?【解析】:分别是0,1,1,10 2.把⼆进制数()2110011化为⼗进制数【解析】:()=?+?+?+?+?+?=+++=543210211001112120202121232162151(⼆)课堂设计1.知识回顾(1)⽣活中常见的进位制有哪些(例如时间、钱等)(2)计算机中的2进制和通常的10进制怎么进⾏转换(3)⾮10的两种不同进制之间怎么进⾏转换 2.问题探究问题探究⼀认识进位制,将⼗进制数转化为k 进制数●活动⼀什么是n 进位制?我们常见的数字都是⼗进制的,但是并不是⽣活中的每⼀种数字都是⼗进制的.⽐如时间和⾓度的单位⽤六⼗进位制,电⼦计算机⽤的是⼆进制.那么什么是进位制?不同的进位制之间⼜⼜什么联系呢?进位制是⼀种记数⽅式,⽤有限的数字在不同的位置表⽰不同的数值.可使⽤数字符号的个数称为基数,基数为n ,即可称n 进位制,简称n 进制.现在最常⽤的是⼗进制,通常使⽤10个阿拉伯数字0-9进⾏记数.对于任何⼀个数,我们可以⽤不同的进位制来表⽰.⽐如:⼗进制数57,可以⽤⼆进制表⽰为111001,也可以⽤⼋进制表⽰为71、⽤⼗六进制表⽰为39,它们所代表的数值都是⼀样的.表⽰各种进位制数⼀般在数字右下脚加注来表⽰,如()2110011表⽰⼆进制数,(5)34表⽰5进制数.●活动⼆如何将10进制数转化为2进制数?解:根据⼆进制数满⼆进⼀的原则,可以⽤2连续去除89或所得商,然后去余数. 具体的计算⽅法如下:=?+=?+=?+=?+=?+892441442220222110112515221()(((())))=+++++=?+?+?+?+?+?+?=654321028922222211001120212120202121011001 这种算法叫做除2取余法,还可以⽤下⾯的除法算式表⽰:把上式中的各步所得的余数从下到上排列即可得到89=1011001(2)●活动三如何将10进制数转化为k进制数?上述⽅法可以推⼴为把⼗进制化为k进制数的算法,这种算法成为除k取余法. ⼗进制数化为k进制数(除k取余法)的步骤:1.除:把⼗进制数连续去除以k,直到商为0为⽌,同时将各步的余数写出2.取余:将各步所得的余数倒叙写出,即为所求的k进制数3.标基数:写出k进制数后将基数k⽤括号括起来标在右下⾓例1.将⼗进制数458分别转化为四进制数和六进制数.解:算式如下图,则458=13022(4)=2042(6)问题探究⼆不同进制数相互转换●活动⼀如何将10进制数与k进制数进⾏相互转换?⼆进制数110 011(2)化为⼗进制数是什么数?110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=32+16+2+1=51.那么如何将⼀个k进制数转换为⼗进制数?将k进制数a n a n-1…a1a0(k)化为⼗进制的⽅法:把k进制数a n a n-1…a1a0(k)写成各数位上的数字与基数k的幂的乘积之和的形式,然后计算出结果即为对应的⼗进制数.这样我们就可以进⾏10进制数与k进制数进⾏相互转换●活动⼆如何将⾮10的不同进制数进⾏相互转换?进制的数转化为10进制数后再把10进制的⼗进制是连接其他进制的桥梁.把k1进制数,各个进制数之间就能实现互相转换.数转化为k2例2.1 011 001(2)=______(10)=______(5).解:89,324 ⾸先将1011001(2) 化为⼗进制数为1×26+0+1×24+1×23+0+0+1×20=89,再将89化成五进制数:89除以5的商是17,余数为4,17除以5的商是3,余数为2,所以五进制数为324.3.课堂总结【知识梳理】(1)k进制化成⼗进制,幂积求和法(2)⼗进制化成k进制,除k取余法进制的数转化为10进制数后再把10进制的数转(3)不同进制之间转换:把k1化为k进制数2【重难点突破】(1)进位制之间的转换⽅法:k进制化成⼗进制,幂积求和法;⼗进制化成k 进制,除k取余法.(2)把⼀个⾮⼗进制数转化为另⼀种⾮⼗进制数,通常是把这个数先转化为⼗进制数,然后再利⽤除k取余法,把⼗进制数转化为k进制数.⽽在使⽤除k 取余法时要注意以下⼏点:1.必须除到所得的商是0为⽌;2.各步所得的余数必须从下到上排列;3.切记在所求数的右下⾓标明基数4.随堂检测1.下列各进制数中值最⼩的是( )A.85(9)B.210(6)C.1 000(4)D.111 111(2)【解析】:D 由进位制的知识易得,故选D.2.把189化为三进制数,则末位数是( )A.0 B.1 C.2 D.3【解析】:A将189除以3得余数为0,所以189化为三进制数的末位数为0. 故选A.3.已知⼀个k进制的数132与⼗进制的数30相等,那么k等于( )A.7或4 B.-7C.4 D.都不对【解析】:C132(k)=1×k2+3×k+2=k2+3k+2,∴k2+3k+2=30,即k2+3k-28=0,解得k=4或k=-7(舍去).故选C.4.四位⼆进制数能表⽰的最⼤⼗进制数是( )A.4 B.64 C.255 D.15【解析】:D由⼆进制数化为⼗进制数的过程可知,当四位⼆进制数为1 111时表⽰的⼗进制数最⼤,此时,1 111(2)=15.故选D5.七进制数中各个数位上的数字只能是______中的⼀个.【解析】:0、1、2、3、4、5、6“满⼏进⼀”就是⼏进制.∵是七进制.∴满七进⼀,根本不可能出现7或⽐7⼤的数字,所以各个数位上的数字只能是0、1、2、3、4、5、6中的⼀个.6.已知三个数12(16),25(7),33(4),将它们按由⼩到⼤的顺序排列为________.【解析】:33(4)<12(16)<25(7)将三个数都化为⼗进制数.12(16)=1×16+2=18,25(7)=2×7+5=19,33(4)=3×4+3=15,∴33(4)<12(16)<25(7).(三)课后作业基础型⾃主突破1.⼆进制数111.11(2)转换成⼗进制数是( )A.7.3 B.7.5 C.7.75 D.7.125【解析】:C 由题意知⼆进制对应的⼗进制是:1×22+1×21+1×20+1×2-1+1×2-2=4+2+1+0.5+0.25=7.75. 故选A2.将⼆进制110 101(2)转化为⼗进制为( )A.106 B.53 C.55 D.108【解析】:B110 101(2)=1+1×22+1×24+1×25=53. 故选B3.下列与⼆进制数1 001 101(2)相等的是( )A.115(8)B.113(8)C.114(8)D.116(8)【解析】:A 先化为⼗进制数:1 001 101(2)=1×26+1×23+1×22+1×20=77,再化为⼋进制数.所以77=115(8),1 001 101(2)=115(8)故选A.4.下列各数中,与1 010(4)相等的数是( )A.76(9)B.103(8)C.2 111(3)D.1 000 100(2)【解析】:D 1 010(4)=1×43+1×4=68.因为76(9)=7×9+6=69;103(8)=1×82+3=67;2111(3)=2×33+1×32+1×3+1=67;1000100(2)=1×26+1×22=68,所以1 010(4)=1 000 100(2)故选D..5.⼀个k进制的三位数与某六进制的⼆位数等值,则k不可能是( )A.3 B.4 C.5 D.7【解析】:D k进制的最⼩三位数为k2,六进制的最⼤⼆位数为5×6+5=35,由k2≤35得0…a1a0(k)表⽰⼀个k进制数,若21(k)=9,则321(k)在⼗进制中所表⽰的6.记anan-1数为( )A.86 B.57 C.34 D.17【解析】:B 由已知中21(k)=9,求出k值,进⽽利⽤累加权重法,可得答案.若21(k)=9,则2k+1=9,解得k=4,故321(k)=321(4)在+进制中所表⽰的数为:3×42+2×4+1=57. 故选B能⼒型师⽣共研7.已知1 0b1(2)=a02(3),求数字a,b的值.【解析】:a=1,b=1 ∵1 0b1(2)=1×23+b×2+1=2b+9,a02(3)=a×32+2=9a+2,∴2b+9=9a+2,即9a-2b=7.∵a∈{1,2},b∈{0,1},∴当a=1时,b=1符合题意,当a=2时,b=112不合题意,∴a=1,b=1.8.已知44(k)=36,把67(k)转化为⼗进制数为( )A.8 B.55 C.56 D.62【解析】:B 由题意得,36=4×k1+4×k0,所以k=8.则67(k)=67(8)=6×81+7×80=55. 故选B9.古时候,当边境有敌⼈来犯时,守边的官兵通过在烽⽕台上举⽕向国内报告,如图,烽⽕台上点⽕,表⽰数字1,不点⽕表⽰数字0,约定⼆进制数对应的⼗进制的单位是1 000,请你计算⼀下,这组烽⽕台表⽰约有多少敌⼈⼊侵?【解析】:27 000 由图可知从左到右的五个烽⽕台,表⽰⼆进制数的⾃左到右五个数位,依题意知这组烽⽕台表⽰的⼆进制数是11 011,改写为⼗进制为:11 011(2)=1×24+1×23+0×22+1×21+1×20=16+8+2+1=27(10).⼜27×1 000=27 000,所以这组烽⽕台表⽰边境约有27 000个敌⼈来犯.探究型多维突破10.分别⽤算法步骤、程序框图、程序语句表⽰把k进制数a(共有n位数)转化成⼗进制数b.【解析】:算法步骤:第⼀步,输⼊a,k,n的值.第⼆步,赋值b=0,i=1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成⽴.若是,则执⾏第五步;否则,返回第三步.第五步,输出b的值.程序框图:程序语句:11.若10y1(2)=x02(3),求数字x,y的值及与此两数等值的⼗进制数.【解析】:x=y=1,11∵10y1(2)=x02(3),∴1×23+0×22+y×2+1=x×32+0×3+2,将上式整理得9x-2y=7,由进位制的性质知,x∈{1,2},y∈{0,1},当y=0时,x=(舍),当y=1时,x=1.∴x=y=1,已知数为102(3)=1 011(2),与它们相等的⼗进制数为1×32+0×3+2=11.⾃助餐1.在什么进位制中,⼗进位制数71记为47( )A.17 B.16 C.8 D.12【解析】:B 设为k进制,有:4k+7=71,从⽽可解得k=16.因此是16进制.故选B.2.把⼗进制数20化为⼆进制数为( )A.10 000(2)B.10 100(2)C.11 001(2)D.10 001(2)【解析】:B 利⽤除2取余数可得.故选B3.在⼋进制中12(8)+7(8)=21(8),则12(8)×7(8)的值为( )A.104(8)B.106(8)C.70(8)D.74(8)【解析】:B 12(8)=1×81+2×80=10(10),7(8)=7×80=7(10),12(8)×7(8)=70(10).故70(10)=106(8).即12(8)×7(8)=106(8).故选B4.将四位⼋进制数中的最⼩数转化为六进制数为( )A.2 120 B.3 120 C.2 212 D.4 212【解析】:C 四位⼋进制中的最⼩数为1 000(8).所以1 000(8)=1×83=512.再将512除以6取余得512=2 212(6).故选C5.两个⼆进制数101(2)与110(2)的和⽤⼗进制数表⽰为( )A.12 B.11 C.10 D.9【解析】:B101(2)=1×22+0×21+1×20=5,110(2)=1×22+1×21+0×20=6,5+6=11.故选B6.在计算机的运⾏过程中,常常要进⾏⼆进制数与⼗进制数的转换与计算.如⼗进制数8转换成⼆进制数是1 000,记作8(10)=1 000(2);⼆进制数111转换成⼗请进制数是7,记作111(2)=7(10)等.⼆进制的四则运算,如11(2)+101(2)=1 000(2).计算:11(2)×111(2)=________,10 101(2)+1 111(2)=________.【解析】:10 101(2),100 100(2)由题可知,在⼆进制数中的运算规律是“满⼆进⼀”,∴11(2)×111(2)=10 101(2),10 101(2)+1 111(2)=100 100(2).7.1 101(2)+1 011(2)=__________(⽤⼆进制数表⽰).【解析】:11 000(2)1 101(2)=1×23+1×22+1=13;1 011(2)=1×23+1×2+1=11,则1101(2)+1011(2)=24.即24=11 000(2).。
广东省汕头市东厦中学人教版高中数学必修三:3.1.3 概率的基本性质 教案

3.1.3 概率的基本性质汕头市东厦中学任课教师:林煜山教学内容:1、事件间的关系及运算2、概率的基本性质教学目标:一、知识与技能1.掌握事件的关系和运算,区分互斥和对立事件2.掌握概率的基本性质,学会应用概率的加法公式二、过程与方法1.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学2.发挥学生的主体作用,做好探究性实验3.理论联系实际,激发学生的学习积极性4.事件和集合对应起来,使学生又一次体会类比方法三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验、理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点2.通过动手试验体会数学的奥秘与数学美,激发学生的学习兴趣教学重点:事件间的关系和运算,概率的加法公式。
教学难点:互斥事件与对立事件的区别与联系,理解概率的基本性质。
教学过程:利用课本探究以及掷骰子实际试验,使学生熟悉本节中所应用的各个事件,并引入集合论类比概率论的探究方法,利用熟悉的知识引入不熟悉的知识。
(事件的关系和运算)B A ⊆集合B 包含集合A 事件B 包含事件AB A =集合A 与集合B 相等事件A 与事件B 相等φ空集不可能事件—Ω全集 必然事件 —B A B A +⋃或集合A 与集合B 的并事件A 与事件B 的并(和)B A ⋂集合A 与集合B 的交事件A 与事件B 的交(积)特别的,“空集是任何集合的子集”这个性质如果翻译成概率论的说法,就应该是“任何事件都包含不可能事件”。
事件A 与事件B 的并和交称为事件的运算。
事件A 与事件B 的并掷骰子试验中: 51C C ⋃,G D ⋃2,31D D ⋃可以看到:上边几个例子中,虽然一样是并,构成的前提却各有不同,不过有一点是相同的,并事件总是由①属于事件A ,但不属于事件B 的一个部分,②属于事件B ,但不属于事件A 的一个部分,③同时属于事件A 和事件B 的部分,合并构成的,虽然有些题目中会缺失其中的若干部分,但是合并的规则却是绝对不变的。
高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载

2.过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想.
(2)体会类比对发现新结论的作用.
二.教学重点.难点
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程 的所有实数根;
(8)不等式 的所有解;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.
§1.1.2集合间的基本关系
一.教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
第一章集合与函数
§1.1.1集合的含义与表示
一.教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(完整版)人教版高中数学必修3教材全套教案

第一章 算法初步1.1 算法与程序框图 1.1.1 算法的概念授课时间:第 周 年 月 日(星期 )教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题 (1)解二元一次方程组有几种方法?(2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤: 第一步,①×b 2-②×b 1,得 (a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③ 第二步,解③,得x=12212112b a b a c b c b --.第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④ 第四步,解④,得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行. (7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i 表示2—(n-1)中的任意整数,则“判断n 是否为质数”的算法包含下面的重复操作:用i 除n,得到余数r.判断余数r 是否为0,若是,则不是质数;否则,将i 的值增加1,再执行同样的操作. 这个操作一直要进行到i 的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2.第三步,用i 除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n 不是质数,结束算法;否则,将i 的值增加1,仍用i 表示. 第五步,判断“i >(n-1)”是否成立.若是,则n 是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x 2-2=0 (x>0)的近似解的算法.分析:令f(x)=x 2-2,则方程x 2-2=0 (x>0)的解就是函数f(x)的零点. “二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b ](满足f(a)·f(b)<0)“一分为二”,得到[a,m ]和[m,b ].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m ]或[m,b ],仍记为[a,b ].对所得的区间[a,b ]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=2ba.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表..实际上,上述步骤也是求2的近似值的一个算法.例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.强调:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.强调:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t (分钟),通话费用y (元),如何设计一个程序,计算通话的费用. 解:算法分析:数学模型实际上为:y 关于t 的分段函数. 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2.1.1.2 程序框图与算法的基本逻辑结构整体设计授课时间:第周年月日(星期)三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起. 图形符号名称 功能终端框(起止框) 表示一个算法的起始和结束 输入、输出框 表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分. 三种逻辑结构可以用如下程序框图表示:顺序结构 条件结构 循环结构 应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:强调:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯Λ的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式) 算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法.算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:强调:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7, 求a 2的值. 解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11. 知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格. 解:用P 表示钢琴的价格,不难看出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927.27; 2008年P=10 927.27×(1+3%)=11 255.09; 年份 2004 2005 2006 2007 2008 钢琴的价格10 00010 30010 60910 927.2711 255.09程序框图如下: 强调:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如上给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法. 作业习题1.1A 1.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:强调:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax 2+bx+c=0的算法,并画出程序框图表示. 算法分析:我们知道,若判别式Δ=b 2-4ac>0,则原方程有两个不相等的实数根 x 1=ab 2∆+-,x 2=a b 2∆--;若Δ=0,则原方程有两个相等的实数根x 1=x 2=ab2-; 若Δ<0,则原方程没有实数根.也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的步骤,这个过程可以用条件结构实现.又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算x 1和x 2之前,先计算p=ab2-,q=a 2∆.解决这一问题的算法步骤如下: 第一步,输入3个系数a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则计算p=ab2-,q=a 2∆;否则,输出“方程没有实数根”,结束算法.第四步,判断Δ=0是否成立.若是,则输出x 1=x 2=p ;否则,计算x 1=p+q ,x 2=p-q ,并输出x 1,x 2.程序框图如下:例3 设计算法判断一元二次方程ax 2+bx+c=0是否有实数根,并画出相应的程序框图. 解:算法步骤如下:第一步,输入3个系数:a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法. 相应的程序框图如右:强调:根据一元二次方程的意义,需要计算判别式Δ=b 2-4ac 的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=0的解,并画出流程图. 解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下: (1)当a≠0时,方程有唯一的实数解是ab -; (2)当a=0,b=0时,全体实数都是方程的解; (3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤: 第一步,判断a≠0是否成立.若成立,输出结果“解为ab -”. 第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R ”.第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法. 程序框图如右:强调:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作. 知能训练设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图. 解:算法步骤:第一步,输入a ,b ,c 的值.第二步,判断a>b 是否成立,若成立,则执行第三步;否则执行第四步.第三步,判断a>c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束. 第四步,判断b>c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束. 程序框图如右:例 5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算: f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试画出计算费用f 的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f 的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图: 拓展提升有一城市,市区为半径为15 km 的圆形区域,近郊区为距中心15—25 km 的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x ,y),求其与市中心的距离r=22y x +,确定是市区、近郊区,还是远郊区,进而确定地价p .由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100r r r解:程序框图如下: 课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题. 作业习题1.1A 组3.3课时循环结构授课时间:第周年月日(星期)导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P 时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.。
新教材人教B版高中数学选择性必修第三册教案设计-等比数列的性质

第2课时等比数列的性质学习目标核心素养1.理解等比中项的概念.(易错点)2.掌握等比数列的性质及其应用.(重点)3.熟练掌握等比数列与等差数列的综合应用.(难点、易错点) 1.通过等比数列性质的学习,培养逻辑推理的素养.2.通过等比数列与等差数列的综合应用的学习,提升数学运算素养.在等差数列{a n}中,通项公式可推广为a n=a m+(n-m)d,并且若m+n=p+q,则a m+a n=a p+a q(n,m,p,q∈N+),特别地,若m+n=2p,则a m+a n=2a p.问题:在等比数列中有无类似的性质?1.等比中项定义如果x,G,y是等比数列,那么称G为x与y的等比中项关系式G2=xy结论在等比数列中,中间每一项都是它的前一项与后一项的等比中项[提示]不是.若G是x与y的等比中项,则G2=xy,反之不成立.2.等比数列的性质在等比数列{a n}中,若s+t=p+q(s,t,p,q∈N+),则a s·a t=a p·a q.(1)特别地,当2s=p+q(s,p,q∈N+)时,a p·a q=a2s.(2)对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a1·a n=a2·a n-1=…=a k·a n-k+1=….拓展:(1)“子数列”性质对于无穷等比数列{a n},若将其前k项去掉,剩余各项仍为等比数列,首项为a k+1,公比为q;若取出所有的k的倍数项,组成的数列仍为等比数列,首项为a k,公比为q k.(2)两个等比数列合成数列的性质若数列{a n},{b n}均为等比数列,c为不等于0的常数,则数列{ca n},{a n·b n},⎩⎨⎧⎭⎬⎫a nb n 也为等比数列.1.思考辨析(正确的画“√”,错误的画“×”) (1)任意两个实数都有等比中项. ( ) (2)在等比数列{a n }中,a 2·a 8=a 10.( ) (3)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( )(4)若数列{a n }的奇数项和偶数项分别成等比数列,且公比相同,则{a n }是等比数列.( )[答案] (1)× (2)× (3)× (4)×2.已知等比数列{a n },a 1=1,a 3=19,则a 5等于( ) A .±181 B .-181 C.181 D .±12 C[在等比数列中,a 23=a 1·a 5,所以a 5=a 23a 1=181.]3.(教材P 34练习AT3改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16 D .32 C [∵{a n }是等比数列, ∴a 2·a 6=a 24=16.]4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11=________. 25 [∵{a n }是等比数列, ∴a 8·a 11=a 9·a 10=a 7·a 12,∴a 8a 9a 10a 11=(a 9a 10)2=(a 7a 12)2=52=25.]等比中项的应用A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-9(2)在等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10=________.(1)B(2)1316 [(1)因为b 2=(-1)×(-9)=9,a 2=-1×b =-b >0,所以b <0,所以b =-3,且a ,c 必同号.所以ac =b 2=9.(2)由题意知a 3是a 1和a 9的等比中项,∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ),得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.]由等比中项的定义可知:G a =bG ⇒G 2=ab ⇒G =±ab .这表明只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.反之,若G 2=ab ,则G a =bG ,即a ,G ,b 成等比数列.所以a ,G ,b 成等比数列⇔G 2=ab (ab ≠0).[跟进训练]1.已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项. [解] 设该等比数列的公比为q ,首项为a 1, ∵⎩⎨⎧a 1+a 1q +a 1q 2=168,a 1q -a 1q 4=42, ∴⎩⎨⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42. ∵1-q 3=(1-q )(1+q +q 2). 上述两式相除,得q (1-q )=14⇒q =12. ∴a 1=42q -q 4=4212-⎝ ⎛⎭⎪⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5·a 7=a 1q 4·a 1q 6=a 21q 10=962·⎝ ⎛⎭⎪⎫1210=9. ∴a 5,a 7的等比中项是±3.等比数列性质的应用【例2】 (1)已知数列{a n }为等比数列.若a n >0,且a 2a 4+2a 3a 5+a 4a 6=36,则a 3+a 5=________.(2)在2和8之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.(1)6 (2)64 [(1)∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 23+2a 3a 5+a 25=36,∴(a 3+a 5)2=36,又∵a n >0,∴a 3+a 5=6. (2)设a 1=2,a 5=8, ∴a 3=a 1a 5=4,∴a 2·a 3·a 4=a 23·a 3=a 33=43=64.]在等比数列的有关运算中,常常涉及到次数较高的指数运算.若按常规解法,往往是建立a 1,q 的方程组,这样解起来很麻烦.通过本例可以看出:结合等比数列的性质进行整体变换,会起到化繁为简的效果.[跟进训练]2.在等比数列{a n }中,已知a 4+a 7=2,a 5a 6=-8,求a 1+a 10. [解] 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8. 联立⎩⎨⎧ a 4+a 7=2,a 4a 7=-8.可解得⎩⎨⎧ a 4=4,a 7=-2或⎩⎨⎧a 4=-2,a 7=4.当⎩⎨⎧a 4=4,a 7=-2时,q 3=-12,故a 1+a 10=a 4q 3+a 7q 3=-7; 当⎩⎨⎧a 4=-2,a 7=4时,q 3=-2,同理,有a 1+a 10=-7. 即a 1+a 10的值为-7.等比数列的设法与求解1.类比等差数列中相邻三项的设法,想一想:等比数列中的相邻三项如何设运算更方便?[提示] 可设为aq ,a ,aq 或a ,aq ,aq 2(q ≠0). 2.如果四个数成等比数列,如何设更方便运算? [提示] 可设为a q ,a ,aq ,aq 2或a q 3,aq ,aq ,aq 3(q ≠0).【例3】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.[解] 法一:设四个数依次为a -d ,a ,a +d ,(a +d )2a , 由条件得⎩⎪⎨⎪⎧a -d +(a +d )2a =16,a +(a +d )=12,解得⎩⎨⎧ a =4,d =4,或⎩⎨⎧a =9.d =-6.所以,当a =4,d =4时,所求四个数为0,4,8,16; 当a =9,d =-6时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法二:设四个数依次为2a q -a ,aq ,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧2a q -a +aq =16,aq +a =12.解得⎩⎨⎧a =8,q =2,或⎩⎪⎨⎪⎧a =3,q =13.当a =8,q =2时,所求四个数为0,4,8,16; 当a =3,q =13时, 所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.合理地设出所求数中的三个数,根据题意再表示出另一个数是解决这类问题的关键,一般地,三个数成等比数列,可设为aq ,a ,aq ;三个数成等差数列,可设为a -d ,a ,a +d .[跟进训练]3.三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则这三个数成等差数列,求这三个数.[解] 设三个数依次为aq ,a ,aq , ∵a q ·a ·aq =512,∴a =8. ∵⎝ ⎛⎭⎪⎫a q -2+(aq -2)=2a , ∴2q 2-5q +2=0, ∴q =2或q =12,∴这三个数为4,8,16或16,8,4.1.在数列{a n }中,a 2n =a n -k ·a n +k (n ,k ∈N +,n >k )是{a n }成等比数列的必要不充分条件.2.等比数列的常用性质:(1)如果m +n =k +l ,则有a m a n =a k a l ; (2)如果m +n =2k ,a m ·a n =a 2k ;(3)若m ,n ,p 成等差数列,a m ,a n ,a p 成等比数列;(4)在等比数列{a n }中,每隔k 项(k ∈N +)取出一项,按原来的顺序排列,所得的新数列仍为等比数列;(5)如果{a n },{b n }均为等比数列,且公比分别为q 1,q 2,那么数列⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫b n a n ,{|a n |}仍是等比数列,且公比分别为1q 1,q 1q 2,q 2q 1,|q 1|;(6)等比数列的项的对称性:在有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1=a 3·a n -2=….3.根据等比中项和等比数列的性质巧设等比数列中的项:当三个数成等比数列且知这三个数的积时,一般将这三个数设为aq ,a ,aq ;当有五个数成等比数列时,常设为a q 2,aq ,a ,aq ,aq 2.1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列D [因为a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.]2.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( ) A .±4 B .4 C .±14 D.14 A [a 4=a 1q 3=18×23=1,a 8=a 1q 7=18×27=16,∴a 4与a 8的等比中项为±16=±4.]3.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.7 [∵a 6a 10=a 28,a 3a 5=a 24,∴a 24+a 28=41. 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49.∵数列{a n }各项都是正数,∴a 4+a 8=7.]4.在递增等比数列{a n }中,a 1a 9=64,a 3+a 7=20,求a 11的值. [解] 在等比数列{a n }中, ∵a 1·a 9=a 3·a 7,∴由已知可得a 3·a 7=64且a 3+a 7=20. 联立得⎩⎨⎧ a 3=4,a 7=16,或⎩⎨⎧a 3=16,a 7=4.∵{a n }是递增等比数列,∴a 7>a 3. ∴取a 3=4,a 7=16, ∴16=4q 4,∴q 4=4. ∴a 11=a 7·q 4=16×4=64.。
人教版数学必修三教案古典概型

§3.2 古典概型§3.2.1 古典概型一、教材分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.二、教学目标1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;A包含的基本事件个数)(A=(2)掌握古典概型的概率计算公式:P总的基本事件个数2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、课时安排1课时五、教学设计(一)导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?.教师板书课题,为此我们学习古典概型思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽131=.,于是P(B)=为此我们学这13种情形之一时,事件B就发生抽到红心到红心2”,…,“K”452习古典概型.(二)推进新课、新知探究、提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是1. 都是出现的概率是相等的,随机事件,6(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典为什么??概型吗.因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1.因此1. =”)=P(“反面朝上P(“正面朝上”)21出现正面朝上所包含的基本事件的个数?. 即P(“出现正面朝上”)= 2基本事件的总数试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”).反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.1. =点“6”)“5点”)=P(()点“2”)=P(“3点”=P(“4点”)=P)(所以P“1点”=P(6, ,例如进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率11131++==. =点)(点)(P“出现偶数点”=P(“2”)+P“4点”+P(“6”)666623出现偶数点所包含的基本事件的个数?. )=”“P 即(出现偶数点6基本事件的总数古典概型计算任何事件的概率计算公式为:,可以概括总结出,因此根据上述两则模拟试验A所包含的基本事件的个数.)=P(A基本事件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.(三)应用示例思路1例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A包含的基本事件有1×3=3个,31?. P(A)=故279(2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B包含的基本事件有2×3=6个,故62?. P(B)=27912;3个矩形颜色都不同的概率为. 答:3个矩形颜色都相同的概率为99例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一问他答对的概率是多少?,个答案.即讨论这个问,,解决这个问题的关键搜集信息,交流讨论,教师引导活动:学生阅读题目,这都不满足古典概,.如果学生掌握或者掌握了部分考查内容题什么情况下可以看成古典概型,随机地选择了一个答案的情况下只有在假定学生不会做,等可能性,因此,型的第2个条件——.才可以化为古典概型、选择CB、选择4个:选择A、选择解:这是一个古典概型,因为试验的可能结果只有从而由的可能性是相等的.个,考生随机地选择一个答案是选择A,B,C,DD,即基本事件共有41所包含的基本事件的个数答对?=0.25.)=答对P(“”古典概型的概率计算公式得:4基本事件的总数:点评:古典概型解题步骤,搜集信息;(1)阅读题目,并用字母表示事件;(2)判断是否是等可能事件m;和事件A所包含的结果数(3)求出基本事件总数n m. 求出概率并下结论4)用公式P(A)=(n变式训练.两枚均匀硬币,求出现两个正面的概率1.}. 甲反乙反,甲反乙正,解:样本空间:{甲正乙正,甲正乙反. 故属古典概型这里四个基本事件是等可能发生的,1. n=4,m=1,P= 4.求出现的点数之和为奇数的概率2.一次投掷两颗骰子,,点第一颗骰子出现i”,用(i,j)记“解法一:设表示“出现点数之和为奇数A其中个基本事件组成等概样本空间,点”,i,j=1,2,…6.显然出现的36 第二颗骰子出现j1. P(A)=k=3×3+3×3=18,故包含的基本事件个数为2,,偶)奇),(偶,(奇,偶),(偶,(奇解法二:若把一次试验的所有可能结果取为:,奇)1P(A)=故. n=4,A包含的基本事件个数k=2,则它们也组成等概率样本空间.基本事件总数2.点数和为偶数点数和为奇数},也组成等解法三:若把一次试验的所有可能结果取为:{1. P(A)=1,故概率样本空间,基本事件总数n=2,A所含基本事件数为2注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),1(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=,错的原因就是它不是311,而P(一奇一偶)=.本例又告诉我们,(两个奇)等概率的.例如P=同一问题可取不同的42样本空间解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种??的概率是多少5向上的点数之和是(3).解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,41 . 由古典概型的概率计算公式可得P(A)=369例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码1. ”)=P(“试一次密码就能取到钱构成.所以100001的事件是小概率事件发生概率为,通常我们认为这样的事件在一次试验中是几乎不可10000能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A表示“抽出的2听饮料中有不合格产品”,A表示“仅第一次抽出的是不合格产品”,A仅第二次抽出的“表示21.是不合格产品”,A表示“两次抽出的都是不合格产品”,则A,A和A是互不相容的事件,且121122A=A ∪A∪A,从而P(A)=P(A)+P(A)+P(A).12221112因为A中的基本事件的个数为8,A中的基本事件的个数为8,A中的基本事件的个数1221882 =0.6. 所以P(A)=为2,全部基本事件的总数为30,3030302思路, 从中一次摸出两个球只白球,2只黑球,例1 一个口袋内装有大小相同的5只球,其中3 共有多少个基本事件?(1) (2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.号有如下基本事件(摸到1,24,5解:(1)分别记白球为1,2,3号,黑球号,从中摸出2只球,(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5). (1,2)表示):球用.10个基本事件因此,共有个基本事件是摸到两个白球(记且只有3(2)上述10个基本事件发生的可能性是相同的,3. A为事件),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为10变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A的结果有12种,因为抛两次得到的36种结121=. ,果是等可能出现的所以所求的概率为P(A)=336答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和1. 的倍数的概率为是33说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a,a和一件次品b的三件产品中,每次任取一件,每次取出后不放回,121连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a,a)和(a,b),(a,a),(a,b),(b,a),(b,a).其中小括号内左边的字母表示212211112211第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a,b),(a,b),(b,a),(b,a)], 2211111142=. A)=由4个基本事件组成,因而,P(事件A 63思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a,a)(a,a),(,a,b)(a,a),(a,a),,2111122112(a,b),(b,a),(b,b),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可112112以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a,b),11(a,b),(b,a),(b,a)], 2111124. =B),因而,P(事件B包含4个基本事件9点评:(1)在连续两次取出过程中,(a,b)与(b,a)不是同一个基本事件,因为先后1111顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以3种;设事件A为“连续3次都取正品”,则包含的基本事件共有10=10试验结果有10×10×383=0.512. ,P(A)=,因此8×8×8=8种310(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件336≈0.467. P(B)=6=336,所以”,则事件B包含的基本事件总数为8×7ד3B为件都是正品720解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为56≈0.467. P(B)=6÷8×7×6=56,因此120也可以看作是无顺,既可以看作是有顺序的,计算基本事件个数时,关于不放回抽样点评:序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.(四)知能训练本节练习1、2、3.(五)拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.2×6个,两面涂有色彩的有8×12个解:在1 000个小正方体中,一面涂有色彩的有8,三面384=0.384;1)有一面涂有色彩的概率为P=涂有色彩的有8个,∴(1100096=0.096;(2)有两面涂有色彩的概率为P=210008=0.008.=P(3)有三面涂有色彩的概率为31000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.(六)课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式A所包含的基本事件的个数.=P(A)基本事件的总数3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.(七)作业习题3.2 A组1、2、3、4.。
新人教版高中数学必修三教案(全册)

新人教版高中数学必修三教案(全册)第一章算法初步1.1算法与程序框图1.1 算法与程序框图(共3课时)1.1.1算法的概念(第1课时)【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义.【教学目标】1.理解算法的概念与特点;2.学会用自然语言描述算法,体会算法思想;3.培养学生逻辑思维能力与表达能力.【教学重点】算法概念以及用自然语言描述算法【教学难点】用自然语言描述算法【教学过程】一、序言算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、实例分析例1:写出你在家里烧开水过程的一个算法.解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.(以上算法是解决某一问题的程序或步骤)例2:给出求1+2+3+4+5的一个算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15.算法2 可以运用公式1+2+3+…+错误!未找到引用源。
=错误!未找到引用源。
直接计算 第一步:取错误!未找到引用源。
=5;第二步:计算错误!未找到引用源。
; 第三步:输出运算结果.(说明算法不唯一)例3:(课本第2页,解二元一次方程组的步骤)(可推广到解一般的二元一次方程组,说明算法的普遍性) 例4:用“待定系数法”求圆的方程的大致步骤是: 第一步:根据题意,选择标准方程或一般方程;第二步:根据条件列出关于错误!未找到引用源。
最新高中数学人教A版必修三教学案:第三章 第2节 古典概型含答案

最新人教版数学精品教学资料[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 125~P 130,回答下列问题.教材中的两个试验:(1)掷一枚质地均匀的硬币的试验;(2)掷一枚质地均匀的骰子的试验.(1)试验(1)中的基本事件是什么?试验(2)中的基本事件又是什么?提示:试验(1)的基本事件有:“正面朝上”、“反面朝上”;试验(2)的基本事件有:“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.(2)基本事件有什么特点?提示:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(3)古典概型的概率计算公式是什么?提示:P (A )=A 包含的基本事件的个数基本事件的总数. 2.归纳总结,核心必记(1)基本事件①定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件. ②特点:一是任何两个基本事件是互斥的;二是任何事件(除不可能事件)都可以表示成基本事件的和.(2)古典概型①定义:如果一个概率模型满足:(ⅰ)试验中所有可能出现的基本事件只有有限个;(ⅱ)每个基本事件出现的可能性相等.那么这样的概率模型称为古典概率模型,简称古典概型.②计算公式:对于古典概型,任何事件的概率为P (A )=A 包含的基本事件的个数基本事件的总数. [问题思考](1)若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗? 提示:不一定是,还要看每个事件发生的可能性是否相同,若相同才是,否则不是.(2)掷一枚不均匀的骰子,求出现点数为偶数点的概率,这个概率模型还是古典概型吗? 提示:不是.因为骰子不均匀,所以每个基本事件出现的可能性不相等,不满足特点(ⅱ).(3)“在区间[0, 10]上任取一个数,这个数恰为2的概率是多少?”这个概率模型属于古典概型吗?提示:不是,因为在区间[0,_10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型.[课前反思]通过以上预习,必须掌握的几个知识点:(1)基本事件的定义: ;(2)基本事件的特点: ;(3)古典概型的定义: ;(4)古典概型的计算公式: .掷一枚质地均匀的硬币两次,观察哪一面朝上.[思考1] 这个试验共有哪几种结果?基本事件总数有多少? 事件A ={恰有一次正面朝上}包含哪些试验结果?名师指津:共有正正、正反、反正、反反四种结果.基本事件有4个.事件A 包含的结果有:正反、反正.[思考2] 基本事件有什么特点?名师指津:基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生.讲一讲1.先后抛掷3枚均匀的壹分,贰分,伍分硬币.(1)求试验的基本事件数;(2)求出现“2枚正面,1枚反面”的基本事件数.[尝试解答](1)因为抛掷壹分,贰分,伍分硬币时,各自都会出现正面和反面2种情况,所以一共可能出现的结果有8种.可列表为:(2)从(1)中表格知,出现“2枚正面,1枚反面”的结果有3种,即(正,正,反),(正,反,正),(反,正,正).所以“2枚正面,1枚反面”的基本事件数为3.基本事件的两个探求方法(1)列表法:将基本事件用表格的形式表示出来,通过表格可以清楚地弄清基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.(2)树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目.练一练1.从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?解:所求的基本事件共有6个:即A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.观察图形,思考下列问题[思考1]某射击运动员随机地向一靶心进行射击,试验的结果有:命中10环,命中9环,…,命中1环和命中0环(即不命中),你认为这是古典概型吗?名师指津:试验的所有结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环(即不命中)的出现不是等可能的,这个试验不是古典概型.[思考2] 若一个试验是古典概型,它需要具备什么条件?名师指津:若一个试验是古典概型,需具备以下两点:(1)有限性:首先判断试验的基本事件是否是有限个,若基本事件无限个,即不可数,则试验不是古典概型.(2)等可能性:其次考查基本事件的发生是不是等可能的,若基本事件发生的可能性不一样,则试验不是古典概型.讲一讲2.某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6).(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.[尝试解答] (1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.(1)古典概型求法步骤①确定等可能基本事件总数n ;②确定所求事件包含基本事件数m ;③P (A )=m n. (2)使用古典概型概率公式应注意①首先确定是否为古典概型;②所求事件是什么,包含的基本事件有哪些.练一练2.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)基本事件总数;(2)事件“摸出2个黑球”包含多少个基本事件?(3)摸出2个黑球的概率是多少?解:由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},其中共有6个基本事件.(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共3个基本事件.(3)基本事件总数n=6,事件“摸出两个黑球”包含的基本事件数m=3,故P=1 2.讲一讲3.袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率;(3)求至少摸出1个黑球的概率.[思路点拨](1)可以利用初中学过的树状图写出;(2)找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;(3)找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.[尝试解答](1)用树状图表示所有的结果为所以所有不同的结果是ab,ac,ad,ae,bc,bd,be,cd,ce,de.(2)记“恰好摸出1个黑球和1个红球”为事件A,则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,所以P(A)=610=0.6,即恰好摸出1个黑球和1个红球的概率为0.6.(3)记“至少摸出1个黑球”为事件B,则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,所以P (B )=710=0.7, 即至少摸出1个黑球的概率为0.7.利用事件间的关系求概率在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P (A 1∪A 2∪A 3∪…∪A n )=P (A 1)+P (A 2)+…+P (A n )求得,或采用正难则反的原则,转化为求其对立事件,再用公式P (A )=1-P (A )(A 为A 的对立事件)求得.练一练3.先后掷两枚大小相同的骰子.(1)求点数之和出现7点的概率;(2)求出现两个4点的概率;(3)求点数之和能被3整除的概率.解:如图所示,从图中容易看出基本事件与所描点一一对应,共36个.(1)记“点数之和出现7点”为事件A ,从图中可以看出,事件A 包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )=636=16. (2)记“出现两个4点”为事件B ,从图中可以看出,事件B 包含的基本事件只有1个,即(4,4).故P (B )=136. (3)记“点数之和能被3整除”为事件C ,则事件C 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )=1236=13. ——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型.2.本节课要掌握以下几类问题:(1)基本事件的两种探求方法,见讲1.(2)求古典概型的步骤及使用古典概型概率公式的注意点,见讲2.(3)利用事件的关系结合古典概型求概率,见讲3.3.本节课的易错点有两个:(1)列举基本事件时易漏掉或重复,如讲1;(2)判断一个事件是否是古典概型易出错.课下能力提升(十八)[学业水平达标练]题组1基本事件的列举问题1.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是()A.3 B.4 C.5 D.6解析:选D事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.①写出这个试验的基本事件;②求出这个试验的基本事件的总数;③写出“第1次取出的数字是2”这一事件包含的基本事件.解:①这个试验的基本事件为(0,1),(0,2),(1,0),(1,2),(2,0),(2,1).②基本事件的总数为6.③“第1次取出的数字是2”包含以下2个基本事件:(2,0),(2,1).题组2简单古典概型的计算3.下列关于古典概型的说法中正确的是()①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=kn.A.②④B.①③④C.①④D.③④解析:选B根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.4.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶解析:选C 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.5.设a 是掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实根的概率为( )A.23B.13C.12D.512解析:选A 基本事件总数为6,若方程有两个不相等的实根则a 2-8>0,满足上述条件的a 为3,4,5,6,故P =46=23. 6.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.14解析:选A 所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个,仅有2次出现正面向上的有:(正,正,反),(正,反,正),(反,正,正),共3个.则所求概率为38. 7.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解:设4个白球的编号为1,2,3,4;2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=615=25. (2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.∴取出的两个球一个是白球,一个是红球的概率为P (B )=815. 题组3 较复杂的古典概型的计算8.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.解:(1)记“一次停车不超过1小时”为事件A ,“一次停车1到2小时”为事件B ,“一次停车2到3小时”为事件C ,“一次停车3到4小时”为事件D .由已知得P (B )=13,P (C +D )=512. 又事件A ,B ,C ,D 互斥,所以P (A )=1-13-512=14. 所以甲的停车费为6元的概率为14. (2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,所以所求概率为316. [能力提升综合练]1.下列是古典概型的是( )A .任意掷两枚骰子,所得点数之和作为基本事件时B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币首次出现正面为止解析:选C A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的基本事件是无限的,故B 不是;C 项满足古典概型的有限性和等可能性,故C 是;D 项中基本事件可能会是无限个,故D 不是.2.(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1解析:选B 5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种结果,分别是(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),恰有一件次品,有6种结果,分别是(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),设事件A ={恰有一件次品},则P (A )=610=0.6,故选B. 3.(2015·新课标全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C. 4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29 D.19解析:选D 分类讨论法求解.个位数与十位数之和为奇数,则个位数与十位数中必一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20个符合条件的两位数.(2)当个位为偶数时,有5×5=25个符合条件的两位数.因此共有20+25=45个符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19. 5.(2016·石家庄高一检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13. 答案:136.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.解析:用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc,2名都是女同学的选法为:ab ,ac ,bc ,故所求的概率为315=15. 答案:157.(2015·天津高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35. 8.(2014·山东高考)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150, 所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.。