初中数学竞赛第二十八讲奇妙的对称(含答案)
初中数学竞赛专题选讲 对称式(含答案)

初中数学竞赛专题选讲(初三.5)对称式一、内容提要一.定义1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, yx 11+, xyzx z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式.2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式.例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )()111z y x ++, 222222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1.含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等.例如:在含x, y, z 的齐二次对称多项式中,如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数.3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式a 3(b -c)+b 3(c -a)+c 3(a -b)中,有因式a -b 一项, 必有同型式b -c 和 c -a 两项.4. 两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式). 例如:∵x+y, xy 都是对称式,∴x+y +xy , (x+y )xy , xyy x +等也都是对称式. ∵xy+yz+zx 和zy x 111++都是轮换式, ∴z y x 111+++xy+yz+z , (zy x 111++)(xy+yz+z ). 也都是轮换式.. 二、例题例1.计算:(xy+yz+zx )()111z y x ++-xyz()111222zy x ++. 分析:∵(xy+yz+zx )()111zy x ++是关于x,y,z 的轮换式,由性质2,在乘法展开时,只要用xy 分别乘以x 1,y 1,z1连同它的同型式一齐写下. 解:原式=(z xy y zx x yz ++)+(z+x +y )+(y+z+x)-(zxy y zx x yz ++) =2x+2y+2z.例2. 已知:a+b+c=0, abc ≠0.求代数式 222222222111ba c a cbc b a -++-++-+的值 分析:这是含a, b, c 的轮换式,化简第一个分式后,其余的两个分式,可直接写出它的同型式. 解:∵2221c b a -+=222)(1b a b a ---+=ab 21-, ∴222222222111b a c a c b c b a -++-++-+=-ab 21-bc 21-ca 21 = -abc b a c 2++=0. 例3. 计算:(a+b+c )3分析:展开式是含字母 a, b, c 的三次齐次的对称式,其同型式的系数相等,可用待定系数法.例4. 解:设(a+b+c )3=m(a 3+b 3+c 3)+n(a 2b+a 2c+b 2c+b 2a+c 2a+c 2b)+pabc.(m, n, p 是待定系数)令 a=1,b=0,c=0 . 比较左右两边系数得 m=1;令 a=1,b=1,c=0 比较左右两边系数得 2m+2n=8;令 a=1,b=1,c=1 比较左右两边系数得 3m+6n+p=27.解方程组⎪⎩⎪⎨⎧=++=+=27638221p n m n m m 得⎪⎩⎪⎨⎧===631p n m∴(a+b+c )3=a 3+b 3+c 3+3a 2b+3a 2c+3b 2c+3b 2a+3c 2a+3c 2b+6abc.例5. 因式分解:① a 3(b -c)+b 3(c -a)+c 3(a -b);② (x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5.解:①∵当a=b 时,a 3(b -c)+b 3(c -a)+c 3(a -b)=0.∴有因式a -b 及其同型式b -c, c -a.∵原式是四次齐次轮换式,除以三次齐次轮换式(a -b )(b -c)(c -a),可得 一次齐次的轮换式a+b+c.用待定系数法:得 a 3(b -c)+b 3(c -a)+c 3(a -b)=m(a+b+c)(a -b )(b -c)(c -a)比较左右两边a 3b 的系数,得m=-1.∴a 3(b -c)+b 3(c -a)+c 3(a -b)=-(a+b+c)(a -b )(b -c)(c -a).② x=0时,(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=0∴有因式x ,以及它的同型式y 和z.∵原式是五次齐次轮换式,除以三次轮换式xyz ,其商是二次齐次轮换式.∴用待定系数法:可设(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=xyz [m(x+y+z)+n(xy+yz+zx)].令 x=1,y=1,z=1 . 比较左右两边系数, 得 80=m+n ;令 x=1,y=1,z=2. 比较左右两边系数, 得 480=6m+n.解方程组⎩⎨⎧=+=+480680n m n m得⎩⎨⎧==080n m . ∴(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=80xyz(x+y+z).三、练习1.已知含字母x,y,z 的轮换式的三项x 3+x 2y -2xy 2,试接着写完全代数式______ 2. 已知有含字母a,b,c,d 的八项轮换式的前二项是a 3b -(a -b),试接着写完全代数式_________________________________.3. 利用对称式性质做乘法,直接写出结果:① (x 2y+y 2z+z 2x )(xy 2+yz 2+zx 2)=_____________________. ② (x+y+z )(x 2+y 2+z 2-xy -yz -zx )=___________________.4. 计算:(x+y )5.5. 求(x+y )(y+z)(z+x)+xyz 除以x+y+z 所得的商.6. 因式分解:① ab(a -b)+bc(b -c)+ca(c -a);② (x+y+z)3-(x 3+y 3+z 3);③ (ab+bc+ca )(a+b+c)-abc ;④ a(b -c)3+b(c -a)3+c(a -b)3.7. 已知:abcc b a 1111=++. 求证:a, b, c 三者中,至少有两个是互为相反数.8. 计算:bc ac ab a a +--22+ca ba bc b b +--22+abcb ca c c +--22. 9. 已知:S =21(a+b+c ). 求证:16)(416)(416)(4222222222222222b a c a c a c b c b c b a b a -+-+-+-+-+- =3S (S -a )(S -b)(S -c).10. 若x,y 满足等式 x=1+y 1和y=1+x1且xy ≠0,那么y 的值是( ) (A )x -1. (B )1-x. (C )x. (D )1+x.参考答案1. y 3+z 3+y 2z+z 2x -2y 2z -2z 2x2. b 3c+c 3d+d 3a -(b -c)-(c -d)-(d -a)3. ②x 3+y 3+z 3-3xyz4. 设(x+y)5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3), a=1, b=5, c=10.5. 设原式=(x+y+z )[a(x 2+y 2+z 2)+b(xy+yz+zx)], a=0, b=1.6 .③当a=-b 时,原式=0, 原式=m(a+b)(b+c)(c+a) m=17. 由已知等式去分母后,使右边为0, 因式分解8. 19. 一个分式化为S (S -a )(S -b)(S -c)10. 选 C。
初中数学竞赛精品标准教程及练习35两种对称

初中数学竞赛精品标准教程及练习35两种对称数学竞赛是一项重要的学科竞赛活动,对于学生的数学素养和思维能力的培养非常有帮助。
而数学竞赛的核心内容之一就是对称性的研究和运用。
下面是一本初中数学竞赛精品标准教程及练习,主要讲解了两种对称以及相关的题目训练。
一、点、线和面的对称1.点的对称:对称轴是指平面上的一条直线,将平面上的点分成两个互相重合的部分。
点关于对称轴的对称点与原点关于对称轴的垂直距离在对称轴两侧相等。
对称轴上的点是自身的对称点。
2.线的对称:对称轴是指平面上的一条直线,对称轴把平面分成两个互为镜像的区域。
线上的两点关于对称轴对称,线上的每一个点的对称点也在对称轴上。
3.面的对称:对称面是指一般三维空间的平面,平面将空间分为两个完全对称的部分。
平面上的每一个点的对称点都在对称面上。
二、图形的对称1.点的对称性:一个图形关于一个点对称,就是存在于这个图形的每一点关于这个点的对称点也在这个图形中。
2.线的对称性:一个图形关于一条线对称,就是存在于这个图形的每一点关于这条线的对称点也在这个图形中。
3.面的对称性:一个图形关于一个平面对称,就是存在于这个图形的每一点关于这个平面的对称点也在这个图形中。
三、对称性的运用1.利用对称性求解问题:利用对称性质可以简化问题,例如通过将一个点关于对称轴的对应点找出来,从而简化计算。
2.证明问题:对称性是证明问题的重要工具。
可以通过找到问题中的对称性质,从而推导出问题的结论。
四、题目训练以下是一些与对称性相关的常见题目,帮助学生进一步理解和运用对称性:1.镜面反射:一个角度为80度的光线在一面完全光滑的镜子上反射,求它的反射角度。
2.对称点坐标:平面上有点A(2,-3),求点A关于直线y=2的对称点的坐标。
3.图形对称性:有一组数字:1,2,3,4,5,6,7,8,9、将这组数字按如下规则排列,使排列后的数字具有对称性:1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,14.证明对称性:证明一个多边形的内角和等于180度。
奇妙的对称世界说明文阅读原文附答案

奇妙的对称世界说明文阅读原文附答案对称的美在于:在杂乱中形成规律,在无序中引入秩序。
下面是店铺为你整理的《奇妙的对称世界》说明文阅读原文和答案,一起来看看吧。
《奇妙的对称世界》说明文阅读原文许多大哲学家、大思想家和大科学家都相信,宇宙是被一种无比完美的对称规律支配的。
整个动物世界,最明显的特点是躯干部分两侧的对称性。
以一匹马为例,通过鼻子到两腿中间可以作一条中轴线,在其两侧有完全对称的器官:眼睛、耳朵、鼻孔、腿……动物为什么会演变出这种对称性呢?大家知道,任何动物在其所处的环境中,左和右两面的情况是基本相同的,它们为了更好的适应环境,需要在两面都能同样的看、听、嗅、触摸,于是就形成了这种对称性。
艺术家则利用对称创造出美。
铜器、漆器、雕刻、壁画、织锦、刺绣……其中的图案,一概少不了对称。
在被称为“立体的画”、“凝固的音乐”的建筑艺术中,也留下了对称的足迹。
我国的建筑,从古代的宫殿到近代的一般住房,绝大部分是对称的,故宫是其中的典范。
从天安门到端门、午门形成了一条中轴线,各种各样的建筑都围绕这条中轴线铺开。
三大殿更是依据对称的原则而建,整体形成了一种端庄凝重、气势恢宏的美,传达着王权的威严。
为什么对称就美呢?万花筒里杂乱无序的碎玻璃片并不美,奥妙就在于三片反光镜构成了三重反射对称,使得杂乱无序的彩色碎玻璃片经过镜面反射后,形成对称的美丽图案。
可见,对称的美在于:在杂乱中形成规律,在无序中引入秩序。
对称的现象引发了科学家对未知领域的探索。
我们知道原子内有原子核,核外有电子。
电子质量很微小,带有负电;原子核内还有质子,质子的质量要比电子大得多,却带正电。
这种情况是不大相称的。
那么,会不会存在着带正电荷的“电子”,带负电荷的“质子”呢?1932年,人们果然发现了带正电荷的电子——反电子。
后来又发现了反质子、反中子。
总之,粒子和反粒子的对称,已经是千真万确的事实了。
那么,会不会存在反氧、反氢、反水,以至于反行星、反宇宙呢?科学家正是运用对称原理,在进一步提出和探索这些问题呢。
2023中考数学图形的对称与旋转历年真题及答案

2023中考数学图形的对称与旋转历年真题及答案随着2023中考的日益临近,同学们复习备考的重点也逐渐明确起来。
在数学科目中,图形的对称与旋转是一个常见而重要的考点。
为了帮助大家更好地理解和掌握对称与旋转的相关知识,本文将为大家整理并详细解析数学中考历年真题中涉及到的图形对称与旋转的题目。
一、对称图形对称是指图形在某一变换下保持不变。
常见的图形对称包括镜面对称和旋转对称。
下面我们将通过真题来具体了解这些概念。
题目一:如图所示,是一个四边形ABCD,连接AC,点M是线段AC的中点,试判断图形ABCD是否具有对称性,并说明是哪种对称。
(题目内容)解析:通过观察图形ABCD,可以发现通过点M作AB的垂直平分线,可以将四边形分为两个完全相同的部分,即两个镜面对称的部分。
因此,图形ABCD具有镜面对称性。
题目二:如图所示,是一个正方形,将它逆时针旋转90°,得到新的图形,判断新图形是否与原图形对称,并说明是哪种对称。
(题目内容)解析:将该正方形逆时针旋转90°,得到的新图形仍然是一个正方形,且与原图形完全相同,即两个图形可以重合。
因此,新图形与原图形具有旋转对称性。
通过以上的例题可以看出,对称图形在数学中考察得相对较多,我们需要通过图形的特点和性质来判断其是否具有对称性,并可以进一步确定是哪种对称。
对称图形的学习是数学中考试必不可少的一部分,希望同学们能够认真掌握。
二、图形的旋转图形的旋转是指将图形围绕一个中心点按照一定角度顺时针或逆时针方向旋转。
在解决旋转问题时,我们需要了解旋转角度、旋转方向以及旋转中心等要素。
接下来,我们将通过真题进一步了解图形的旋转问题。
题目三:将菱形PQRS按图中所示,绕着点M逆时针旋转120°,得到新图形P′Q′R′S′,试判断新图形与原图形之间的关系。
(题目内容)解析:根据题目的描述和给定的图形,我们可以确定旋转角度为120°,点M为旋转中心,旋转方向为逆时针。
(易错题精选)初中数学图形的平移,对称与旋转的解析含答案

(易错题精选)初中数学图形的平移,对称与旋转的解析含答案一、选择题1.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B .2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD= 22AB AD +=2211+=2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B 2C 3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒ ∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】 由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.4.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C .【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.5.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.6.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.7.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】 解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.8.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选B .11.下列图形中,不是轴对称图形的是( )A .有两个内角相等的三角形B .有一个内角为45°的直角三角形C .有两个内角分别为50°和80°的三角形D .有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.12.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【解析】【分析】先利用平移的性质求出AD、CF,进而完成解答.【详解】解:将△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,又∵△ABC的周长等于9,∴四边形ABFD的周长等于9+1+1=11.故答案为C.【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.13.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.14.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A .1B .2C .3D .22【答案】C【解析】【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.17.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.18.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形④矩形是轴对称图形A.①②③④ B.①②③ C.②④ D.②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.19.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.20.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.。
线段和差最值问题之对称,中考复习专题附练习题含参考答案

中考复习专题之线段(和差)最值问题之对称对称问题,指的是通过对称的方式求得线段(和差)最值的问题类型,包含一次对称即将军饮马问题、二次对称、过河修桥问题等. 1.将军饮马问题“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?如图,在直线上找一点P 使得PA+PB 最小?这个问题的难点在于PA+PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.作点A 关于直线的对称点A',连接PA',则PA'=PA ,所以PA+PB=PA'+PB当A'、P 、B 三点共线的时候,PA'+PB =A'B ,此时为最小值(两点之间线段最短) 作端点(点A 或点B )关于折点(上图P 点)所在直线的对称,化折线段为直线段.2.二次对称问题在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.AB 将军军营河此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P'M +MN +NP ’’,当P'、M 、N 、P''共线时,△PMN 周长最小. 3.过河修桥问题已知人在图中点A 村庄,现要过河去往B 村,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置.问题化为求A'N +NB 最小值,显然,当A'、N 、B 共线时,AM+MN+BN 的值最小,并得出桥应建的位置. 【问题扩展1】已知将军在图中点A 处,现要过两条河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?BB考虑PQ 、MN 均为定值,所以路程最短等价于AP +QM +NB 最小,对于这彼此分离的三段,可以通过平移使其连接到一起.AP 平移至A'Q ,NB 平移至MB ’,化AP +QM +NB 为A'Q +QM +MB'.当A'、Q 、M 、B ’共线时,A'Q +QM +MB'取到最小值,再依次确定P 、N 位置. 【问题扩展1】如图,将军在A 点处,现在将军要带马去河边喝水,并沿着河岸走一段路,再返回军营,问怎么走路程最短?已知A 、B 两点,MN 长度为定值,求确定M 、N 位置使得AM +MN +NB 值最小?【分析】考虑MN 为定值,故只要AM +BN 值最小即可.将AM 平移使M 、N 重合,AM =A'N ,将AM +BN 转化为A'N +NB .构造点A 关于MN 的对称点A'',连接A''B ,可依次确定N 、M 位置,可得路线.军营BBB军营河练习题1.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.2.如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值是___________.3.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( ) A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)4.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .75.如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.6.如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.7.如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3B .4C.D.8.如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) AB .2C.D .49.如图,在菱形ABCD 中,AC=BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( )A .6B.C.D .4.5P OBAMNNMD CBAPDCBAA BCDMNN M D BAE AFCDBNM DCBA10.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)311.如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A.B.C.D12.如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( ) A.B.C.D.13.如图,∠AOB =60°,点P 是∠AOB 内的定点且OPM 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )ABC .6D .314. 如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 . 15.如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为____________.16.如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.17.如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.EPDCBAMDCBAPHFGEDCB AA BMOPN18.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x 轴的正半轴上,顶点B的坐标为(3),点C 的坐标为(12,0),点P 为斜边OB 上一动点,则PA+PC 的最小值为___________. 19.如图,△ AOB=30 °,点 M 、 N 分别在边 OA 、OB 上,且 OM=1 ,ON=3,点 P 、Q 分别在边 OB 、OA 上,则 MP+PQ+QN 的最小值 _________20.如图,在矩形ABCD 中,AB=4,BC=8,E 为CD 边的中点.若P ,Q 为BC 边上的两动点,且PQ=2,则当BP=___时,四边形APQE 的周长最小.21.如图在河的两侧有两个村庄,A 离河为60米,B 离河是30米,AB 的水平距离为120米,河的宽度为30米,问桥修在何处会使得从A 经过桥到B 的路程最小,最小值为多少?参考答案1.82.63.C4.B5.6. 7.C 8.C 9.C 10.B 11.A 12.B 13.D14.3(215. 16.8(,0)3 17.520.2+ 21.180A B CDEFMyxPCBAO Q P ED CB A。
初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选C.【考点】轴对称图形和中心对称图形.3.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.4.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.正确的有()A.1个B.2个C.3个D.4个【答案】A【解析】①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误;③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A.5.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形6.如图,已知△ABC和△DCE是等边三角形,则△ACE绕着点按逆时针方向旋转度可得到△.【答案】,60,【解析】因为△和△是等边三角形,故∠,则∠.要由△通过旋转得到△,只需要将△绕着点按逆时针方向旋转60°即可得到.7.点P(-3,5)关于y轴的对称点的坐标是()A.(-3,-5)B.(3,-5)C.(5,-3)D.(3,5)【答案】D.【解析】根据关于y轴对称的点的坐标规律:纵坐标相同,横坐标互为相反数可直接得到答案.∵P(-3,5),∴关于y轴的对称点P′的坐标是(3,5),故选D.考点: 关于x轴、y轴对称的点的坐标.8.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.【答案】130°.【解析】依题意有∠AOB=2(∠A+∠ACO)=2(∠A+∠BCO)=130°.【考点】轴对称的性质.9.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.【答案】答案见试题解析.【解析】作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.试题解析:如图所示:【考点】1.利用轴对称设计图案;2.网格型.10.点P(-3,2)关于x轴对称的点P′的坐标是.【答案】(3,2).【解析】点P(m,n)关于x轴对称点的坐标P′(m,-n),然后将题目已经点的坐标代入即可求得解.根据轴对称的性质,得点P(3,-2)关于x轴对称的点的坐标为(3,2).【考点】关于x轴、y轴对称的点的坐标.11.下列是我国几家银行的标志图象,其中哪一个不是轴对称图形?()【答案】D【解析】由题,ABC选项是轴对称图形,而D图形找不到这样的直线,所以D选项不是轴对称图形,选D.轴对称图形的定义是图形按照某条直线对折后,图形重合,由题,ABC选项是轴对称图形,而D 图形找不到这样的直线,所以D选项不是轴对称图形,选D.【考点】轴对称图形.12.如图,△ABC是格点三角形,且A(-3,-2),B(-2,-3),C(1,-1).(1)请在图中画出△ABC关于y轴的对称△A’B’C’.(2)写出△A’B’C’各点坐标,并计算△A’B’C’的面积.【答案】(1)作图见解析;(2) △A’B’C’的面积=2.5.【解析】(1)要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’; (2)将要求三角形放在一个矩形里面,三角形的面积等于矩形的面积减去三个直角三角形的面积,如图,作矩形FEC’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.试题解析:(1)如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y 轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y 轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’.(2)如图,作矩形FE C’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.【考点】三角形关于直线对称的作图和格点三角形面积的求法.13.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.14.如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出△ABC关于y轴对称图形△A1B1C1.【答案】作图见解析.【解析】要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G,点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I,点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH=C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.试题解析:如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G, 点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I, 点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH= C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.【考点】轴对称图形的作图.15.画出将左图绕点O逆时针旋转90°后的图形,画出将右图以直线MN为对称轴翻折后的图形.【答案】作图详见解析【解析】(1)根据图形旋转的方法,把三角形左边的两条边绕左边的顶点逆时针旋转90°,再把第三条边连接起来,即可得出旋转后的三角形.(2)根据轴对称的性质,先找出6个顶点关于直线MN的对称点,再依次连接起来即可得出图形.试题解析:作图如下:考点: 1.网格问题;2.作图(旋转变换和轴对称变换).16.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.17.如图,将△沿着射线的方向平移到△的位置,若cm,则平移的距离是 cm.【答案】7【解析】由于BC平移得到CE,即,由于cm,所以cm,即平移7cm【考点】图形的平移,中点的定义点评:此题难度不大,关键在于C为BE中点18.下列图案中,是轴对称图形的有A.4个B.3个C.2个D.1个【答案】C【解析】如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫轴对称图形.根据轴对称图形的定义可得第二个图形和第三个图形都不是轴对称图形,故选C.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.19.下面的图形中,既是轴对称图形又是中心对称图形的是()【答案】B【解析】根据轴对称图形与中心对称图形的定义依次分析各选项即可判断.A、D只是轴对称图形,C只是中心对称图形,B既是轴对称图形又是中心对称图形,故选B.【考点】轴对称图形,中心对称图形点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.20.下列图形中,既是轴对称图形又是中心对称图形有()A.1个B.2个C.3个D.4个【答案】B【解析】中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
九年级数学中考典型及竞赛训练专题18 圆的对称性(附答案解析)

九年级数学中考典型及竞赛训练专题18 圆的对称性阅读与思考圆是一个对称图形.首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这是圆特有的旋转不变性.由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用.熟悉以下基本图形和以上基本结论.我国战国时期科学家墨翟在《墨经》中写道:“圆,一中间长也.”古代的美索不达米亚人最先开始制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了深深的烙印.例题与求解【例1】在半径为1的⊙O 中,弦AB ,ACBAC 度数为_______. (黑龙江省中考试题)解题思路:作出辅助线,解直角三角形,注AB 与AC 有不同位置关系.由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问题的解决.【例2】如图,在三个等圆上各自有一条劣弧AB ,D C ,EF .如果AB +D C =EF ,那么AB +CD 与EF 的大小关系是()A .AB +CD =EF B .AB +CD >EFC .AB +CD <EF D .AB +CD 与EF 的大小关系不能确定(江苏省竞赛试题)解题思路:将弧与弦的关系及三角形的性质结合起来思考.ABCD【例3】⑴ 如图1,已知多边形ABDEC 是由边长为2的等边三角形ABC 和正方形BDEC 组成, ⊙O 过A ,D ,E 三点,求⊙O 的半径.⑵ 如图2,若多边形ABDEC 是由等腰△ABC 和矩形BDEC 组成,AB =AC =BD =2,⊙O 过A ,D ,E 三点,问⊙O 的半径是否改变?(《时代学习报》数学文化节试题)解题思路:对于⑴,给出不同解法;对于⑵,⊙的半径不改变,解法类似⑴.等边三角形、正方形、圆是平面几何图形中最完美的图形,本例表明这三个完美的图形能合成一个从形式到结果依然完美的图形.三个完美图形的不同组合可生成新的问题,同学们可参照刻意练习.【例4】如图,已知圆内接△ABC 中,AB >AC ,D 为BAC 的中点,DE ⊥AB 于E .求证:BD 2-AD 2=AB AC . (天津市竞赛试题) 解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明.圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形问题提供了新的途径和方法,善于促成同圆或等圆中的弦、弦心距、弧、圆周角、圆心角之间相等或不等关系的互相转化,是解圆相关问题的重要技巧.【例5】在△ABC 中,M 是AB 上一点,且AM 2+BM 2+CM 2=2AM +2BM +2CM -3.若P 是线段AC 上的A BCD E图1图2一个动点,⊙O 是过P ,M ,C 三点的圆,过P 作PD ∥AB 交⊙O 于点D .⑴ 求证:M 是AB 的中点;⑵ 求PD 的长. (江苏省竞赛试题)解题思路:对于⑴,运用配方法求出AM ,BM ,CM 的长,由线段长确定直线位置关系;对于⑵,促成圆周角与弧、弦之间的转化.【例6】已知AD 是⊙O 的直径,AB ,AC 是弦,且AB =AC .⑴ 如图1,求证:直径AD 平分∠BAC ;⑵ 如图2,若弦BC 经过半径OA 的中点E ,F 是CD 的中点,G 是FB 的中点,⊙O 的半径为1,求弦FG 的长;⑶ 如图3,在⑵中若弦BC 经过半径OA 的中点E ,P 为劣弧上一动点,连结PA ,PB ,PD ,PF ,求证:PA PFPB PD++的定值.(武汉市调考试题)解题思路:对于⑶,先证明∠BPA =∠DPF =300,∠BPD =600,这是解题的基础,由此可导出下列解题突破口的不同思路:①由∠BPA ==∠DPF =300,构建直角三角形;②构造PA +PF ,PB +PD 相关线段;③取BD 的中点M ,连结PM ,联想常规命题;等等.本例实质是借用了下列问题:⑴如图1,PA +PB; ⑵如图2,PA +PB =PH ;⑶进一步,如图3,若∠APB =α,PH 平分∠APB ,则PA +PB =2PHc o s2α为定值.图1A 600300300PHB PABH600 图2 PABH 图3C图1图2图3能力训练A 级1.圆的半径为5cm ,其内接梯形的两底分别为6cm 和8cm ,则梯形的面积为_______cm 2.2.如图,残破的轮片上,弓形的弦AB 长是40cm ,高CD 是5cm ,原轮片的直径是________cm .第3题图第2题图C ABDA3.如图,已知CD 为半圆的直径,AB ⊥CD 于B .设∠AOB =α,则BA BD ta n 2=_________. (黑龙江省中考试题)4.如图,在Rt △ABC 中,∠C =900,AC =2,BC =1,若BC =1,若以C 为圆心,CB 的长为半径的圆交AB 于P ,则AP =___________. (江苏省宿迁市中考试题)5.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA —AB —BO 的路径运动一周.设OP 长为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间的关系是( )(太原市中考试题)6.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,那么AC 的长为( )A .0.5c mB .1c mC .1.5c mD .2c m7.如图,AB 为⊙O 的直径,CD 是弦.若AB =10cm ,CD =8cm ,那么A ,B 两点到直线CD 的距离之和为( )A .12cmB .10cmC .8cmD .6cmt sAt sBtssO DAOCD AE CD FBABC DFEP (第6题图)APB C(第4题图)(第7题图) (第8题图)8.如图,半径为2的⊙O中,弦AB与弦CD垂直相交于点P,连结OP.若OP=1,求AB2+CD2的值.(黑龙江省竞赛试题)9.如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM于N,其延长线交⊙O于点C,弦CD交AM于点E.⑴如果CD⊥AB,求证:EN=NM;⑵如果弦CD交AB于点F,且CD=AB,求证:CE2=EF•ED;⑶如果弦CD,AB的延长线交于点F,且CD=AB,那么⑵的结论是否仍成立?若成立,请证明;若不成立,请说明理由.(重庆市中考试题)10.如图,⊙O的内接四边形ABMC中,AB>AC,M是BC的中点,MH⊥AB于点H.求证:BH=1 2(AB-AC).(河南省竞赛试题)11.⑴如图1,圆内接△ABC中,AB=BC=CA,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G.求证:阴影部分四边形OFCG的面积是△ABC面积的13.⑵如图2,若∠DOE保持0120角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的13.AB CDOEFM(第9题图)AHB MC(第10题图)图2图1D12.如图,正方形ABCD 的顶点A ,D 和正方形JKLM 的顶点K ,L 在一个以5为半径的⊙O 上,点J ,M 在线段BC 上.若正方形ABCD 的边长为6,求正方形JKLM 的边长.(上海市竞赛试题)B 级1.如图,AB 是⊙O 的直径,CD 是弦,过A ,B 两点作CD 的垂线,垂足分别为E ,F .若AB =10,AE =3,BF =5,则EC =__________.2.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC =5,则折痕在△ABC 内的部分DE 长为________. (宁波市中考试题)3.如图,已知⊙O 的半径为R ,C ,D 是直径AB 同侧圆周上的两点,AC 的度数为960,BD 的度数为360.动点P 在AB 上,则CP +PD 的最小值为__________.(陕西省竞赛试题)AD CB NOJ MK L(第12题图)O A E CD FBABCD E A ′ABCDPO (第1题图)(第2题图)(第3题图)4.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径是( ) ABC .54D5.如图,AB 是半圆O 的直径,C 是半圆圆周上一点,M 是AC 的中点,MN ⊥AB 于N ,则有()A .MN =12AC B .MN=2AC C .MN =35AC D .MN=3AC (武汉市选拔赛试题)第4题图第5题图A C O6.已知,AB 为⊙O 的直径,D 为AC 的中点,DE ⊥AB 于点E ,且DE =3.求AC 的长度.7.如图,已知四边形ABCD 内接于直径为3的⊙O ;对角线AC 是直径,对角线AC 和BD 的交点为P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.(全国初中数学联赛试题)ADOB E GFN AC BDO P (第7题图)(第6题图)C8.如图,已知点A ,B ,C ,D 顺次在⊙O 上,AB BD =,BM ⊥AC 于M .求证:AM =DC +CM .(江苏省竞赛试题)9.如图,在直角坐体系中,点B ,C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,CD AO =,如果AB =10,AO >BO ,且AO ,BO 是x 的二次方程0482=++kx x 的两个根.⑴ 求点D 的坐标;⑵ 若点P 在直径AC 上,且AP =14AC ,判断点(-2,10)是否在过D ,P 两点的直线上,并说明理由. (河南省中考试题)10.⑴如图1,已知PA ,PB 为⊙O 的弦,C 是劣弧AB 的中点,直线CD ⊥PA 于点E ,求证:AE =PE +PB . ⑵如图2,已知PA ,PB 为⊙O 的弦,C 是优弧AB 的中点,直线CD ⊥PA 于点E ,问:AE ,PE 与PB 之间存在怎样的等量关系?写出并证明你的结论.AB CD O M (第8题图)A图1CP BDEO A 图2CPBD EOx(第9题图)11.如图,已知弦CD 垂直于⊙O 的直径AB 于L ,弦AE 平分半径OC 于H .求证:弦DE 平分弦BC 于M . (全俄奥林匹克竞赛试题)12.如图,在△ABC 中,D 为AC 边上一点,且AD =DC +CB ,过D 作AC 的垂线交△ABC 的外接圆于M ,过M 作AB 的垂线MN ,交圆于N .求证:MN 为△ABC 外接圆的直径.AC O LE BDMH(第11题图)AC M N OD B(第12题图)专题18 圆的对称性 例1 15°或75° 提示:分AB 、AC 在圆心O 同侧、异侧两种情况讨论. 例2 B例3 (1)解法一:如图,将正方形BDEC 上的等边△ABC 向下平移,使其底边与DE 重合,得等边△ODE .∵A 、B 、C 的对应点是O 、D 、E ,∴OD =AB ,OE =AC ,AO =BD .∵等边△ABC 和正方形BDEC 的边长都是2,∴AB =BD =AC =2,∴OD =OA =OE =2.∵A 、D 、E 三点确定一圆,O 到A 、D 、E 三点的距离相等.∴O 点为圆心,OA 为半径,∴该圆的半径为2.解法二:如图,将△ABC 平移到△ODE 位置,并作AF ⊥BC ,垂足为F ,延长交DE 于H .∵△ABC 为等边三角形,∴AF 垂直平分BC ,∵四边形BDEC 为正方形,∴AH 垂直平分正方形边DE .又∵DE 是圆的弦,∴AH 必过圆心,记圆心为O 点,并设⊙O 的半径为r .在Rt △ABF 中,∵∠BAF =30°,∴AF =AB ·cos 30°=2×3=3,∴OH =AF +FH -OA =3+2-r .在Rt △ODH 中,OH 2+DH 2=OD 2,∴(32r +-)2+12=r 2,解得r =2.(2)⊙O 的半径不变,因为AB =AC =BD =2,此题求法和(1)一样,⊙O 的半径为2.例4 提示:BD 2-AD 2=(BE 2+ED 2)-(AE 2+ED 2)=(BE +AE )(BE -AE )=AB (BE -AE ),只需要证明AC =BE -AE 即可.在BA 上截取BF =AC .连DF 可证明△DBF ≌△DCA ,则DF =AD ,AE =EF . 例5 (1)由条件,得(AM -1)2+(BM -1)2+(CM -1)2=0,∴AM =BM =CM =1.因此,M 是AB 中点,且∠ACB =90°. (2)由(1)知,∠A =∠PCM ,又PD ∥AB ,∴∠A =∠CPD ,∠PCM =∠CPD ,因此,,CD PM CPM DCP ==,于是有DP =CM =1.例6 (1)连结BD 、CD ,∵AD 是直径,所以∠ABD =∠ACD =90°,又∵AB =AC ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠DAC ,∴AD 平分∠BAC .(2)连结OB 、OC ,则OA ⊥BC ,又AE =OE ,得AB =BO =OA =OC ,△AOB ,△AOC 都为等边三角形,连结OG ,则∠GOF =90°,FG =2.(3)取BD 的中点M ,过M 作MS ⊥P A 于S ,MT ⊥PF 于T ,连AM ,FM .∠BPM =∠DPM =30°,∠APM =∠FPM =60°,则MS =MT ,MA =MF ,Rt △ASM ≌Rt △FTM ,Rt △PMS ≌Rt △PMF .∴PS =12PM .∴P A +PF =2PS =2PT =PM .同理可证:PB +PD =3PM .∴333PA PF PB PD PM +===+为定值.A 级 1.49或7 2.85 3.1 4.35.C 6.D 7.D 8.过O 点作OE ⊥AB 于E ,OF ⊥CD于F ,连结OD ,OA ,则AE =BE ,CF =DF ,∵OE 2=AO 2-AE 2=(4214AB -),OF 2=OD 2-FD 2=414-CD 2,∴OE 2+OF 2=(4214AB -)+(4214CD -)=PF 2+OF 2=OP 2=12,即4214AB -+4214CD -=1,故AB 2+CD 2=28.得x 1=-3(舍去),x 2=75,∴正方形JKLM 的边长为145.B 级1.26-3 提示:作OM ⊥CD 于M ,则EC =12(EF -CD). 2.103 3.3R 提示:设D'是D 点关于直径AB 对称的点,连结CD'交AB 于P ,则P 点使CP +PD 最小,∠COD'=120°,CP +PD =CP +PD'=CD'=3R.4.D 提示:如图:,得⎩⎪⎨⎪⎧a 2+12=r 2(2-a)2+(12)2=r 2 ,解得a =1316,r =517165.A 提示:连结OM ,则OM ⊥AC.6.解法一:连结OD 交AC 于点F ,∵D 为⌒AC 的中点,∴AC ⊥OD ,AF =CF.又DE ⊥AB ,∴∠DEO =∠AFO.∴△ODE ≌△OAF.∴AF =DE.∵DE =3∴AC =6.解法二:延长DE 交⊙O 于点G ,易证⌒AC =2⌒AD =⌒AD +⌒AG =⌒DG ,则DG =AC =2DE =6.7.连结BO 并延长交AD 于H ,因AB =BD ,故BH ⊥AD ,又∠ADC =90°,则BH ∥CD ,从而△OPB ∽△CPD ,得CD BO =CP PO ,即CD 1.5=0.61.5-0.6,解得CD =1.于是AD =AC 2-CD 2=22,又OH =12CD =12,则AB =AH 2+BH 2=2+4=6,BC =AC 2-AB 2=9-6= 3.∴四边形ABCD 的周长为1+22+3+ 6.8.提示:延长DC 至N ,使CN =CM ,连结BN ,则∠BCN =∠BAD =∠BDA =∠BCA ,可证得△BCN ≌△BCM ,Rt △BAM ≌Rt △BDN.9.⑴AO =8,BO =6,AB =BC =10,AD =CO =16,DB =AD -AB =6,过D 作DE ⊥BC 于E ,由Rt △DEB∽Rt △AOB ,得DE =245,BE =185,EO =6+185=485.∴D(-485,245).⑵A(0,-8),C(-16,0),P(-4,-6),经过D ,P 两点的直线为y =-2714x -967,点(2,-10)不在直线DP 上.10.⑴在AE 上截取AF =BP ,连结AC ,BC ,FC ,PC ,可证明△CAF ≌△CBP ,CF =CP .又CD ⊥PA ,则PE =FE ,故AE =PB +PE.⑵AE =PE -PB ,在PE 上截取PF =PB ,连结AC ,BC ,FC ,PC ,可证明△CPF ≌△CPB ,CF =CB =CA.又CD ⊥AP ,则FE =AE ,故AE =PE -PB.11.连结BD ,∠CBA =∠DBA ,CB =BD ,由∠AOC =∠CBD ,∠A =∠BDE ,得△AOH ∽△DBM ,∴OH OA =BM BD=12,即BM =12BC.12.延长AC 至点E ,使CE =BC ,连结MA ,MB ,ME ,BE.∵AD =DC +BC =DC +CE =DE ,又MD ⊥AE ,∴MA =ME ,∠MAE =∠MEA.∵∠MAE =∠MBC ,,又由CE =BC 得∠CEB =∠CBE ,∴∠MEB =∠MBE ,得MA =ME =MB ,即M 为优弧⌒AB 的中点,而MN⊥AB ,∴MN 是⊙O 的直径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十八讲奇妙的对称
对称是一种客观存在,一朵红花、一片绿叶、一只色彩魔斓的蝴蝶等,最令人惊奇的就是它们外形的几何对称性,自然界的对称性可以在从亚原子粒子的结构到整个宇宙的结构的每一个尺度上找到.
对称是一种美的标准,人类心智中的某种东西受对称的吸引,对称对我们的视觉有感染力,影响我们对美的感受,建筑、绘画广泛地应用对称.
对称是一个数学概念,我们熟悉的有代数中的对称式、几何中的轴对称、中心对称等,更一般情况是,许多数学问题所涉及的对象具有对称性,不仅包括几何图形中的对称,而且泛指某些对象在有些方面如图形、关系、地位等同彼此相对又相称.
对称是一种解题方法,即解题时充分利用问题自身条件的某些对称性分析问题,在探求几何最值、代数式的化简求值等方面有广泛的应用.
例题求解
【例1】如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是.
(第14届“希望杯”邀请赛试题)
思路点拨△OAB是一般三角形,作∠ACB的平分线,与BO延长线交于D,连AD,OC,通过全等寻找与AO相等的线段,促使问题的解决.
注物理学家皮埃尔·居里曾说,“结果与其原因一样对称.”
大干世界,许多事物都具有某种对称性.许多化学分子是对称的,细胞结构是对称的,病毒往往也是对称的,……对称给人们以和谐均衡的羌感,完全的对称是重复性的可预言的,人类在漫长的岁月里,体验着对称,享受着对称.
求几何量的最值问题常用方法有:
(1)应用几何中的不等式性质,定理;
(2)对称分析;
(3)代数法.即着眼于揭示问题中变动元素的代数关系.
【例2】如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为( )
A.23B.13C.14D.15(“新蕾杯”数学竞赛题)
思路点拨C、E两点位置固定,从对称性考虑,确定P点位置.
【例3】现有一块形如母子正方形的板材,木工师傅想先把它割成几块,然后适当拼
接,制成某种特殊形状的板面(要求板材不能有剩余,拼接时不重叠、无空隙),请你按下列要求帮助木工师傅分别设计一种方案:
(1)板面形状为非正方形的中心对称图形;
(2)板面形状为等腰梯形;
(3)板面形状为正方形.
思路点拨 问题(1),由“中心对称的四边形是平行四边形”想象出中心对称的多边形的大致形状;问题(2),先计算等腰梯形面积为5,猜想等腰梯形的高,可能为2,因此,上、下底的和应为5;问题(3),由正方形的面积为5,计算出它的边长应为5.
【例4】 已知11122=-+-a b b a ,试确定a 、b 的关系.
(第15届江苏省竞赛题)
思路点拨 有理化是解根式问题的基本思路,乘方、配方、换元、引入有理化因式等是有理化的常用方法.本例是一道脍炙人口的名题,引入与已知等式地位相对相称的有理化因式,本例可获得简解.
注 数学中的对称,不仅指几何图形中的对称,代数表示式中,若各个宇母互相替代,表示式不变,也称这个表示式关于这些字母是对称的,一个复杂的二元对称式.都可以用最简单对称式b a +,ab 表示.
许多数学问题有着和谐的对称美.对原题匹配一个与之相对的数学式,然后一起参与运算,这就是常说的“对称性地处理具有对称性的问题”,是数学解题中的一个一般性原则. 用对称法解几何题的常见的方式有:
(1)作出常见轴对称图形的对称轴,或利用题设条件中的垂线、角平分线翻折造全等;
(2)利用中点构造中心对称图形.
【例5】 如图,凸四边形ABCD 的对角线AC 、BD 相交于O ,且AC ⊥BD ,已知OA >OC ,OB >~OD ,比较BC+AD 与AB+CD 的大小. (“祖冲之杯”邀请赛试题)
思路点拨 以AC 为对称轴,将部分图形翻折,把相关线段集中到同一个三角形中去,以便运用三角形三边关系定理,这是解本例的关键.
【例6】如图,在△ABC 中,AD 是BC 边的中线,点M 在AB 边上,点N 在AC 边
上,并且∠MDN=90°,如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=)(4
122AC AB +. (北京市竞赛题)
思路点拨 易想到勾股定理,需要把分散的条件加以集中,利用中点,构造中心对称全等三角形.
学力训练
1.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.
答:图形 ;理由是: . (2003牛吉林省中考题)
2.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD =4,P 在直线MN 上运动,则PB PA -的最大值等于 .
(第14届“希望杯”邀请赛试题)
3.如图,在等腰三角形ABC 中,∠C=90°,BC=2㎝,如果以AC 的中点O 为旋转中心,
将这个三角形旋转180°,点B 落在点B ′处,那么B ′点与B 点的原来位置相距 cm .
(第2题) (第3题) (第4题)
4.如图,∠AOB=45°,角内有点P ,PO=10,在角的两边上有两点Q ,R(均不同于O 点),则△PQR 的周长的最小值为 . (2002年黄冈市中考题)
5.设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( ) (2003平龙岩市中考题)
6.如图,一牧童在A处牧马,牧童家在B处,A、B处距河岸的距离AC、BD的长分别为500m和700m,且C、D两地的距离为500m,天黑前牧童从A点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )
A.10029m B.1200m C .1300m D.1700m
(第6题)(第7题)(第8题)
7.如图,在菱形ABCD中,AB=4a,E在BC上,BE=2 a ,∠BAD=120°,P点在BD上,则PE+PC的最小值为( )
A.6 a0 B.5 a C.4 a D.23 a
8.如图,一辆汽车在直线形的公路AB上由A向B行驶,M、N分别是位于公路AB两侧的村庄.
(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近,请在图中的公路AB上分别画出点P、Q的位置(保留画图痕迹).
(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M、N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M却越来越远?(分别用文字表述你的结论,不必证明)
(3)在公路AB上是否存在这样一点H,使汽车行驶到该点时,与村庄M、N的距离相等?如果存在,请在图中的AB上画出这一点(保留画图痕迹,不必证明):如果不存在,请简要说明理由.(2001年浙江省嘉兴市中考题)
9.(1)用四块如图I所示的黑白两色正方形瓷砖拼成一个新的正方形,使之形成轴对称图案,请至少给出三种不同的拼法(在①②③中操作);
(2)请你任意改变图I瓷砖中黑色部分的图案,然后再用四块改变图案后的正方形瓷砖拼出一个中心对称图案(在④中操作).(2003年仙桃、潜江、天门、江汉油田中考题)
10.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线交AD于E,交BC的延长线于F,求证:FD2=FB×FC.
11.如图,设L l 和L 2,是镜面平行且镜面相对的两面镜子,把一个小球放在之间,小球放在镜L l 中的像为A ′,A ′在镜L 2中的像为A ″,若L l 、L 2的距离为7,则AA ″ . (第15届江苏省竞赛题)
(第10题) (第11题) (第12题) (第13题)
12.如图,设M 是△ABC 的重心,且AM=3,BM=4,CM=5,则△ABC 的面积为 .
13.如图,ABCD —A'B'C'D'为长方体,AA'=50cm ,AB=40cm ,AD=30cm ,把上、下底面都等分成3× 4个小正方形,其边长均为l0cm ,得到点E 、F 、G 、H 和E',、F',、G',、H',假设一只蚂蚁每秒爬行2cm ,则它从下底面E 点沿表面爬行至上底面G',点至少要花时间 秒.
14.无理数4)21(+的整数部分是 . (第12届“希望杯”邀请赛试题)
15.当x 等于19931,19921,…,21,1,2,…,1992,1993时,计算代数式2
21x x +的值,再将所得的结果全部加起来,总和等于 .
16.一束光线经3块平面镜反射,反射的路线如图所示,图中字母表示相应的度数,已知c=60°,求d+e 与x 的值.
17.如图,在△ABC 中,AD ∥BC ,已知∠ABC>∠ACB ,P 是AD 上的任一点,求证:AC+BP <AB+PC .
18.如图,矩形ABCD 中,AB=20cm ,BC=l0cm ,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,求这个最小值.
19.如图,在△ABC 中,D 、E 分别为BC 、AC 的中点,AD 、BE 相交于P ,若∠BPD=∠C ,求证:以△ABC 三条中线为边构成的三角形与△ABC 相似. (2004年武汉市选拔赛试题)。