管道阴极保护中的屏蔽问题(一)

合集下载

管道阴极保护中的屏蔽问题

管道阴极保护中的屏蔽问题

管道阴极保护中的屏蔽问题管道阴极保护是一种常见的防腐方式,可以有效地保护钢质管道不受腐蚀破损。

在阴极保护的过程中,屏蔽问题是一个需要注意的问题。

本文将介绍管道阴极保护中的屏蔽问题及其防治方法。

什么是屏蔽问题?在管道阴极保护的过程中,如果管道周围存在其他金属物质,如地下金属构件、接地设施等,这些金属物质就会对管道的阴极保护电流形成屏蔽效应,使得管道的阴极保护电流无法通过这些金属物质到达管道表面,从而导致管道腐蚀。

这就是所谓的屏蔽问题。

屏蔽问题的存在会影响管道的阴极保护效果,甚至会加速管道的腐蚀破坏,给管道安全稳定带来潜在隐患。

因此,必须认真对待管道阴极保护中的屏蔽问题。

屏蔽问题的原因屏蔽问题的原因有以下几点:1.金属物质存在于管道周围。

在管道敷设的过程中,可能会出现地下金属构件和接地设施与管道相邻紧靠的情况,这些金属物质会对管道的阴极保护电流形成屏蔽,从而导致阴极保护效果下降。

2.管道绝缘不良。

管道绝缘不良会导致管道表面与其他金属物质形成电耦合,形成电流的短路,使得管道的阴极保护电流无法到达需要保护的管道表面。

3.钢管内部异物导致的屏蔽。

如果管道内部存在杂物、水垢等异物,会导致内部的电阻不均匀,从而导致阴极保护电流无法均匀地分布到钢管表面,形成屏蔽效应。

屏蔽问题的防治措施为了避免管道阴极保护中的屏蔽问题,需要采取措施来预防和解决这个问题。

1. 优先选择地点在设计管道敷设方案时,应优先选择没有金属构件、接地设施等的地点,避免金属物质与管道相邻密集排列。

2. 防腐涂层材料的选择选择带耐电耦合性的防腐涂层材料,或选用不易引起阴极极化的无机材料。

这样可以降低管道绝缘不良的风险,避免管道与其他金属形成电低阻通路。

3. 维护管道内部的清洁及时清洗和维护管道内部的清洁,避免杂物、水垢等异物聚集在管道内部,影响管道阴极保护效果。

4. 采用多电极阴极保护采用多电极阴极保护可以有效地避免管道内部异物对阴极保护电流的屏蔽效应。

管道对阴极保护电流的屏蔽

管道对阴极保护电流的屏蔽

管道对阴极保护电流的屏蔽检查任何一个罐区、清管站、计量站,就会很容易发现一边是要求所有电器仪表接地一边是要求绝缘,比如储罐的油管安装绝缘接头,在罐体上引出的压力、温度变送器和储罐之间也安装绝缘接头,这样做的目的都是为了避免储罐通这些设施接地。

另一方面也会注意到储罐底板周边还有很多人为的接地点。

出现这种混乱状态的原因是因为各个专业之间缺少沟通,美誉协调和配合,这样的结果是安装很多不必要的设施。

建议站场内所有接地极均采用锌或者镀锌扁钢、圆钢,设计阴极保护系统时,增大容量,将所有接地极纳入阴极保护的范围,不再安装绝缘接头等绝缘设施。

绝缘设施和接地设施储罐阴极保护是最近十年来才在我们国家实行的防腐技术,对其保护效果还没有做过认真的调研,因此,有必要进行一次全面的调查。

对目前阴极保护的效果作出评估。

阴极保护和防雷接地牵扯到了阴保和电气两个专业,两套规范。

设计人员必须要进行必要的沟通交流,兼顾对方专业的利益。

目前采用的电气防雷接地规范以及阴极保护规范也要进行相应的修改,是设计人员在现场施工的时候有据可依。

管道在穿越公路或者铁路的时候,基于对地基的影响,普通情况下都需要安装金属套管。

金属套管对管道的阴极保护将产生不利的影响,而目前普遍采用的套管内安装牺牲阳极的做法也存在一定局限性。

管道对阴极保护电流的屏蔽对于长输管道大多数采用外加电流阴极保护的方式。

在套管穿越处一般情况下都会采用钢套管,这里的防腐蚀质量一般都会很差,或者在穿越的时候损坏很严重。

由于套管与主套管之间的空隙,阻碍了外加电流的流动,不能到达套管内主管道表面,也就是说,阴极保护电流受到屏蔽。

目前,普遍的做法是在套管中安装牺牲阳极,并将套管两端密封,防止土壤、水分金属套管,而这种方式也有一定的弊端。

套管与主套管之间没有短路套管内没有进水或者没有土壤外加阴极保护电流不能到达主套管表面。

管道表面如果有凝析水安装在主套管上的牺牲阳极会对管道起到一定的保护作用,由于凝析水的电阻率很高,其保护效果还需要进一步的研究。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送油气、水等液体或气体的重要通道,其保护是关系到国家能源安全和环境安全的关键问题。

阴极保护是一种有效的管道保护方法,主要是通过施加电场,使管道表面电位负化,从而减少管道金属的腐蚀速率,延长管道使用寿命。

本文将阐述长输管道的阴极保护原理、方法及故障分析。

一、阴极保护原理由于土壤中存在着各种离子,例如水、氯离子等,这些离子会形成电池,导致管道金属表面出现电位差,这种现象称为自然电位。

如果管道的自然电位低于一定的电位(通常为-0.85V),则管道处于负电位,就会发生金属的电化学腐蚀。

阴极保护的主要原理是通过施加外加电场,将管道表面电位负化,使得管道处于负电位,在靠近管道表面的电场区域内,电子从管道金属表面流向土壤中的正离子,使其发生还原反应,从而减少管道金属腐蚀速率。

1、电位调节法:通过在管道两端安装钛阳极和铁/铜阴极,以及控制钛阳极输出的电流来调节管道表面的电位,从而达到保护作用。

2、电流输出法:在管道保护系统的控制下,直接将电流输出到管道端部的阳极或在管道上部固定钛阳极来保护管道。

3、均匀分散法:通过在管道上均匀分布一定数量的阳极,使得管道表面的电位均匀调整到负电位,从而保护整个管道。

1、偏移现象:阴极保护系统在使用过程中,由于地下水流的影响,土壤的化学组成及导电性不均匀等因素,易出现管道阴极保护区域偏移的现象。

一般采用分析安装阳极的位置是否正确,调整阴阳极之间的距离和电位来解决偏移问题。

2、极化过度:在保护过程中,如果管道阴极保护电位过于负化,反而会引起金属氢化、内应力等问题,从而导致管道的损坏。

应当合理调整阴极保护的电位,避免出现极化过度的情况。

3、外来干扰:阴极保护系统如果受到外部电源干扰(例如电力系统、通信设备等),会导致保护系统失效,出现管道腐蚀。

一般应在设计阴极保护系统时,选取合适的接地点,采取防雷、防电磁干扰等措施来预防外来干扰。

综上所述,长输管道阴极保护技术是一项重要的保护措施,可有效减少管道的金属腐蚀速率,延长管道寿命。

输气管道阴极保护系统存在的问题及解决方法

输气管道阴极保护系统存在的问题及解决方法

输气管道阴极保护系统存在的问题及解决方法输气管道阴极保护系统是一种常用的防腐蚀措施,其作用是通过施加电流,使管道表面处于保护电位,从而减缓或防止管道的腐蚀。

然而,在实际应用中,输气管道阴极保护系统存在一些问题,本文将对这些问题进行分析,并提出相应的解决方法。

一、问题分析1. 阴极保护效果不佳输气管道阴极保护系统的主要目的是防止管道的腐蚀,但是在实际应用中,由于管道周围环境的复杂性,阴极保护效果往往不尽如人意。

例如,管道周围存在大量的金属结构物,这些结构物会影响阴极保护电流的分布,从而导致管道表面的一些区域无法得到有效的保护。

2. 阴极保护电流不稳定阴极保护电流的稳定性对于防腐蚀效果至关重要。

然而,在实际应用中,由于管道周围环境的变化,阴极保护电流往往会发生波动,从而导致管道表面的保护电位不稳定,无法达到预期的防腐蚀效果。

3. 阴极保护系统的维护成本高阴极保护系统需要定期进行检修和维护,以确保其正常运行。

然而,在实际应用中,由于管道的长度和分布范围较大,阴极保护系统的维护成本往往较高,给企业带来一定的经济压力。

二、解决方法1. 优化阴极保护系统设计为了解决阴极保护效果不佳的问题,可以通过优化阴极保护系统的设计来改善管道表面的保护效果。

例如,可以采用分段阴极保护的方式,将管道分成若干个段落,分别施加阴极保护电流,从而提高管道表面的保护效果。

2. 采用智能化阴极保护系统为了解决阴极保护电流不稳定的问题,可以采用智能化阴极保护系统。

智能化阴极保护系统可以根据管道周围环境的变化,自动调整阴极保护电流的大小和分布,从而保证管道表面的保护电位稳定。

3. 采用新型阴极保护材料为了降低阴极保护系统的维护成本,可以采用新型阴极保护材料。

新型阴极保护材料具有较长的使用寿命和较低的维护成本,可以有效降低企业的经济压力。

三、结论输气管道阴极保护系统是一种重要的防腐蚀措施,但是在实际应用中存在一些问题。

为了解决这些问题,可以通过优化阴极保护系统的设计、采用智能化阴极保护系统和采用新型阴极保护材料等方式来提高阴极保护效果,降低阴极保护系统的维护成本,从而保证输气管道的安全运行。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送石油、天然气等能源的重要设施,其安全运行需要关注防腐蚀和防止电化学腐蚀失效的问题。

阴极保护技术是一种保护长输管道金属的经济、有效的方法,本文将对长输管道阴极保护的原理、方法及故障的分析进行探讨。

一、阴极保护原理管道腐蚀的根本原因是电化学腐蚀,当管道作为阴极而周围环境当作阳极时,管道表面将出现金属的电子脱落,导致金属离子向外扩散,进而形成腐蚀。

阴极保护技术通过在管道表面制造负电位,使其成为静电阴极,从而减少或甚至消除电子脱落现象,从而防止或减缓管道腐蚀。

阴极保护主要包括直流阴极保护和交流阴极保护,其中直流阴极保护利用负电位防止管道腐蚀,交流阴极保护则通过改变管道表面的极性来防止腐蚀。

1. 阴极保护电流阴极保护电流是阴极保护的主要参数,它可以直接影响阴极保护的效果。

通常情况下,阴极保护电流的大小应该根据土壤电阻率和管道电流密度来确定,一般地说,管道的阴极保护电流应该保持在0.03~0.1A/m2之间。

阴极保护电源是阴极保护的核心,它通常包括直流阴极保护电源和交流阴极保护电源。

对于直流阴极保护电源,其一般需要提供相应的电流稳定性,可靠性以及有效的过流保护机制。

而对于交流阴极保护电源,其主要需要提供一定的非均匀电场分布能力,同时保证电源的电压和频率与管道周围环境相匹配。

3. 阴极保护绝缘节制阴极保护绝缘节制是一种保持管道电位稳定、减少腐蚀险情的技术。

阴极保护绝缘节制应能够有效地防止管道周围地下水的浸渍和电流干扰,同时保证管道电位的可靠性和稳定性。

一般地说,此类绝缘节制的材料应具备良好的腐蚀防护能力、良好的电绝缘性能以及耐高温、耐低温等特性。

阴极保护效果的检测是防止管道腐蚀以及其他电化学腐蚀失效的重要手段。

在阴极保护检测方面,根据管道的构造形式、使用环境以及技术特点等因素,在实际应用中常常采用电位测量、电阻率测量以及电流测量等多种检测手段。

这些检测手段在实际应用中的效果和精度均有相应的保障。

浅谈阴保原理

浅谈阴保原理

浅谈阴极保护中电流屏蔽的形成原因和解决办法(胜利油田胜利油建公司,山东刘景龙)【摘要】在长输管道系统中往往在存在电流屏蔽区域,此区域腐蚀相对严重,本文着重分析在长输管道施工中形成电流屏蔽的原因及解决方法。

The location where has current shield will be corroded very badly in the pipeline system,the purpose of this article is to analyze the reason of current shield and to find the solution.【关键词】原电池电流屏蔽负电位相对负电位游离离子1概述在长输管道修检过程中,往往发现在套管区域,混凝土固定墩及管道群密布的区域腐蚀比较严重,是造成油气泄漏的重灾区,给生产运行单位造成严重的经济损失及安全事故。

在本文中,笔者结合实际工作经验,谈一谈长输管道埋地管线腐蚀的原因,并从设计、施工、管理等方面对加强防腐管理,加强管道保护措施进行探讨。

2腐蚀原因及阴极保护原理2.1腐蚀的原因腐蚀分为电化学腐蚀和化学腐蚀,以钢铁为例:钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。

原因是在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。

在这些原电池里,铁是负极,碳是正极。

铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。

除了电化学腐蚀外,还存在化学腐蚀,化学腐蚀是两物体之间的直接腐蚀,不存在电子的移动,腐蚀速度缓慢。

2.2阴极保护的原理阴极保护是一种用于防止金属在电介质(海水、淡水及土壤等介质)中腐蚀的电化学保护技术,该技术的基本原理是对被保护的金属表面施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,腐蚀的阳极溶解过程就会得到有效抑制。

阴极保护中存在的问题及对策

阴极保护中存在的问题及对策

e-mail: corrtech@
QQ:120835909
5
2012-8-23
3、钢套管与主管道没有短路但进水的腐蚀
11
二、套管内有水或土壤,部分阴极保护电流穿过套管到达主管,为主管提供阴极保护,如果套管 防腐层良好,主管可能得不到充分保护;套管内壁发生腐蚀。
e-mail: corrtech@
QQ:120835909
11
2012-8-23
三、绝缘接头非保护侧的腐蚀
(GB-T21448,4.2.1.3)
主要内容 1. 绝缘接头的结构 2. 绝缘接头腐蚀原理 3. 预防绝缘接头腐蚀措施
23
e-mail: corrtech@
QQ:120835909
19
e-mail: corrtech@
QQ:120835909
2、如何解决阀室接地与阴极保护的矛盾
① 将电动头与阀体绝缘,仪器套管采用绝缘接 头绝缘。
② 采用活性材料做接地极,如锌包钢接地极或 牺牲阳极接地极。
③ 在接地极与所有设施之间安装直流去耦合器。
20
e-mail: corrtech@
QQ:120835909
10
2012-8-23
2、如何解决阀室接地与阴极保护的矛盾
采用镀锌扁钢 做接地极,在 最初时,对阴 极保护影响不 大。但要及时 投用阴极保护。
21
e-mail: corrtech@
QQ:120835909
2、如何解决阀室接地与阴极保护的矛盾
22
e-mail: corrtech@
④ 如果套管防腐层良好,则套管安装牺牲阳极,在保护套管 的同时,提供电流通路。
⑤ 套管内注满聚合物,该方式国内还没先例。

油气管道阴极保护系统常见问题及解决方法

油气管道阴极保护系统常见问题及解决方法

油气管道阴极保护系统常见问题及解决方法摘要:社会的日益发展进步加速了各行各业对能源的需求,而管道作为运输石油天然气的主要途径得到了快速发展。

深埋地下的钢质管道由于受到微生物以及土壤等因素的腐蚀,对人们的生命及财产安全产生了严重的威胁。

管道外加阴极保护和外防腐层作为钢质管道的主要防腐措施,目前,研究阴极保护故障问题的问题仍然比较少。

鉴于此,本文就油气管道阴极保护系统常见问题及解决方法展开探讨,以期为相关工作起到参考作用。

关键词:油气管道;阴极保护;杂散电流;牺牲阳极1、阴极保护常见故障及排除方法1.1、牺牲阳极故障分析由于牺牲阳极保护无需外部电源,而且安装维护费用低、对外界的干扰比较小,具有不占用其他建筑物以及无需征地的优点,经常将其用在管线建设过程中以及输气场内管线的临时保护。

阳极材料自身的性能直接决定着牺牲阳极的保护效果,目前,经常用到的牺牲阳极的材料有锌合金、铝合金以及镁合金这三类。

牺牲阳极的常见故障如下:(1)阳极的输出电流逐渐减小,无法满足保护点位要求。

导致这种现象存在的主要原因是环境污染对阳极产生了影响、阳极消耗大、阳极周围土壤干燥以及阳极/阴极连接线断开等。

(2)随着阳极输出电流的不断增加,保护物电位级化无法满足标准要求。

出现这种现象的主要原因是被保护体和相邻的金属物由于绝缘装置失效、环境改变以及绝缘层老化而导致土的充气量增加,水的含氧量也随之加大。

(3)阳极体受到了严重的腐蚀,但是,阳极已经无法正常运作[1]。

出现这种问题的主要原因是阳极成分不合理,在工作环境中出现了钝化现象;阳极局部受到了严重腐蚀;因阳极合金化不均匀而产生了局部腐蚀现象。

就以某天然气输气站的不同牺牲阳极测试数据进行分析,具体内容如表1所示。

表1某天然气输气站内牺牲阳极测试数据管道编号管道通电电位(CSE)/V管道断电电位(CSE)/V阳极开路电位(CSE)/V阳极输出电流/mA阳极类型投运时间/a1-0.79-0.64-0.1224.42锌合金102-0.73-0.65-1.1015.91锌合金103-0.941-0.838-1.1239.27锌合金104-0.946-0.835-1.11731.30锌合金105-1.15-0.959-1.59992.69锌合金56-0.975-0.957-1.605329.20锌合金5从表中内容可以得知,1、2、3、4号管道通电(或断电)电位比保护点位低,阳极保护水平相对较差;5号和6号管道点位合格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管道阴极保护中的屏蔽问题(一)
阴极保护和涂层相结合,是最经济有效的腐蚀控制措施。

该技术已在埋地输油、气管道上得到广泛应用。

该技术的原理是采取措施,迫使电流从介质中流向被保护管道。

然而,当管道周围有绝缘层或金属结构存在时,会影响阴极保护电流的流动,使管道得不到有效的阴极保护。

即施工出现了电流屏蔽。

目前,国内采用“管中管”进行防腐保温的长输管道,都不同程度的发生过腐蚀事故。

某些套管内的输油管和固定墩内的管道也存在着较为严重的腐蚀。

这种状况除了与施工质量控制不严有关外,阴极保护电流的屏蔽也是一个重要原因。

本文就绝缘层,套管,混凝土固定墩,区域阴极保护,以及罐底板阴极保护时的屏蔽问题进行了分析,以引起管道及储罐设计,施工,管理人员的重视. 1金属结构对管道的屏蔽
1.1管道穿越公路,铁路,以及河流时套管的屏蔽
在管道穿越公路,铁路,以及河流时,经常需要将输油管放在金属套管中。

以对管道进行附加保护,并认为,套管与输送管充分绝缘。

而笔者认为,采用套管时,将有以下情况发生:
(1)输送管与套管完全绝缘,套管与输送管的环型空间内没有电解液存在。

在这种情况下,阴极保护电流被完全屏蔽,但输送管仅受大气腐蚀.
(2)输送管与套管之间没有电气连接,但套管内有电解液或泥土。

此时,阴极保护电流从土壤中经过套管到达输送管,在这种情况下,输送管
以及套管的外壁会得到阴极保护,而套管的内壁因为排放电流而加快腐蚀.
(3)套管与输送管短路。

一旦套管与输送管发生短路,阴极保护电流沿套管通过接触点返回到输送管。

此时,如果套管与输送管之间有电解液,输送管将发生严重腐蚀;即使没有电解液,如果套管防腐层较差,也会泄漏大量电流,使套管附近的一段管道得不到充分保护.
因此,设计中应该尽量避免采用套管,而靠提高输送管的壁厚来提高强度。

在必须使用套管的情况下,应采取必要的密封措施,防止电解液进入,并保证套管与输送管的绝缘。

目前采用的在套管内安装牺牲阳极的方式增大了短路的机会。

因此,应采用必要的备用措施,一旦发生短路,有办法进行消除。

另外一种方式是在套管内注入有机物(如沥青胶)。

它是通过套管排气管注入的,可以防止水分进入套管。

1.2固定墩钢筋的屏蔽
当固定墩内的钢筋与输送管发生意外接触时,其影响相当于一个短路的套管。

阴极保护电流通过钢筋,并通过接触点返回管道。

尽管钢筋之间存在间隙,但密布的钢筋仍能阻断大部分阴极保护电流,使固定敦内的管道得不到充分保护。

因此,计中应减小钢筋与套管短路的可能性。

施工中也要经常检测钢筋与输送管的电阻。

1.3埋地金属结构的屏蔽
如果管道附近有其他埋地金属结构,如,其他管道,而且该金属结构防腐层很差,一部分阴极保护电流会沿该结构流动,并在靠近被保护
管道的地段流出,进入被保护管道。

由于该金属结构的屏蔽作用,可能会导致部分管段阴极保护不充分。

相关文档
最新文档