2017-2018年山东省青岛市胶州市初三上学期期末数学试卷及参考答案
2017-2018学年人教版初三数学第一学期期末试卷含答案

2017-2018学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P 在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2017-2018学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD 的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。
新青岛版九年级2017-2018d第一学期数学期末试题

新青岛版九年级数学上学期期末试题一、细心选一选1、下列说法“①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的有() A 、1个 B 、2个 C 、3个 D 、4个2、如图,点M 在BC 上,点N 在AM 上,CM =CN ,CMBM AN AM =,下列结论正确的是( ) A 、∆ABM ∽∆ACB B 、∆ANC ∽∆AMBC 、∆ANC ∽∆ACMD 、∆CMN ∽∆BCA3、下列计算错误的是( )A .sin60sin30sin30︒-︒=︒B .22sin 45cos 451︒+︒= C .sin 60cos60cos60︒︒=︒ D .cos30cos30sin 30︒︒=︒6、在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A .12B .22C .32D .337.如图5,⊙O 中,如果∠AOB =2∠COD ,那么( ).A .AB=DCB .AB<DC C .AB<2DCD .AB>2DC8.如图,△ABC 内接于⊙O ,AB 是直径,BC=4,AC=3,CD 平分∠ACB ,则弦AD 长为( )A .52 B .52C D .3 9.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。
受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是( )A .2200(1%)148a +=B .2200(1%)148a -= C .200(12%)148a -=D .2200(1%)148a -= 10.若的值为( ) A.12 B.6 C.9 D.1611.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠512.弧长等于半径的圆弧所对的圆心角是( ) A.0360π B. 0180π C. 090π D.60013.(2012•临沂)用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=914.如图,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,•连结OE ,OF ,DE ,DF ,那么∠EDF 等于( )A .40°B .55°C .65°D .70°15、(2013•兰州)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为( )A .3cmB .4cmC .5cmD .6cm16.方程022=-x x 的根是( ).A .2=xB .2-=xC .01=x ,22=xD .01=x ,22-=x17.⊙o 的直径为12㎝,弦AB 垂直平分半径OC ,则弦AB 的长为( )A .33㎝ B.6㎝ C.63㎝ D.123㎝18、.以3、4为两边的三角形的第三边长是方程040132=+-x x 的根,则这个三角形的周长为( )A.15或12B.12C.15D.以上都不对 二、耐心填一填. 19、在△ABC 中,AB=AC=10,BC=16,则tanB=_____。
2017-2018青岛版九年级第一学期期末复习数学试卷三

试卷第1页,总9页 绝密★启用前 2017-2018青岛版九年级第一学期期末复习 数学试卷三 做卷时间120分钟 满分150分 温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你保持镇静,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服些,祝你成功! 1.(本题4分)一元二次方程 2340x x ++= 的实数根为( ) A. 没有实数根B. x 1=-4,x 2=1 C. x 1=4,x 2=-1D. x 1=-4,x 2=-1 2.(本题4分)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是( ) A . B . C . D . 3.(本题4分)(2015•新疆)抛物线y=(x ﹣1)2+2的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2) D .(1,2)………订…※※线※※内※※…4.(本题4分)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=,则弦AB的长为().A.9cm B..92cm D.25.(本题4分)如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )A. 39πB. 29πC. 24πD. 19π6.(本题4分)如图,△ABC是一个圆锥的左视图,其中AB=AC=5,BC=8,则这个圆锥的侧面积是()A.12π B.16π C.20π D.36π7.(本题4分)已知1是关于x的一元二次方程()2110m x x-++=的一个根,则m的值为()A. 1B. -1C. 0D. 无法确定8.(本题4分)如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线试卷第2页,总9页试卷第3页,总9页 为( ) A . B . C . D . 9.(本题4分)如图,DE 是△ABC 的中位线,延长DE 至F 使EF=DE ,连接CF ,则:ADE S ∆BCFD S 四边形的值为( ) A. 1:3 B. 2:3 C. 2:5 D. 1:4 10.(本题4分)若点(1x ,1y )、(2x ,2y )和(3x ,3y )分别在反比例函数2y x =- 的图象上,且 1230x x x <<<,则下列判断中正确的是( ) A .123y y y << B .312y y y << C .231y y y << D .321y y y << 二、填空题(计20分) 11.(本题5分)一个扇形的半径为8cm ,弧长为163πcm ,则扇形的圆心角为. 12.(本题5分)反比例函数y =x k (k ≠0)的图象经过点(2,5),若点(1,-n )在图象上,则n =.……订……线※※内※※答※※……13.(本题5分)有一个正六面体,六个面上分别写有1---6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是__________.14.(本题5分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁的轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为_____cm2.三、解答题(计90分)15.(本题8分)用指定的方法解下列方程:(1)2x2﹣4x+1=0(公式法)(2)2x2+5x﹣3=0(配方法)16.(本题8分)东台市经济开发区某企业2014年收入2500万元,2016年收入3600万元.(1)求2014年至2016年该企业收入的年平均增长率;(2)根据(1)所得的平均增长率,预计2017年该企业收入多少万元试卷第4页,总9页试卷第5页,总9页17.(本题8分)已知:如图是破铁轮的轮廓,请用直尺和圆规作出它的圆心。
2017-2018学年上期期末考试九年级数学试题含答案

2017-2018学年上期期末考试九年级数学试题一.选择题(每小题3分,共24分)1.在1-,0,2这四个数中,最大的数是( ) A.-1 B.0 C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为( )A .1.42×105B .1.42×104C .142×103D .0.142×1064.如图,能判定ECAB 的条件是()A .B ACE ∠=∠ B .A ECD ∠=∠C .B ACB ∠=∠D .A ACE ∠=∠5.下列计算正确的是( ) A.32a a a ÷= B.()32628xx -= C.22423a a a += D.()222a b a b -=-6.在下列调查中,适宜采用调查的是( )A .了解全国中学生的视力情况B .了解九(1)班学生鞋子的尺码情况C .检测一批电灯泡的使用寿命D .调查郑州电视台《郑州大民生》栏目的收视率7.抛物线()212y x =-+的顶点坐标是( ) A.()1,2- B.()1,2-- C.()1,2- D.()1,28.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点F 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为( )秒时.ABF △和DCE △全等.A .1B .1或3C .1或7D .3或7二.填空题(每小题3分,共21分) 9.计算:2=-__________.10.已知四条线段a ,b ,c ,d 是成比例线段,即ac b d=,其中3cm,2cm,6cm a b c ===,则11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋子中搅匀,如果不放回的从中随机连续抽取两个,则这个两个球上的数字之和为偶数的概率是__________.12.如图,点A 是反比例函数k y x=图象上的一个动点,过点A 作AB x⊥轴,AC y ⊥轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k =_____________.13如图,已知函数2y x b =+与函数3y kx =-的图象交于点P ,则不等式32kx x b ->+的解集是_____________.14.如图,如果圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且40E ∠=,60F ∠=,那么A ∠=____________.15.如图,Rt ABC △中,90ACB ∠=,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点'B 处,两条折痕与斜边AB 分别交于点E 、F ,则线段'B F 的长为___________.三.解答题(本大题共8个小题,共75分)16.(本题8分) 先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中x 是方程220x x +=的解。
2017-2018学年九年级数学上期末试卷(青岛市市南区含答案解析)

2017-2018学年山东省青岛市市南区九年级(上)期末数学试卷一.选择题(本题满分24分,共有8道小题,每小题3分)1.一元二次方程x2=2x的根是()A.0B.2C.0和2D.0和﹣22.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠04.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2B.y=(x+2)2﹣2C.y=x2+2D.y=x2﹣25.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC 在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)6.如图,反比例函数和正比例函数y2=k2x的图象都经过点A(﹣1,2),若y1>y2,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>17.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3B.1.5C.D.8.抛物线y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:从上表可知,下列说法正确的个数是()①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,﹣2);③抛物线的对称轴是:x=1;④在对称轴左侧,y随x增大而增大.A.1B.2C.3D.4二.填空题(本题满分18分,共有6道小题,每小题3分)9.在Rt△ABC中,∠C=90°,sin A=,则tan A=.10.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.11.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,且AH=2HB,BC=5HB,则的值为.13.如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则tan∠EGB等于.14.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.作图题(本题满分4分)15.用圆规、直尺作围,不写作法,但要保留作围痕迹.如图,已知∠α,线段b,求作:菱形ABCD,使∠ABC=∠α,边BC=b.四.解答题(本大题满分74分,共有9道小题)16.(8分)解下列方程:(1)x2﹣5x+2=0(2)2(x﹣3)2=x(x﹣3)17.(6分)小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.18.(6分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为∠α=48°,∠β=65°,矩形建筑物宽度AD=20m,高度DC=33m.计算该信号发射塔顶端到地面的高度FG(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)19.(6分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为 1.8m,求路灯的高CD的长.20.(8分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC 分别为线段,CD为双曲线的一部分):(1)分别求出线段AB和曲线CD的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?21.(8分)如图,在△ABC中,点D,E分别是边AB和AC的中点,过点C作CF ∥AB,交DE的延长线于点F,连接AF,BF.(1)求证:△ADE≌△CFE;(2)若∠AFB=90°,试判断四边形BCFD的形状,并加以证明.22.(10分)某水果店销售某种水果,原来每箱售价60元,每星期可卖200箱,为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价x元,每星期的销售量为y箱.(1)求y与x之间的函数关系式:(2)当销售量不低于400箱时,每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?23.(10分)[归纳探究]把长为n(n为正整数)个单位的线段,切成长为1个单位的线段,允许边切边调动,最少要切多少次?我们可以先从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.不妨假设最少能切m次,我们来探究m与n之间的关系.如图,当n=1时,最少需要切0次,即m=0.如图,当n=2时,从线段中间最少需要切1,即m=1.如图,当n=3时,第一次切1个单位长的线段,第二次继续切剩余线段1个单位长即可,最少需要切2次,即m=2.如图,当n=4时,第一次切成两根2个单位长的线段,再调动重叠切第二次即可,最少需要切2次,即m=2.如图,当n=5时,第一次切成2个单位长和3个单位长的线段.将两根线段适当调动重叠,再切二次即可,最少需要切3次,即m=3.仿照上述操作方法,请你用语言叙述,当n=16时,所需最少切制次数的方法,如此操作实验,可获得如下表格中的数据:当n=1时,m=0.当1<n≤2时,m=1.当2<n≤4时,m=2.当4<n≤8时,m=3.当8<n≤16时,m=.…根据探究请用m的代数式表示线段n的取值范围:当n=1180时,m=[类比探究]由一维的线段我们可以联想到二维的平面,类比上面问题解决的方法解决如下问题.把边长n(n为正整数)个单位的大正方形,切成边长为1个单位小正方形,允许边切边调动,最少要切多少次?不妨假设最少能切m次,我们来探究m与n之间的关系.通过实验观察:当n=1时,从行的角度分析,最少需要切0次,从列的角度分析,最少需要切0次.最少共切0,即m=0.当n=2时,从行的角度分析,最少需要切1次,从列的角度分析,最少需要切1次,最少共切2,当1<n≤2时,m=2.当n=3时,从行的角度分析,最少需要切2次,从列的角度分析,最少需要切2次,最少共切4,当2<n≤4时,m=4.…当n=8时,从行的角度分析,最少需要切3次,从列的角度分析,最少需要切3次,最少共切6,当4<n≤8时,m=6.当8<n≤16时,m=…根据探究请用m的代数式表示线段n的取值范围:[拓广探究]由二维的平面我们可以联想到三维的立体空间,类比上面问题解决的方法解决如下问题.问题(1):把棱长为4个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次.问题(2):把棱长为8个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次,问题(3):把棱长为n(n为正整数)个单位长的大正方体,切成边长为1个单位小正方体,允许边切边调动,最少要切次.请用m的代数式表示线段n的取值范围:.24.(12分)如图,在平行四边形ABCD中,AC⊥BC,AB=10.AC=6.动点P在线段BC上从点B出发沿BC方向以每秒1个单位长的速度匀速运动;动点Q在线段DC上从点D出发沿DC的力向以每秒1个单位长的速度匀速运动,过点P作PE⊥BC.交线段AB于点E.若P、Q两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.(1)当t为何值时,QE∥BC?(2)设△PQE的面积为S,求出S与t的函数关系式:(3)是否存在某一时刻t,使得△PQE的面积S最大?若存在,求出此时t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使得点Q在线段EP的垂直平分线上?若存在,求出此时t 的值;若不存在,请说明理由.2017-2018学年山东省青岛市市南区九年级(上)期末数学试卷参考答案与试题解析一.选择题(本题满分24分,共有8道小题,每小题3分)1.一元二次方程x2=2x的根是()A.0B.2C.0和2D.0和﹣2【分析】根据一元二次方程的特点,用提公因式法解答.【解答】解:移项得,x2﹣2x=0,因式分解得,x(x﹣2)=0,解得,x1=0,x2=2,故选:C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选:B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.4.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2B.y=(x+2)2﹣2C.y=x2+2D.y=x2﹣2【分析】先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:抛物线y=(x+1)2的顶点坐标为(﹣1,0),∵向下平移2个单位,∴纵坐标变为﹣2,∵向右平移1个单位,∴横坐标变为﹣1+1=0,∴平移后的抛物线顶点坐标为(0,﹣2),∴所得到的抛物线是y=x2﹣2.故选:D.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.5.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC 在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)【分析】由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,利用相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比为1:2,又由点B的坐标为(﹣4,6),即可求得答案.【解答】解:∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC,∵矩形OA′B′C′的面积等于矩形OABC面积的,∴位似比为:1:2,∵点B的坐标为(﹣4,6),∴点B′的坐标是:(﹣2,3)或(2,﹣3).故选:D.【点评】此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用.6.如图,反比例函数和正比例函数y2=k2x的图象都经过点A(﹣1,2),若y1>y2,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>1【分析】易得两个交点坐标关于原点对称,可求得正比例函数和反比例函数的另一交点,进而判断在交点的哪侧相同横坐标时反比例函数的值都大于正比例函数的值即可.【解答】解:根据反比例函数与正比例函数交点规律:两个交点坐标关于原点对称,可得另一交点坐标为(1,﹣2),由图象可得在点A的右侧,y轴的左侧以及另一交点的右侧相同横坐标时反比例函数的值都大于正比例函数的值;∴﹣1<x<0或x>1,故选D.【点评】用到的知识点为:正比例函数和反比例函数的交点关于原点对称;求自变量的取值范围应该从交点入手思考.7.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3B.1.5C.D.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=BC=AB•tan30°=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,则S=EC•AD=,△AEC故选:D.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.8.抛物线y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:从上表可知,下列说法正确的个数是()①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,﹣2);③抛物线的对称轴是:x=1;④在对称轴左侧,y随x增大而增大.A.1B.2C.3D.4【分析】③由点(﹣1,﹣2)、(0,﹣2)在抛物线y=ax2+bx+c上结合抛物线的对称性,即可得出抛物线的对称轴为直线x=﹣,结论③错误;①由抛物线的对称轴及抛物线与x轴一个交点的坐标,即可得出抛物线与x轴的另一交点为(﹣2,0),结论①正确;②根据表格中数据,即可找出抛物线与y轴的交点为(0,﹣2),结论②正确;④根据表格中数据结合抛物线的对称轴为直线x=﹣,即可得出在对称轴左侧,y随x增大而减小,结论④错误.综上即可得出结论.【解答】解:③∵点(﹣1,﹣2)、(0,﹣2)在抛物线y=ax2+bx+c上,∴抛物线的对称轴为直线x=﹣,结论③错误;①∵抛物线的对称轴为直线x=﹣,∴当x=﹣2和x=1时,y值相同,∴抛物线与x轴的一个交点为(﹣2,0),结论①正确;②∵点(0,﹣2)在抛物线y=ax2+bx+c上,∴抛物线与y轴的交点为(0,﹣2),结论②正确;④∵﹣>﹣2>﹣,抛物线的对称轴为直线x=﹣,∴在对称轴左侧,y随x增大而减小,结论④错误.故选:B.【点评】本题考查了抛物线与x轴的交点以及二次函数的性质,逐一分析四条结论的正误是解题的关键.二.填空题(本题满分18分,共有6道小题,每小题3分)9.在Rt△ABC中,∠C=90°,sin A=,则tan A=.【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,运用三角函数的定义解答.【解答】解:由sin A==知,可设a=3x,则c=5x,b=4x.∴tan A===.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.10.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有15个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.【解答】解:∵共试验400次,其中有240次摸到白球,∴白球所占的比例为=0.6,设盒子中共有白球x个,则=0.6,解得:x=15,故答案为:15.【点评】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.11.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为50(1+x)+50(1+x)2=120.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产120台”,即可列出方程.【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故答案是:50(1+x)+50(1+x)2=120.【点评】本题考查了由实际问题抽象出一元二次方程,可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,且AH=2HB,BC=5HB,则的值为.【分析】求出AB:BC,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:设BH=a,则AH=2a,BC=5a,AB=AH+BH=3a,∴AB:BC=3a:5a=3:5,∵l1∥l2∥l3,∴==,故答案为.【点评】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.13.如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则tan∠EGB等于.【分析】根据翻折的性质可得DF=EF,设EF=x,表示出AF,然后利用勾股定理列方程求出x,从而得到AF、EF的长,再求出△AEF和△BGE相似,根据相似三角形对应边成比例列式求出BG,然后根据解直角三角形列式计算即可得解.【解答】解:由翻折的性质得,DF=EF,设EF=x,则AF=6﹣x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴=,即=,解得BG=4,∴tan∠EGB=.故答案为:.【点评】本题考查了翻折变换的性质,勾股定理,相似三角形的判定与性质,熟记性质并求出△AEF的各边的长,然后利用相似三角形的性质,求出△EBG的各边的长是解题的关键.14.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走27个小正方体.【分析】留下靠墙的正方体,以及墙角处向外的一列正方体,依次数出搬走的小正方体的个数相加即可.【解答】解:第1列最多可以搬走9个小正方体;第2列最多可以搬走8个小正方体;第3列最多可以搬走3个小正方体;第4列最多可以搬走5个小正方体;第5列最多可以搬走2个小正方体.9+8+3+5+2=27个.故最多可以搬走27个小正方体.故答案为:27.【点评】本题考查了组合体的三视图,解题的关键是依次得出每列可以搬走小正方体最多的个数,难度较大.三.作图题(本题满分4分)15.用圆规、直尺作围,不写作法,但要保留作围痕迹.如图,已知∠α,线段b,求作:菱形ABCD,使∠ABC=∠α,边BC=b.【分析】先作∠MBN=∠α,再在BM和BN上分别截取BA=b,BC=b,然后分别一点A、C为圆心,b为半径画弧,两弧相交于点D,则四边形ABCD满足条件.【解答】解:如图,菱形ABCD为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四.解答题(本大题满分74分,共有9道小题)16.(8分)解下列方程:(1)x2﹣5x+2=0(2)2(x﹣3)2=x(x﹣3)【分析】(1)公式法求解可得;(2)因式分解法求解可得.【解答】解:(1)∵a=1、b=﹣5,c=2,∴△=25﹣4×1×2=17>0,则x=;(2)∵2(x﹣3)2﹣x(x﹣3)=0,∴(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得:x=3或x=6.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键17.(6分)小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去. (1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)根据题意,我们可以画出如下的树形图:或者:根据题意,我们也可以列出下表:从树形图(表)中可以看出,所有可能出现的结果共有16个,这些结果出现的可能性相等.而和为偶数的结果共有6个,所以小敏看比赛的概率P (和为偶数)==.(2)哥哥去看比赛的概率P (和为奇数)=1﹣=,因为<,所以哥哥设计的游戏规则不公平;如果规定点数之和小于等于10时则小敏(哥哥)去,点数之和大于等于11时则哥哥(小敏)去.则两人去看比赛的概率都为,那么游戏规则就是公平的.或者:如果将8张牌中的2、3、4、5四张牌给小敏,而余下的6、7、8、9四张牌给哥哥,则和为偶数或奇数的概率都为,那么游戏规则也是公平的.(只要满足两人手中点数为偶数(或奇数)的牌的张数相等即可.)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为∠α=48°,∠β=65°,矩形建筑物宽度AD=20m,高度DC=33m.计算该信号发射塔顶端到地面的高度FG(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【分析】将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识求得线段FG的长即可.【解答】解:如图,延长AD交FG于点E.(1分)在Rt△FCG中,tanβ=,∴CG=.在Rt△FAE中,tanα=,∴AE=.∵AE﹣CG=AE﹣DE=AD,∴﹣=AD.即﹣=AD.∴FG==115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.【点评】本题考查了仰角问题,解决此类问题的关键是正确的将仰角转化为直角三角形的内角并选择正确的边角关系解直角三角形.19.(6分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为 1.8m,求路灯的高CD的长.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即=,解得:x=5.4.经检验,x=5.4是原方程的解,∴路灯高CD为5.4米.【点评】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.20.(8分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC 分别为线段,CD为双曲线的一部分):(1)分别求出线段AB和曲线CD的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【分析】(1)分别从图象中找到其经过的点,利用待定系数法求得函数的解析式即可;(2)根据上题求出的AB和CD的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(3)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.。
初中数学2017-2018第一学期期末九数答案

2017—2018学年度第一学期期末教学质量检测九年级数学答案一、选择题:二、填空题:三、解答题:20.解:(1)∵关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=32﹣4(1﹣m)>0,………………………………………2分即5+4m>0,解得:m>﹣.………………………………………4分∴m的取值范围为m>﹣.(2)∵m为负整数,且m>﹣,∴m=﹣1 (6)分将m=﹣1代入原方程得:x2+3x+2=0,解得:x1=﹣1,x2=﹣2.………………………………………………………9分故当m=﹣1时,此方程的根为x1=﹣1和x2=﹣2.21.解:(1)根据题意得:3÷15%=20(人)∴参赛学生共20人……………………………………………………………2分B等级人数5人图略…………………………………………………………3分(2)40,72 ………………………………………………………………………5分……………………………………………………………………………………8分所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生== ………………………………………………………9分 22.解:(1)在Rt△ACE中,cos 22°=ACCE………………………………………………2分 ∴AC = 22cos CE=93.05.22≈24.2m ………………………………………………………4分 答:彩旗的连接线AC 的长是24.2m.(2) 在Rt△ACE 中,tan 22°=CEAE…………………………………………………………………6分 ∴AE =CE ·tan 22° =22.5×0.4 =9m ……………………………………………………………………8分 ∴AB =AE+BE =9+3=12m ………………………………………………………9分23.解:(1)B (3,b ),C (4,b +1) …………………………………………………2分(2)∵双曲线ky x过点B (3,b )和D (2,b +1) ∴3b =2(b+1)…………………………………………………………… 3分解得b=2,…………………………………………………………………4分∴B点坐标为(3,2),D点坐标(2,3)………………………………5分把B点坐标(3,2)代入kyx=,解得k=6;……………………………6分∴当点A(1,b)在双曲线yx=,得到b =4……………………………7分当点C(4,b+1)在双曲线4yx=,得到b=0…………………………8分∴b的取值范围0≤b≤4 ……………………………………………………9分24.证明(1)∵△ABC∽△DEC,CA=CB,∴CE=CD,∠ACB=∠ECD,……………………………………………1分∴∠ACE=∠BCD在△ACE和△BCD中,CA=CB,CE=CD,∠ACE=∠BCD,∴△ACE ≌△BCD .…………………………………………………………3分∴AE =BD . …………………………………………………………………4分 (2)∵△ACE ≌△BCD . ∴∠AEC =∠BDC∵∠DOC =∠EOB ,∴△COD ∽△BOE . ………………………………………………………6分(3)∵△BOE ∽△COD . ∴EOCOBE CD =………………………………………………………………7分 ∵CD =10,BE =5 ∴EOCO =510即12=EO CO …………………………………………………8分 ∵CE =CD=10∴320103232=⨯==CE CO …………………………………………10分25.解:(1)由图像可知,当28≤x ≤188时,V 是x 的一次函数,设函数解析式为V =kx +b ……………………………1分则⎩⎨⎧=+=+01888028b k b k ……………………………………………………………2分 解得⎪⎩⎪⎨⎧=-=9421b k所以3分(3)当V ≥50时,包含V =80,由函数图象可知,当28<x ≤88时,P 随x 的增大而增大,即当x =88时,P 取得最大值,所以当x =88时,P 取得最大为4400.………………………………………10分26.解:(1)24 ………………………………………2分(2)①连接OA 、OF ,由题意得,∠NAD =30°,∠DAM =30°, 故可得∠OAM =30°,则∠OAF =60°, 又∵OA =OF ,∴△OAF 是等边三角形,∵OA =4,∴AF =OA =4;……………………………5分 ②连接B 'F ,此时∠NAD =60°, ∵AB '=8,∠DAM =30°, ∴AF =AB 'cos∠DAM =34238=⨯; ……………………………………………7分此时DM 与⊙O 的位置关系是相离; 过点O 作OE ⊥DM , ∴OE =OM cos∠MOE ∵AM =331623830cos 0==AD 图18-3∴OE =OMcos∠MOE =43282343316>-=⨯⎪⎪⎭⎫⎝⎛- ………………………9分 ∴DM 与⊙O 的位置关系是相离…………………………………………………10分③90° …………………………………………………………………………12分备用图E备用图。
2017-2018学年山东省青岛市九年级(上)期末数学试卷

2017-2018学年山东省青岛市九年级(上)期末数学试卷一、选择题:本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表中.1.从正面观察如图的两个物体,看到的是()A.B.C.D.2.已知,那么=()A.B.C.D.3.一元二次方程x2﹣9=0的根为()A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x1=0,x2=34.反比例函数y=的图象在第一、三象限,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<15.下列命题中,不正确的是()A.菱形的四条变相等B.平行四边形邻边相等C.对角线相等的平行四边形是矩形D.正方形对角线相等且互相垂直平分6.已知点A(2,3)在函数y=ax2﹣x+1的图象上,则a等于()A.﹣1 B.1 C.2 D.﹣27.2014年四川旅游局公布了四川各城市宣传语中英文对照,成华区的宣传口号中有这样一句:“生态城区,现代成华”,它的英文宣传语为“Ecological District,Modem Chenhua”.在路边一块由这个32个英文字母牌拼成的宣传栏上,一只小鸟停留在字母“o”的字母牌上的概率为()A.B.C.D.8.如图,在△ABC中,AC=1,BC=2,AB=,则cosB的值是()A. B.C.2 D.9.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=12010.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>311.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为()A.10% B.31% C.13% D.11%12.如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则BD的值()A.2 B.C. D.513.已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2) C.(,2)D.(2,)二、填空题(本题5个小题,每小题3分,共15分;请你将答案填写在题目中的横线上)15.边长为1的正六边形的边心距是.16.计算:sin30°+cos30°•tan60°=.17.从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t ﹣5t2,那么小球抛出秒后达到最高点.18.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为.19.如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为.三、解答题(本题共7个小题,共63分;请将解答过程写在答题纸每题规定的区域内)20.已知x=﹣2是关于x的方程2x2+ax﹣a2=0的一个根,求a的值.21.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.22.为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)23.在平面直角坐标系中,已知反比例函数y=的图象经过点A,点O是坐标原点,OA=2且OA 与x轴的夹角是60°.(1)试确定此反比例函数的解析式;(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.24.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)25.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.26.如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.2017-2018学年山东省青岛市九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表中.1.从正面观察如图的两个物体,看到的是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一个图为矩形,第二个图形为正方形.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.已知,那么=()A.B.C.D.【考点】比例的性质.【分析】根据合比性质:=⇔=,可得答案.【解答】解:由合比性质,得=,故选:A.【点评】本题考查了比例的性质,利用合比性质是解题关键.3.一元二次方程x2﹣9=0的根为()A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程-因式分解法;解一元一次方程.【专题】计算题.【分析】首先把方程(注意方程的右边是0)的左边分解因式(x﹣3)(x+3),让每个因式等于0,解这两个一元一次方程即可.【解答】解:x2﹣9=0,(x﹣3)(x+3)=0,x﹣3=0或x+3=0,解得:x1=3,x2=﹣3.故选C.【点评】本题主要考查了因式分解法解一元二次方程,解此题的关键是把一元二次方程转化成一元一次方程,用的方法是因式分解法.4.反比例函数y=的图象在第一、三象限,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1【考点】反比例函数的性质.【分析】根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵反比例函数y=的图象在第一、三象限,∴m﹣1>0,解得m>1.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.5.下列命题中,不正确的是()A.菱形的四条变相等B.平行四边形邻边相等C.对角线相等的平行四边形是矩形D.正方形对角线相等且互相垂直平分【考点】命题与定理.【分析】根据菱形的性质对A进行判断;根据平行四边形的性质对B进行判断;根据矩形的判定方法对C进行判断;根据正方形的性质对D进行判断.【解答】解:A、菱形的四条边相等,所以A选项为真命题;B、平行四边形对边相等,所以B选项为假命题;C、对角线相等的平行四边形是矩形,所以C选项为真命题;D、正方形对角线相等且互相垂直平分,所以D选项为真命题.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.已知点A(2,3)在函数y=ax2﹣x+1的图象上,则a等于()A.﹣1 B.1 C.2 D.﹣2【考点】二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【分析】根据二次函数图象上点的坐标特点,把A点的坐标直接代入函数关系式,解关于a的方程即可.【解答】解:∵点A(2,3)在函数y=ax2﹣x+1的图象上,∴3=a•4﹣2+1,a=1.故选:B.【点评】此题主要考查了二次函数图象上点的坐标特点,题目比较基础,关键是正确地进行代入运算.7.2014年四川旅游局公布了四川各城市宣传语中英文对照,成华区的宣传口号中有这样一句:“生态城区,现代成华”,它的英文宣传语为“Ecological District,Modem Chenhua”.在路边一块由这个32个英文字母牌拼成的宣传栏上,一只小鸟停留在字母“o”的字母牌上的概率为()A.B.C.D.【考点】概率公式.【分析】由英文宣传语为“Ecological District,Modem Chenhua”,共32个英文字母,其中“o”的字母出现3次,直接利用概率公式求解即可求得答案.【解答】解:∵英文宣传语为“Ecological District,Modem Chenhua”,共32个英文字母,其中“o”的字母出现3次,∴小鸟停留在字母“o”的字母牌上的概率为:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,在△ABC中,AC=1,BC=2,AB=,则cosB的值是()A. B.C.2 D.【考点】锐角三角函数的定义.【分析】根据余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:A.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=120【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产120台”,即可列出方程.【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选D.【点评】本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.10.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3【考点】抛物线与x轴的交点.【专题】计算题.【分析】根据抛物线与x轴的交点坐标及对称轴求出它与x轴的另一交点坐标,求当y<0,x的取值范围就是求函数图象位于x轴的下方的图象相对应的自变量x的取值范围.【解答】解:由图象知,抛物线与x轴交于(﹣1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∵y<0时,函数的图象位于x轴的下方,且当﹣1<x<3时函数图象位于x轴的下方,∴当﹣1<x<3时,y<0.故选B.【点评】本题考查了二次函数的图象的性质及学生的识图能力,是一道不错的考查二次函数图象的题目.11.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为()A.10% B.31% C.13% D.11%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设11、12月的月平均增长率为x,则11月份的产量为100(1+x),12月份的产量为100(1+x)2,根据两月的为231吨,建立方程求出其解即可.【解答】解:设11、12月的月平均增长率为x,由题意,得100(1+x)+100(1+x)2=231,解得:x1=﹣3.1(舍去),x2=0.1.故选A.【点评】本题考查了增长率问题的数量关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.12.如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则BD的值()A.2 B.C. D.5【考点】菱形的性质;解直角三角形.【分析】直接利用菱形的性质结合锐角三角函数关系得出AD,AE的长,进而利用勾股定理得出BD 的长.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵DE⊥AB,cosA=,∴设AE=3x,则AD=5x,故BE=2x,∵BE=2,∴x=1,故AB=AD=5,则DE=4,故BD==2.故选:C.【点评】此题主要考查了菱形的性质以及解直角三角形,正确得出AD的长是解题关键.13.已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【专题】数形结合.【分析】利用反比例函数的性质及反比例函数的图象上的点的坐标特征对每个小题逐一判断后即可确定正确的选项.【解答】解:①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故正确;②在每个分支上y随x的增大而增大,正确;③若点A(﹣1,a)、点B(2,b)在图象上,则a>b,错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确,故选:B.【点评】本题考查了反比例函数的性质及反比例函数的图象上的点的坐标特征,解题的关键是熟练掌握其性质,难度不大.14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2) C.(,2)D.(2,)【考点】二次函数综合题.【专题】综合题.【分析】首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;【解答】解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.【点评】本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可.二、填空题(本题5个小题,每小题3分,共15分;请你将答案填写在题目中的横线上)15.边长为1的正六边形的边心距是.【考点】正多边形和圆.【分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM 的长,根据勾股定理求出即可.【解答】解:连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=360°÷6=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=1,∵OM⊥AB,∴AM=BM=,在△OAM中,由勾股定理得:OM==.故答案为:.【点评】本题主要考查对正多边形与圆,勾股定理,等边三角形的性质和判定等知识点的理解和掌握,能求出OA、AM的长是解此题的关键.16.从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t ﹣5t2,那么小球抛出3秒后达到最高点.【考点】二次函数的应用.【分析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=30t﹣5t2的顶点坐标即可.【解答】解:h=﹣5t2+30t,=﹣5(t2﹣6t+9)+45,=﹣5(t﹣3)2+45,∵a=﹣5<0,∴图象的开口向下,有最大值,=45;当t=3时,h最大值即小球抛出3秒后达到最高点.故答案为:3.【点评】考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果,注意利用配方法解决问题.17.计算:sin30°+cos30°•tan60°=2.【考点】特殊角的三角函数值.【分析】分别把特殊角的三角函数值代入,然后再计算即可.【解答】解:原式=+•==2,故答案为:2.【点评】此题主要考查了特殊角的三角函数,关键是掌握sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.18.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为﹣6.【考点】反比例函数图象上点的坐标特征;菱形的性质.【分析】先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.19.如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为9.【考点】相似三角形的判定与性质;等边三角形的性质.【分析】由∠ADE=60°,可证得△ABD∽△DCE;可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长.【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=AB﹣3;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE;∴,即;解得AB=9.故答案为:9.【点评】此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD∽△DCE 是解答此题的关键.三、解答题(本题共7个小题,共63分;请将解答过程写在答题纸每题规定的区域内)20.已知x=﹣2是关于x的方程2x2+ax﹣a2=0的一个根,求a的值.【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程解的定义,将x=﹣2代入关于x的方程2x2+ax﹣a2=0,列出关于a的一元二次方程,然后利用公式法解方程求得a的值即可.【解答】解:当x=﹣2 时,8﹣2a﹣a2=0,即:a2+2a﹣8=0,(a+4)(a﹣2)=0,解得:a1=2,a2=﹣4【点评】本题考查了一元二次方程的解.一元二次方程的根一定满足该方程的解析式.21.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.【考点】列表法与树状图法.【分析】(1)利用树形图”或“列表法”即可求出两辆汽车行驶方向所有可能的结果;(2)根据(1)中的列表情况即可求出这两辆汽车都向左转的概率.【解答】解:(1)两辆汽车所有9种可能的行驶方向如下:(2)由上表知:两辆汽车都向左转的概率是:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何综合题.【分析】分①②④和①③⑤两种情况,在第一种情况下证明△ABF∽△DCE,根据相似三角形的对应边的比相等即可求解;在第二种情况下,过点D作DG⊥AB于点G,在直角△AGD中利用三角函数求得AG的长,则AB 即可求解.【解答】解:情况一,选用①②④,∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°,又∵AF∥DE,∴∠AFB=∠DEC,∴△ABF∽△DCE,∴,又∵DC=1.5m,FB=7.6m,EC=1.7m,∴AB=6.7m.即旗杆高度是6.7m;情况二,选①③⑤.过点D作DG⊥AB于点G.∵AB⊥FC,DC⊥FC,∴四边形BCDG是矩形,∴CD=BG=1.5m,DG=BC=9m,在直角△AGD中,∠ADG=30°,∴tan30°=,∴AG=3,又∵AB=AG+GB,∴AB=3+1.5≈6.7m.即旗杆高度是6.7m.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.23.在平面直角坐标系中,已知反比例函数y=的图象经过点A,点O是坐标原点,OA=2且OA 与x轴的夹角是60°.(1)试确定此反比例函数的解析式;(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】(1)作AC⊥x轴于点C,在Rt△AOC中,解直角三角形求得A点坐标为(1,),把A(1,)分别代入代入y=,根据待定系数法即可求得;(2)作BD⊥x轴于点D,在Rt△BOD中,解直角三角形求得B点坐标为(,1),把x=代入代入y=,即可判断.【解答】解:(1)作AC⊥x轴于点C,如图,在Rt△AOC中,∵OA=2,∠AOC=60°,∴∠OAC=30°,∴OC=OA=1,AC=OC=,∴A点坐标为(1,),把A(1,)代入y=,得k=1×=,∴反比例函数的解析式为y=;(2)点B在此反比例函数的图象上,理由如下:过点B作x轴的垂线交x轴于点D,∵线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOD=30°,在Rt△BOD中,BD=OB=1,OD=BD=,∴B点坐标为(,1),∵当x=时,y==1,∴点B(,1)在反比例函数y=的图象上.【点评】本题考查了反比例函数图象上点的坐标特征,解直角三角形,也考查了待定系数法求函数解析式.24.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)【考点】解直角三角形的应用.【分析】通过解Rt△BAD求得BD=AB•tan∠BAE,通过解Rt△CED求得CE=CD•cos∠BAE.然后把相关角度所对应的函数值和相关的线段长度代入进行求值即可.【解答】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°,∴∠DCE=22°,又∵tan∠BAE=,∴BD=AB•tan∠BAE,又∵cos∠BAE=cos∠DCE=,∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=(AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m).【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算BD的值是解题的关键.25.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.【考点】相似三角形的判定与性质;勾股定理;圆周角定理;切线的判定.【专题】计算题;证明题;压轴题.【分析】(1)根据AB=AC,可得∠ABC=∠C,利用等量代换可得∠ABC=∠D然后即可证明△ABE ∽△ADB.(2)根据△ABE∽△ADB,利用其对应边成比例,将已知数值代入即可求得AB的长.(3)连接OA,根据BD为⊙O的直径可得∠BAD=90°,利用勾股定理求得BD,然后再求证∠OAF=90°即可.【解答】(1)证明:∵AB=AC,∴∠ABC=∠C(等边对等角),∵∠C=∠D(同弧所对的圆周角相等),∴∠ABC=∠D(等量代换),又∵∠BAE=∠DAB,∴△ABE∽△ADB,(2)解:∵△ABE∽△ADB,∴,∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,∴AB=.(3)解:直线FA与⊙O相切,理由如下:连接OA,∵BD为⊙O的直径,∴∠BAD=90°,∴=4BF=BO=,∵AB=,∴BF=BO=AB,∴∠OAF=90°,∴OA⊥AF,∵AO是圆的半径,∴直线FA与⊙O相切.【点评】此题主要考查相似三角形的判定与性质,勾股定理,圆周角定理,切线的判定等知识点,有一定的拔高难度,属于难题.26.如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先确定出点B,C坐标,再用待定系数法求函数解析式;(2)先求出BA=2,BC=3,BP=,然后分两种情况①由△ABC∽△PBQ,得到,求出BQ,②由△ABC∽△QBP得,求出BQ,即可.【解答】解:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,令x=0,得y=3,∴C(0,3),令y=0,得x=3,∴B(3,0),∵经过B、C两点的抛物线y=x2+bx+c∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)由(1),得A(1,0),连接BP,∵∠CBA=∠ABP=45°,∵抛物线解析式为y=x2﹣4x+3;∴P(2,﹣1),∵A(1,0),B(3,0),C(0,3),∴BA=2,BC=3,BP=,当△ABC∽△PBQ时,∴,∴,∴BQ=3,∴Q(0,0),当△ABC∽△QBP时,∴,∴,∴BQ=,∴Q(,0),∴Q点的坐标为(0,0)或(,0).【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,解本题的关键是分两种情况求BQ,也是易错的地方.。
初三学年期末数学试题(答案含)

2017 ---2018学年度上学期期末质量监测期末考试初三数学试题考生注意:1、考试时间为120分钟2、全卷共三道大题,总分120分一、选择题(本大题共10小题,每小题3分,共30分. 在每小题所给出的四个选项中,只有一项是符合题目要求的.)1、下列各式是因式分解且完全正确的是()A.ab+ac+d=a(b+c)+d B.a2﹣b2 = (a﹣b)2C.xy﹣4=(x﹣2)(y+2) D.2﹣8a2=2(1+2a)(1﹣2a)2、下列图形中既是轴对称图形又是中心对称图形的是()A B C D3、如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()A.a<0 B. a<-1 C. a>1 D. a>-14、在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3) B.(﹣4,3) C.(0,﹣3) D.(0,3)5、关于x的方程1322a xx x-+=--有增根,那么a的值为( )A.2 B.2或 1 C. 1 D.06、如下图,□ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD =4S△AOB B.AC=BDC.AC⊥BD D.□ABCD是轴对称图形7、如下图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,C E平分∠ACB,若B E=2,则A E的长为().A. 3 B.1 C. 2 D.2(第6题图)(第7题图)(第8题图)8、如上图,在□ABCD中,A E⊥BC于E,A F⊥CD于F,若A E=4,A F=6,若□ABCD的周长为40.则□ABCD的面积为()A.24 B.36 C.40 D.489、一次函数y1=kx+b与y2=x+a的图象如下图所示,则下列结论:①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3(第9题图)(第10题图)10、如上图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30° B.2,60° C.1,30° D.3,60°二、填空题(本大题共10小题,每题3分,满分30分)11、如果分式242--xx的值为零,那么x的值为___________.12、已知x–3y=3,则=+-223231yxyx.考号班级(装订线内不要答题)姓名本考场试卷序号(由监考教师填写)13、一个多边形的内角和与外角和的比是4:1,则它的边数是14、如下图,在实数范围内规定新运算“△”,规则是:a △b=2a ﹣b .已知不等式x △k≥1的解集在数轴上,则k 的值是(第14题图) (第15题图)15、如上图,在□ABCD 中,B M 是∠ABC 的平分线交CD 于点M ,且M C=2,□ABCD 的周长是14,则D M =____________. 16、关于x 的一元一次不等式组2{ 32x b x b >+<-有解,则直线y x b =-+不经过第____象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省青岛市胶州市初三上学期期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30°B.45°C.60°D.90°2.(3分)小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时C.上午10时D.上午12时3.(3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)4.(3分)若函数y=x2﹣2x+b的图象与x轴有两个交点,则b的取值范围是()A.b≤1B.b>1C.0<b<1D.b<15.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D.:6.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,则对角线AC的长为()A.3B.6C.12D.127.(3分)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.18.(3分)如图,一块长和宽分别为30cm和20cm的矩形铁皮,要在它的四角截去四个边长相等的小正方形,折成一个无盖的长方体盒子,使它的侧面积为272cm2,则截去的正方形的边长是()A.4cm B.8.5cm C.4cm或8.5cm D.5cm或7.5cm二、填空题(本小题共6小题,每小题3分,共18分)9.(3分)已知关于x的方程5x2+kx﹣6=0的一个根2,则k=,另一个根为.10.(3分)在△ABC中,∠C=90°,BC=6cm,tanA=,则AC的长是cm.11.(3分)沿一张矩形纸较长两边的中点将纸折叠,所得的两个矩形仍然与原来的矩形相似,则原矩形纸的长、宽之比是.12.(3分)将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为.13.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.14.(3分)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴一个交点的坐标为(﹣1,0),其部分图象如图所示.下列结论:①ac<0;②b<0;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④当y>0时,x的取值范围是1<x<3.其中结论正确的是.(填写正确结论的标号)三、解答题(本题共70分)15.(4分)已知三棱柱的底面是等腰直角三角形,它的俯视图如图所示,画出它的主视图和左视图.16.(8分)(1)解方程:x(x+6)=7.(2)用配方法求二次函数y=2x2﹣8x+7图象的对称轴和顶点坐标.17.(6分)小亮和小丽做“摸球”游戏:在一个不透明的袋子中装有编号1~4的四个球(除编号都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮胜;若两次数字之和小于5,则小丽胜,这个游戏对双方公平吗?请说明理由.18.(6分)某空调生产厂的装配车间计划在一段时期内组装9000台空调.设每天组装的空调数量为y(台/天),组装的时间为x(天).(1)直接写出y与x之间的函数关系式;(2)原计划用60天完成这一任务,但由于气温提前升高,厂家决定这批空调至少要提前10天完成组成,那么装配车间每天至少要组装多少台空调?19.(6分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,AD=3BD,S△ABC=48,求S△ADE.20.(8分)海岛A的周围8 n mile 内有暗礁,渔船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东67°,航行12n mlie到达C点,又测得小岛A 在北偏东45°方向上.如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?请说明理由.(参考数据:sin67°≈,cos67°,tan67°≈)21.(8分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.(1)求证:四边形CODP是菱形;(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.22.(10分)某果品超市销售进价为40元/箱的苹果,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.设每箱苹果的销售价位x(x>50)时,平均每天的销售利润为w(元).(1)求w与x之间的函数关系式;(2)当每箱苹果的销售价位多少元时,可以获得最大利润?最大利润是多少元?(3)临近春节,为稳定市场,物价部门规定每箱苹果售价不得高于58元,求此时平均每天获得的最大利润是多少元?23.(10分)【问题】在1~n(n≥2)这n个自然数中,每次取两个数(不分顺序),使得所取两数之和大于n,共有多少种取法?【探究】不妨假设有m种取法,为了探究m与n的关系,我们先从简单情形入手,再逐次递进,最后猜想得出结论.探究一:在1~2这2个自然数中,每次取两个数(不分顺序),使得所取两数之和大于2,共有多少种取法?根据题意,有下列取法:1+2,共有1种取法.所以,当n=2时,m=1.探究二:在1~3这3个自然数中,每次取两个数(不分顺序),使得所取两数之和大于3,共有多少种取法?根据题意,有下列取法:1+3,2+3;共有2种取法.所以,当n=3时,m=2.探究三:在1~4这4个自然数中,每次取两个数(不分顺序),使得所取两数之和大于4,共有多少种取法?根据题意,有下列取法:1+4,2+4,3+4;2+3共有3+1=4种取法.所以,当n=4时,m=3+1=4.探究四:在1~5这5个自然数中,每次取两个数(不分顺序),使得所取两数之和大于5,共有多少种取法?根据题意,有下列取法:1+5,2+5,3+5,4+5;2+4,3+4,共有4+2=6种取法.所以,当n=5时,m=4+2=6.探究五:在1~6这6个自然数中,每次取两个数(不分顺序),使得所取两数之和大于6,共有多少种取法?(仿照上述探究方法,写出解答过程)探究六:在1~7这7个自然数中,每次取两个数(不分顺序),使得所取两数之和大于7,共有种取法.(直接写出结果)你不妨继续探究n=8,9,…时,m与n的关系.【结论】在1~n(n≥2)这n个自然数中,每次取两个数(不分顺序),使得所取两数之和大于n ,当n 为偶数时,共有 种取法;当n 为奇数时,共有 种取法.【应用】(1)各边长都是自然数,最大边长为11的不等边三角形共有 个;(2)各边长都是自然数,最大边长为12的三角形共有 个.24.(12分)已知:如图,在△ABC 中,AB=AC=5cm ,BC=6cm .点P 从点B 出发,沿BC 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AC 方向匀速运动,速度为1cm/s .过点P 作PM ⊥BC 交AB 于点M ,过点Q 作QN ⊥BC ,垂足为点N ,连接MQ ,设运动时间为t (s )(0<t <3).解答下列问题:(1)当t 为何值时,点M 是边AB 中点?(2)设四边形PNQM 的面积为y (cm 2),求y 与t 的函数关系式;(3)是否存在某一时刻t ,使S 四边形PNQM :S △ABC =4:9?若存在,求出t 的值;若不存在,请说明理由.(4)是否存在某一时刻t ,使四边形PNQM 为正方形?若存在,求出t 的值;若不存在,请说明理由.2017-2018学年山东省青岛市胶州市初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30°B.45°C.60°D.90°【解答】解:∵Rt△ABC中,∠C=90°,∴∠A为锐角.∵sin60°=,∴A=60°.故选:C.2.(3分)小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时C.上午10时D.上午12时【解答】解:在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选:A.3.(3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)【解答】解:∵反比例函数y=(k≠0)的图象经过点P(﹣2,3),∴k=﹣2×3=﹣6,∴只需把各点横纵坐标相乘,不是﹣6的,该函数的图象就不经过此点,四个选项中只有D不符合.故选:D.4.(3分)若函数y=x2﹣2x+b的图象与x轴有两个交点,则b的取值范围是()A.b≤1B.b>1C.0<b<1D.b<1【解答】解:∵函数y=x2﹣2x+b的图象与x轴有两个交点,∴方程函数x2﹣2x+b=0有两个不相等的实数根,即△=(﹣2)2﹣4×1×b=4﹣4b>0,解得:b<1,故选:D.5.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.6.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,则对角线AC的长为()A.3B.6C.12D.12【解答】解:∵在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,∴AD=AB,则△ABD是等边三角形,∴AB=AD=CD=BC=4,∠DAC=30°,故AO=6cos30°=3,则AC=6.故选:B.7.(3分)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.1【解答】解:∵∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD,∴∠BAP=∠CPD.又∵∠ABP=∠PCD=60°,∴△ABP∽△PCD.∴=,即=.∴CD=.故选:B.8.(3分)如图,一块长和宽分别为30cm和20cm的矩形铁皮,要在它的四角截去四个边长相等的小正方形,折成一个无盖的长方体盒子,使它的侧面积为272cm2,则截去的正方形的边长是()A.4cm B.8.5cm C.4cm或8.5cm D.5cm或7.5cm 【解答】解:设截去正方形的边长为xcm,依题意有2x[(30﹣2x)+(20﹣2x)]=272,解得x1=4,x2=8.5.答:截去正方形的边长是4cm或8.5cm.故选:C.二、填空题(本小题共6小题,每小题3分,共18分)9.(3分)已知关于x的方程5x2+kx﹣6=0的一个根2,则k=﹣7,另一个根为﹣.【解答】解:将x=2代入原方程,得:5×22+2k﹣6=0,∴k=﹣7.设方程的另一个根为x1,根据题意得:2x1=﹣,∴x1=﹣.故答案为:﹣7;﹣.10.(3分)在△ABC中,∠C=90°,BC=6cm,tanA=,则AC的长是8cm.【解答】解:∵tanA=,而BC=6cm,tanA=,∴=,∴AC=8(cm).故答案为8.11.(3分)沿一张矩形纸较长两边的中点将纸折叠,所得的两个矩形仍然与原来的矩形相似,则原矩形纸的长、宽之比是:1.【解答】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.故答案为::1.12.(3分)将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为y=2(x+2)2﹣2.【解答】解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.13.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为3m.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m.答:路灯的高为3m.14.(3分)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴一个交点的坐标为(﹣1,0),其部分图象如图所示.下列结论:①ac<0;②b<0;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④当y>0时,x的取值范围是1<x<3.其中结论正确的是①③.(填写正确结论的标号)【解答】解:∵抛物线开口向下,∴a<0,∵c=3>0,∴ac<0,所以①正确;∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,所以②错误;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以③正确;∴当﹣1<x<3时,y>0,所以④错误;故答案为①③.三、解答题(本题共70分)15.(4分)已知三棱柱的底面是等腰直角三角形,它的俯视图如图所示,画出它的主视图和左视图.【解答】解:如图所示:16.(8分)(1)解方程:x(x+6)=7.(2)用配方法求二次函数y=2x2﹣8x+7图象的对称轴和顶点坐标.【解答】解:(1)原方程可变形为x2+6x﹣7=0,即(x﹣1)(x+7)=0,解得:x1=1,x2=﹣7.(2)∵y=2x2﹣8x+7=2(x2﹣4x)+7=2(x2﹣4x+4﹣4)+7=2(x﹣2)2﹣1,∴抛物线的对称轴是直线x=2,顶点坐标是(2,﹣1).17.(6分)小亮和小丽做“摸球”游戏:在一个不透明的袋子中装有编号1~4的四个球(除编号都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮胜;若两次数字之和小于5,则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:这个游戏对双方公平.理由:列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小亮获胜的概率为:=,则小丽获胜的概率为:=,∵=,∴这个游戏对双方公平.18.(6分)某空调生产厂的装配车间计划在一段时期内组装9000台空调.设每天组装的空调数量为y(台/天),组装的时间为x(天).(1)直接写出y与x之间的函数关系式;(2)原计划用60天完成这一任务,但由于气温提前升高,厂家决定这批空调至少要提前10天完成组成,那么装配车间每天至少要组装多少台空调?【解答】解:(1)∵某空调生产厂的装配车间计划在一段时期内组装9000台空调,设每天组装的空调数量为y(台/天),组装的时间为x(天),∴xy=9000,故y=;(2)由题意可得:0<x≤60﹣10,解得:0<x≤50,对于函数y=,∵k=9000>0,∴当0<x≤50时,y的值随x值的增大而减小,∴y≥=180,答:装配车间每天至少要组装180台空调.19.(6分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,AD=3BD,S△ABC=48,求S△ADE.【解答】解:∵AD=3BD,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴S=S△ABC=27.△ADE20.(8分)海岛A的周围8 n mile 内有暗礁,渔船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东67°,航行12n mlie到达C点,又测得小岛A 在北偏东45°方向上.如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?请说明理由.(参考数据:sin67°≈,cos67°,tan67°≈)【解答】解:作AD⊥BC,交BC的延长线于D,设AD为xnmile,由题意得,∠B=90°﹣67°=23°,∠ACD=90°﹣45°=45°,则CD=AD•tan45°=x,BD=,BD﹣CD=BC,由题意得,,解得x=,∵8nmile<nmile,∴渔船没有触礁的危险.21.(8分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.(1)求证:四边形CODP是菱形;(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.【解答】(1)证明:∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=BD,OC=AC,∴OD=OC,∴四边形CODP是菱形;(2)解:当矩形ABCD的边AD=DC,菱形CODP是正方形,理由:∵四边形ABCD是矩形,∴AO=CO,又∵AD=DC,∴DO⊥AC,∴∠DOC=90°,∴菱形CODP是正方形.22.(10分)某果品超市销售进价为40元/箱的苹果,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.设每箱苹果的销售价位x(x>50)时,平均每天的销售利润为w(元).(1)求w与x之间的函数关系式;(2)当每箱苹果的销售价位多少元时,可以获得最大利润?最大利润是多少元?(3)临近春节,为稳定市场,物价部门规定每箱苹果售价不得高于58元,求此时平均每天获得的最大利润是多少元?【解答】解:(1)w=(x﹣40)[90﹣3(x﹣50)]=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200;(2)∵x>50,且90﹣3(x﹣50)>0,∴50<x<80,∴当x=60时,w取得最大值,最大值为1200,答:当每箱苹果的销售价位60元时,可以获得最大利润,最大利润是1200元;(3)∵50<x<80,且x≤58,∴50<x≤58,∵a=﹣3<0,开口向下,对称轴为直线x=60,∴当x<60时,w随x的值增大而增大,=1188,∴当x=58时,w有最大值,w最大答:此时平均每天获得的最大利润是1188元.23.(10分)【问题】在1~n(n≥2)这n个自然数中,每次取两个数(不分顺序),使得所取两数之和大于n,共有多少种取法?【探究】不妨假设有m种取法,为了探究m与n的关系,我们先从简单情形入手,再逐次递进,最后猜想得出结论.探究一:在1~2这2个自然数中,每次取两个数(不分顺序),使得所取两数之和大于2,共有多少种取法?根据题意,有下列取法:1+2,共有1种取法.所以,当n=2时,m=1.探究二:在1~3这3个自然数中,每次取两个数(不分顺序),使得所取两数之和大于3,共有多少种取法?根据题意,有下列取法:1+3,2+3;共有2种取法.所以,当n=3时,m=2.探究三:在1~4这4个自然数中,每次取两个数(不分顺序),使得所取两数之和大于4,共有多少种取法?根据题意,有下列取法:1+4,2+4,3+4;2+3共有3+1=4种取法.所以,当n=4时,m=3+1=4.探究四:在1~5这5个自然数中,每次取两个数(不分顺序),使得所取两数之和大于5,共有多少种取法?根据题意,有下列取法:1+5,2+5,3+5,4+5;2+4,3+4,共有4+2=6种取法.所以,当n=5时,m=4+2=6.探究五:在1~6这6个自然数中,每次取两个数(不分顺序),使得所取两数之和大于6,共有多少种取法?(仿照上述探究方法,写出解答过程)探究六:在1~7这7个自然数中,每次取两个数(不分顺序),使得所取两数之和大于7,共有12种取法.(直接写出结果)你不妨继续探究n=8,9,…时,m与n的关系.【结论】在1~n(n≥2)这n个自然数中,每次取两个数(不分顺序),使得所取两数之和大于n,当n为偶数时,共有1+3+5+…+n﹣1种取法;当n为奇数时,共有2+4+6+…+(n﹣1)种取法.【应用】(1)各边长都是自然数,最大边长为11的不等边三角形共有30个;(2)各边长都是自然数,最大边长为12的三角形共有53个.【解答】解:探究五:根据题意,有下列取法:1+6,2+6,3+6,4+6;2+5,3+5,4+5;3+4,共有5+3+1=9种取法.所以,当n=6时,m=9.(3分)探究六:根据题意,有下列取法:1+7,2+7,3+7,4+7,5+7,6+7;2+6,3+6,4+6,5+6;3+5,4+5;共有6+4+2=12种取法.所以,当n=7时,m=12.故答案为:12;(4分)【结论】根据以上计算可得:当n为偶数时,1+3+5+…+n﹣1(或者).当n为奇数时,2+4+6+…+(n﹣1)(或者).故答案为:1+3+5+…+n﹣1,2+4+6+…+(n﹣1).(6分)【应用】(1)∵最大边长为11.设另两边为a、b,a≠b≠11.∴另两边长可能为:1,2,3,4,5,6,7,8,9,10. ∵a +b >11. ∴共有:=30(种).(8分)(2)∵最大边长为12. 设另两边为a 、b .∴另两边长可能为:1,2,3,4,5,6,7,8,9,10,11. ∵a +b >12.∴不等边三角形共有:=36(个).等腰三角形有:①底为12,腰长分别为11,10,9,8,7,一共5个,②腰为12,底为1,2,3,4,5,6,7,8,9,10,11,12,一共12个. 综上所述,一共有36+5+12=53(个). 故答案为:30,53.(10分)24.(12分)已知:如图,在△ABC 中,AB=AC=5cm ,BC=6cm .点P 从点B 出发,沿BC 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AC 方向匀速运动,速度为1cm/s .过点P 作PM ⊥BC 交AB 于点M ,过点Q 作QN ⊥BC ,垂足为点N ,连接MQ ,设运动时间为t (s )(0<t <3).解答下列问题: (1)当t 为何值时,点M 是边AB 中点?(2)设四边形PNQM 的面积为y (cm 2),求y 与t 的函数关系式;(3)是否存在某一时刻t ,使S 四边形PNQM :S △ABC =4:9?若存在,求出t 的值;若不存在,请说明理由.(4)是否存在某一时刻t ,使四边形PNQM 为正方形?若存在,求出t 的值;若不存在,请说明理由.【解答】解:(1)过点A 作AD ⊥BC 于D , ∵AB=AC=5,BC=6, ∴BD=CD=3,AD=4,∵PM ⊥BC , ∴PM ∥AD , ∴,∵点M 是AB 的中点,∴BM=AB , ∴,∵BP=t , ∴,∴t=,(2)∵∠B=∠B ,∠MPB=∠ADB=90°, ∴△MBP ∽△ABD , ∴, ∴,∴MP=t ,同理:△QCN ∽△ACD , ∴,∴CQ=5﹣t , ∴,∴QN=(5﹣t )=4﹣t ,CN=3﹣T , ∴PN=6﹣t ﹣3+t ,∴y=S 四边形PNQM =(MP +QN )•PN=(t +4﹣t )(3﹣t )=﹣t 2+6(0<t <3);(3)存在,理由:假设存在t ,使S 四边形PNQM :S △ABC =4:9,∴y=S △ABC ,第21页(共21页) ∵S △ABC =BC•AD=12, ﹣t 2+6=×12,∴t=﹣(舍)或t=,即:存在时间t=秒时,S 四边形PNQM :S △ABC =4:9,(4)不存在,理由:假设存在,使四边形PNQM 为正方形, ∴PM=QN ,PM=PN ,当PM=QN 时,t=4﹣t ,∴t=,∴PM=t=,PN=3﹣t=,∴PM ≠PN ,∴不存在某一时刻t ,使四边形PNQM 为正方形.。