利用勾股定理解决折叠问题及答案
利用勾股定理解决折叠问题课件

勾股定理的应用场景
勾股定理在解决与直角三角形相关的几何问题中有着广泛 的应用。例如,在计算直角三角形的面积、求解直角三角 形中的未知边长、判断三角形的形状等方面都可以利用勾 股定理。
在实际生活中,勾股定理也常用于解决各种实际问题,如 建筑、航海、航空等领域。通过利用勾股定理,我们可以 更好地理解物体之间的空间关系和运动规律,为实际问题 的解决提供重要的理论支持。
3
总结词
掌握勾股定理的基本应用
题目1
一个直角三角形,直角边长分别为3和4,求斜边的长度。
题目2
一个直角三角形,斜边长为5,一条直角边长为3,求另一条 直角边的长度。
进阶练习题
总结词
理解勾股定理在复杂问题中的应用
题目1
一个矩形纸片,长为6,宽为8,折叠后形成的直角三角形的斜边长为10,求折叠后直角三角形的 两直角边的长度。
一个等腰梯形纸片,上底边长为6, 下底边长为10,高为8,折叠后形 成的直角三角形的斜边长为17,求 折总结与回顾
本节课的重点回顾
01 02
勾股定理的基本概念和应用 折叠问题的特点和解题思路
03
利用勾股定理解决折叠问题的步骤和方法
本节课的难点解析
如何识别和判断折叠问题的类型 如何将实际问题转化为数学模型 如何根据勾股定理计算折叠后的长度和角度
勾股定理是几何学中一个非常重要的定理,它在解决各种几何问题中有着广泛的 应用。
勾股定理的证明方法
勾股定理的证明方法有多种,其中一种是利用相似三角形的 性质来证明。通过构造两个相似三角形,我们可以得到直角 三角形的三边关系,从而证明勾股定理。
另一种常见的证明方法是利用代数方法,通过将勾股定理的 表达式进行变形和推导,最终得出结论。
勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
专题 利用勾股定理解决折叠问题(原卷版)

八年级下册数学《第十七章 勾股定理》专题 利用勾股定理解决折叠问题【例题1】(2021•西城区校级模拟)如图,Rt △ABC 中,AB =18,BC =12,∠B =90°,将△ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .8B .6C .4D .10【变式1-1】如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点,若沿将△ACD翻折,点C刚好落在边上点E处,则BD等于( )A.2B.52C.3D.103【变式1-2】如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为( )A.1cm B.2cm C.3cm D.4cm【变式1-3】(2021•鞍山一模)如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长是( )A.7B.8C.11D.14【变式1-4】(2021秋•高邮市期末)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,点D、E 分别在AC、BC边上.现将△DCE沿DE翻折,使点C落在点H处.连接AH,则AH长度的最小值为( )A.0B.2C.4D.6【变式1-5】(2022秋•秦淮区校级月考)如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=12,BE=2,则AB2﹣AC2的值为( )A.20B.22C.24D.26【变式1-6】(2022•天津模拟)如图,Rt△ABC中,AB=8,BC=6,∠B=90°,M,N分别是边AC,AB上的两个动点.将△ABC沿直线MN折叠,使得点A的对应点D落在BC边的三等分点处,则线段BN的长为( )A.3B.53C.3或53D.3或154【变式1-7】(2022•平果市模拟)如图,在△ABC中,AC=5,BC=8,∠C=60°,BD=3,点D在边BC上,连接AD,如果将△ABD沿AD翻折后,点B的对应点为点E,那么点E到直线DC的距离为( )A B.4C D.5 2【变式1-8】(2023•沙坪坝区校级开学)如图,在△ABC中,∠C=90°,AC=BC=6,点D、E分别在AC边和AB边上,沿着直线DE翻折△ADE,点A落在BC边上,记为点F,如果CF=2,则BE的长为( )A.6B.C D【变式1-9】如图,在△ABC中,D为BC中点,连接AD,把△ABD沿着AD折叠得到△AED,连接EC,若DE=5,EC=6,AB=AD的长是( )A.4B.5C.6D.7【变式1-10】(2022秋•南海区校级月考)如图,Rt△ABC中,∠ABC=90°,AB=8,BC=D在AC 上,将△ABD 沿BD 折叠,点A 落在点A '处,A 'B 与AC 相交于点E ,则A 'E 的最大值为( )A .B .83C .163D .8﹣【变式1-11】如图,在△ABC 中,D 是BC 边上的中点,连接AD ,把△ACD 沿AD 翻折,得到△ADC ′,DC ′与AB 交于点E ,连接BC ′,若BD =BC ′=2,AD =3,则点D 到AC ′的距离( )A B C D 【变式1-12】(2020春•沙坪坝区校级月考)如图,在△ABC 中,∠ACB =120°,AC =6,BC =3,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段CF 的长为( )A B C D【例题2】(2021春•东昌府区期末)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上F 处,则EF 的长是( )A .3B .245C .5D .8916【变式2-1】如图,在长方形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点F 处,求AE 的长.【变式2-3】(2021秋•锦江区期末)如图,长方形ABCD 中,AB =5,AD =25,将此长方形折叠,使点D 与点B 重合,折痕为EF ,则BE 的长为( )A .12B .8C .10D .13【变式2-4】(2021春•栾城区期末)如图所示,在矩形ABCD 中,AB =4,AD =8,将矩形沿BD折叠,点A落在点E处,DE与BC交于点F,则重叠部分△BDF的面积是( )A.20B.16C.12D.10【变式2-5】(2021•斗门区一模)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF 对折,使得点C与点A重合,则AF的长为 .【变式2-6】(2021秋•历城区期末)如图,已知长方形纸片ABCD,点E在边AB上,且BE=4,BC=6,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F,则线段FG的长为 .【变式2-7】如图,在矩形ABCD中,AB=2,BC=4,把矩形折叠,使点D与点B重合,点C落在点E 处,则折痕FG的长为( )A.2.5B.3C D.【变式2-8】如图,在矩形ABCD中,连接BD,将△ABD沿BD进行折叠,使得点A落到点M处,DM 交BC于点N,若AB=2,BD=5,则MN的长度为( )A B C.D.【变式2-9】(2022秋•梅县区校级期末)如图是一张矩形纸片ABCD,点E,G分别在边BC,AB上,把△DCE沿直线DE折叠,使点C落在对角线BD上的点F处;把△DAG沿直线DG折叠,使点A落在线段DF上的点H处,HF=1,BF=8,则矩形ABCD的面积为( )A.420B.360C.D.【变式2-10】(2022春•柯桥区期末)在矩形ABCD中,将边AB翻折到对角线BD上,点A落在点M 处,折痕BE交AD于点E.将边CD翻折到对角线BD上,点C落在点N处,折痕DF交BC于点F.AB=5,MN=3,则BC的长( )A.5B.12或C.12D.12或13【例题3】(2021春•永嘉县校级期末)如图,将边长为8cm正方形纸片ABCD折叠,使点D落在BC 边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是( )A.6cm B.5cm C.4cm D.3cm【变式3-1】(2022•宽城区一模)如图,将正方形纸片ABCD折叠,使顶点B落在边AD上的点E处,折痕交AB于点F,交CD于点G,若AE=1,∠AFE=30°,则AB的长为( )A.2B.1+C.D.2【变式3-2】(2022春•桂林期末)如图,正方形ABCD的边长为4,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH,若BE:EC=3:1,则线段CH的长是( )A.3B.158C.1D.2【变式3-3】(2022春•大连月考)如图,在正方形ABCD 中,AB =4,点E 是CD 边的中点,将该纸片折叠,使点B 与点E 重合,折痕交AD ,BC 边于点M ,N ,连接ME ,NE .则ME 的长为 .【变式3-4】(2022春•荔城区校级月考)如图,在边长为7的正方形ABCD 中,E 为BC 边上一点,F 为AD 边上一点,连接AE 、EF ,将△ABE 沿EF 折叠,使点A 恰好落在CD 边上的A ′处,若A ′D =2,则B ′E 的长度为( )A .2714B .137C .2514D .2【变式3-5】如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD =4cm ,则CF 的长为( )cmA .6﹣B .6﹣C .32D .54【变式3-6】(2022春•社旗县期末)如图,点E 和点F 分别在正方形纸片ABCD 的边CD 和AD 上,连接AE ,BF ,沿BF 所在直线折叠该纸片,点A 恰好落在线段AE 上点G 处.若正方形纸片边长12,DE =5,则GE 的长为( )A .4913B .5013C .4D .3【变式3-7】(2022春•长清区期末)如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF 如图2,展开后再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为点M ,EM 交AB 于N ,AD =4,则CH 的长为( )A .52B .65C .34D .54【变式3-8】(2022秋•和平区期末)如图,已知正方形ABCD 面积为2,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A B.2C.8D.【变式3-9】(2022春•满洲里市校级期末)如图,在正方形ABCD中,E为CD边上一点,将△AED沿着AE翻折得到△AEF,点D的对应点F恰好落在对角线AC上,连接BF.若EF=2,则BF2=( )A.4B.C.12D.【变式3-10】如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:△ABG≌△AFG;(2)求GC的长;(3)求△FGC的面积.。
第3讲 利用勾股定理解决折叠问题(解析版)

2020-2021学年人教版八年级下册第17章《勾股定理》同步练习【第3讲:利用勾股定理解决折叠问题】一、选择题:1.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF 的长为()A.4B.C.4.5D.5【答案】A【分析】先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.【点睛】本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.2.已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8 cm2C.10 cm2D.12 cm2【答案】A【分析】首先根据翻折的性质得到ED=BE,用AE表示出ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【详解】解:∵将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知:AB2+AE2=BE2.∴32+AE2=(9﹣AE)2.解得:AE=4cm.∴△ABE的面积为:12×3×4=6(cm2).故选:A.【点睛】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.3.如图,ΔABC中,∠C=90°,AC=6,BC=8,D,E分别在AC,BC上,且DE//AB.将ΔABC沿DE折叠,使C点落在斜边AB上的F点处,则AF的长是()A.3.6B.4C.4.8D.6.4【答案】A【解析】【分析】连接CF ,根据勾股定理求得AB 长,由三角形ABC 的面积可得CF 长,勾股定理可得AF 长.【详解】解:如图,连接CF ,根据题意,得CF ⊥DE .因为DE//AB ,所以CF ⊥AB .因为∠C =90°,AC =6,BC =8,所以AB =10,所以S ΔABC =12AC ⋅BC =12AB ⋅CF ,所以CF =4.8.所以AF 2=AC 2−CF 2=62−4.82=3.62,所以AF =3.6. 故选A.【点睛】本题主要考查了勾股定理,同时涉及了折叠的性质及三角形的面积,在应用勾股定理求线段长时,可通过添加辅助线构造直角三角形求解.4.如图,有一张直角三角形纸片ABC ,两条直角边5AC =,10BC =,将ABC ∆折叠,使点A 和点B 重合,折痕为DE ,则CD 的长为( )A .1.8B .2.5C .3D .3.75【答案】D【解析】【分析】 设CD=x ,则BD=AD=10-x .在Rt △ACD 中运用勾股定理列方程,就可以求出CD 的长.【详解】解:设CD=x ,则BD=AD=10-x .∵在Rt△ACD中,(10-x)2=x2+52,100+x2-20x=x2+25,∴20x=75,解得:x=3.75,∴CD=3.75.故选:D.【点睛】本题主要考查了折叠问题和勾股定理的综合运用.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质,用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.5.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm【答案】B【解析】∵直角边AC=6 cm、BC=8 cm ∴根据勾股定理可知:BA=√62+82=10∵A,B关于DE对称,∴BE=10÷2=56.如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=32,则BC的长是()A B.C.3D.【答案】B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知45B EAF ∠=∠=︒,所以可求出∠AFB=90°,再直角三角形的性质可知12EF AB =,所以AB AC =,的长可求,再利用勾股定理即可求出BC 的长.【详解】解:E B A 沿过点的直线折叠,使点与点重合, B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒点为中点,且, 1EF AB 2∴=, 3EF 2=, 3AB 2EF 232∴==⨯=, ΔRtABC 在中,AB =AC ,AB 3,=BC ∴===故选B.【点睛】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.7.如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为( )A .35B .45C .23D 【答案】B【分析】首先根据折叠可得CD=AC=3,BC=4,∠ACE=∠DCE ,∠BCF=∠B /CF ,CE ⊥AB ,然后求得△BCF 是等腰直角三角形,进而求得∠B /GD=90°,CE -EF=125,ED=AE=95,从而求得B /D=1,DF=35,在Rt △B /DF 中,由勾股定理即可求得B /F 的长.【详解】解:根据首先根据折叠可得CD=AC=3,B /C=B4,∠ACE=∠DCE ,∠BCF=∠B /CF ,CE ⊥AB , ∴BD=4-3=1,∠DCE+∠B /CF=∠ACE+∠BCF ,∴∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B /FC=135°,∴∠B /FD=90°,∵S △ABC =12AC×BC=12AB×CE , ∴AC×BC=AB×CE ,∵根据勾股定理求得AB=5,∴CE=125,∴EF=125,=95∴DE=EF -ED=35,∴B /=45 故选:B .【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是解本题的关键.8.如图,在三角形纸片ABC 中,∠ACB =90°,BC =3,AB =5,在AC 上取一E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则CE 的长度为( )A .1B .32C .2D .52【答案】B【解析】 试题分析:由Rt △ABC 中,BC=3,AB=5,利用勾股定理,可求得AC 的长,由折叠的性质,可得CD 的长,然后设DE=x ,由勾股定理,即可列方程求得结果.∵Rt △ABC 中,BC=3,AB=5,∴由折叠的性质可得:AB=BD=5,AE=DE ,∴CD=BD -BC=2,设DE=x ,则AE=x ,∴CE=AC -AE=4-x ,∵在Rt △CDE 中,DE 2=CD 2+BCE 2,∴x 2=22+(4-x )2,解得:, ∴.故选B .考点:此题主要考查了图形的翻折变换,勾股定理点评:解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可. 二、填空题9.如图,在Rt ABC △中,90A ∠=︒,12AB =,5AC =,点E 在AB 上,将CAE 沿CE 折叠,使点A 落在斜边BC 上的点A '处,则AE 的长为____.【答案】103【分析】先利用勾股定理求出BC,再根据折叠的性质可得5CA CA '==,AE A E '=,90CA E CAE '∠=∠=︒,设AE x =,最后利用勾股定理列出方程即可求出AE 的长.【详解】解:由勾股定理,得13BC ==.由折叠可知5CA CA '==,AE A E '=,90CA E CAE '∠=∠=︒.设AE x =,则A E x '=,12BE x =-,1358BA '=-=.在Rt EA B '中,()222128x x -=+, 解得103x =, 即AE 的长为103故答案为: 103. 【点睛】此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形和折叠的性质是解决此题的关键. 10.如图,在Rt ABC △中,90B ∠=︒,3cm AB =,5cm AC =,将ABC 折叠,使点C 与点A 重合,得折痕DE ,则ABE △的周长等于____cm .【答案】7【分析】根据勾股定理,可得BC 的长,根据翻折的性质,可得AE 与CE 的关系,根据三角形的周长公式,可得答案.【详解】在Rt ABC △中,90B ∠=︒,3cm AB =,5cm AC =,由勾股定理,得4cm BC ==,由翻折的性质,得CE AE =,ABE △的周长为AB BE AE AB BE CE ++=++=7(cm ).【点睛】本题考查翻折的性质、勾股定理,利用翻折的性质得出CE 与AE 的关系是解题关键.11.如图,将矩形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若3cm EH =,4cm EF =,则边AD 的长是_______cm .【答案】5【解析】【分析】先求出△EFH 是直角三角形,再根据勾股定理求出FH=5,再利用全等三角形的性质解答即可.【详解】设斜线上两个点分别为P 、Q ,则P 点是A 点对折过去的,∴∠EPH 为直角,△AEH ≌△PEH ,∴∠HEA=∠PEH ,同理∠PEF=∠BEF ,这四个角互补,∴∠PEH+∠PEF=90∘,∴四边形EFGH是矩形,∴△DHG≌△BFE,△HEF是直角三角形,∴BF=DH=PF,∵AH=HP,∴AD=HF,∵EH=3cm,EF=4cm,∴FH=5cm,∴FH=AD=5cm,故答案为:5.【点睛】此题考查翻折变换(折叠问题),勾股定理,全等三角形的性质,解题关键在于求出FH=5.12.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点D与点B重合,折痕为EF,则ΔABE的面积为________cm2.【答案】6【解析】【分析】由折叠的性质可知AE与BE间的关系,根据勾股定理求出AE长可得面积.【详解】解:由题意可知BE=ED.因为AD=AE+DE=AE+BE=9cm,所以BE=(9−AE)cm.在RtΔABE中,根据勾股定理可知,AB2+AE2=BE2,所以32+AE2=(9−AE)2,所以AE=4cm,所以RtΔABE的面积为1 2×AB×AE=12×3×4=6(cm2).故答案为:6【点睛】本题考查了勾股定理,由折叠性质得出直角边与斜边的关系是解题的关键.13.如图已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,则CE的长为___________.【答案】3cm【解析】【分析】要求CE的长,应先设CE的长为x,由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE≌Rt△AFE,所以AF=10cm,EF=DE=8-x;在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF 的长,又CF=BC-BF=10-BF,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即:(8-x)2=x2+(10-BF)2,将求出的BF的值代入该方程求出x的值,即求出了CE的长.【详解】∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴∠AFE=90°,AF=10cm,EF=DE,设CE=xcm,则DE=EF=CD−CE=(8−x)cm,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC−BF=10−6=4(cm),在Rt△ECF中,由勾股定理可得:EF2=CE2+CF2,即(8−x)2=x2+42,∴64−16x+x2=x2+16,∴x=3(cm),即CE=3cm.故答案为:3cm.【点睛】本题考查翻折变换(折叠问题),解题的关键是掌握折叠的性质和勾股定理.14.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为________.【答案】3cm【分析】先根据勾股定理求出AB 的长,设CD =xcm ,则()28BD x =-cm,再由图形翻折变换的性质可知AE =AC =6cm,DE =CD =xcm,进而可得出BE 的长,在t BDE R ∆中利用勾股定理即可求出x 的值,进而得出CD 的长.【详解】 ABC ∆是直角三角形,AC =6cm,BC =8cm,10AB ∴==cm,AED ∆是ACD ∆翻折而成,6cm AE AC ∴==,设DE =CD =xcm, 90AED ∠=︒,1064cm BE AB AE ∴=-=-=,在t BDE R ∆中, 222BD DE BE =+,即()22284x x -=+,解得x =3.故CD 的长为3cm.【点睛】本题考查的是翻折变换及勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x 的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.15.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD 的长为__________.【答案】【详解】由折叠得BC′=BC=6;DC′=DC,∠BC′D=∠C=90°∵∠C=90°,AC=8,BC=6∴AB=10∴AC′=AB-BC′=10-6=4设DC=x则DC′=DC=x,则AD=AC-DC=8-x在Rt△A C′D中,(C′D)2+(AC′)2=(AD)2∴x 2+42=(8-x)2∴x=3∴DC=3∴==故答案为16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.【答案】1.5【解析】在Rt△ABC中,5AC,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=2.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE2=B′E2+B′C2,∴(4-x)2=x2+22.解之得32x=.17.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.【答案】.【解析】【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴PM=MF-2,∴点P到边AB距离的最小值是2.故答案为-2.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.18.如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,BD=.【答案】3 2【解析】如图,点E是沿AD折叠,点B的对应点,连接ED,∴∠AED=∠B=90°,AE=AB=3,∵在Rt△ABC中,∠B=90°,AB=3,BC=4,∴5==.∴EC=AC﹣AE=5﹣3=2.设BD=ED=x,则CD=BC﹣BD=4﹣x,在Rt△CDE中,CD2=EC2+ED2,即:(4﹣x)2=x2+4,解得:x=32.∴BD=32三、解答题19.如图,一张长8cm,宽6cm的矩形纸片,将它沿某直线折叠使得A、C重合,求折痕EF的长.【答案】EF 的长为152【分析】 联结CF ,根据翻折的图形全等得到AF=CF ,再根据勾股定理计算即可;【详解】联结CF ,∵翻折的图形全等,∴AF=CF ,设AF=x ,则DF=8-x ,2226(8)x x +-=,254x =, ∵OC=5, ∴OF=154, 可证OE=OF , ∴EF=152. 【点睛】本题主要考查了勾股定理的折叠问题,准确计算是解题的关键.20.如图,在ABC 中,90BAC ∠=︒,点D 为BC 边中点,E ,F 分别在AB ,AC 上,且ED FD ⊥,连接EF .判断BE ,EF ,FC 之间的数量关系,并证明你的结论.【答案】222BE FC EF +=.证明见解析.【分析】将EDF 沿着DF 翻折得到GDF ,连接CG ,由翻折可知FDE FDG ≌,从而得出:DE DG =,EF GF =,90EDF GDF ∠=∠=︒,再利用SAS 证出BDE CDG ≌,从而得出BE CG =,B DCG ∠=∠,最后利用勾股定理和等量代换即可证出结论.【详解】222BE FC EF +=.证明如下:如图,将EDF 沿着DF 翻折得到GDF ,连接CG .由翻折可知FDE FDG ≌,∴DE DG =,EF GF =,90EDF GDF ∠=∠=︒,∴E ,D ,G 三点共线.∵D 为BC 边中点,∴BD CD =.在△BDE 和△CDG 中BD CD EDB GDC DE DG =⎧⎪∠=∠⎨⎪=⎩∴BDE CDG ≌,∴BE CG =,B DCG ∠=∠.又∵90BAC ∠=︒,∴90B ACB ∠+∠=︒,∴90DCG ACB ∠+∠=︒,即90FCG ∠=︒.在Rt FCG 中,∵222CG FC GF +=,∴222BE FC EF +=.【点睛】此题考查的是全等三角形的判定及性质、勾股定理和折叠问题,掌握全等三角形的判定及性质、利用勾股定理解直角三角形和折叠的性质是解决此题的关键.21.如图所示,已知在ABC 中,22.5B ∠=︒,折叠ABC 使A ,B 两点重合,折痕交BC 于点D ,交AB 于点F,BD =AE BC ⊥于点E ,求AE 的长.【答案】6AE =.【分析】根据折叠的性质可知:AD BD == 22.5BAD B ∠=∠=︒,再根据三角形外角的性质可得45ADE ∠=︒,从而得出AE=DE,最后利用勾股定理即可求出AE .【详解】解:由折叠的性质可知:AD BD == 22.5BAD B ∠=∠=︒.又∵ADE B BAD ∠=∠+∠,∴45ADE ∠=︒.∵AE BC ⊥,∴△ADE 为等腰直角三角形,AE=DE由勾股定理,得222AE DE AD +=,∴(222AE =,∴6AE =.【点睛】此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形和折叠的性质是解决此题的关键. 22.如图,将矩形ABCD 沿AE 折叠,使点D 落在BC 边的点F 处,已知AB =DC =8,AD =BC =10.求EC 的长.【答案】3.【解析】【分析】设EC 的长为x ,则DE =8−x ,再利用勾股定理求出BF 的值,得出FC =BC −BF =10−6=4,再根据勾股定理即可解答.设EC的长为x,则DE=8−x.∵ΔADE折叠后的图形是ΔAFE,∴AD=AF,DE=EF.∵AD=BC=10,∴AF=10.∵四边形ABCD是矩形,∴∠B=∠C=90°.在RtΔABF中,BF=√AF2−AB2=6,∴FC=BC−BF=10−6=4.在RtΔEFC中,FC2+EC2=EF2,∴42+x2=(8−x)2,解得x=3,∴EC的长为3.【点睛】此题考查矩形的性质,折叠的性质,勾股定理,解题关键在于求出FC的值.23.把长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,如图,已知AB=8,BC=10,求EC的长.【答案】EC的长度为3.【解析】试题分析:由长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,可得AF=AD=10,DE=EF,然后设EC=x,则DE=EF=CD﹣EC=8﹣x,首先在Rt△ABF中,利用勾股定理求得BF的长,继而可求得CF的长,然后在Rt △CEF中,由勾股定理即可求得方程:x2+42=(8﹣x)2,解此方程即可求得答案.解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AD=BC=10,CD=AB=8,∵△ADE折叠后得到△AFE,∴AF=AD=10,DE=EF,设EC=x,则DE=EF=CD﹣EC=8﹣x,∵在Rt△ABF中,AB2+BF2=AF2,∴82+BF2=102,∴CF=BC﹣BF=10﹣6=4,∵在Rt△EFC中,EC2+CF2=EF2,∴x2+42=(8﹣x)2,解得:x=3,即EC的长度为3.考点:翻折变换(折叠问题);勾股定理.24.将一矩形纸片OABC放在平面直角坐标系中,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=8,如图在OC边上取一点D,将△BCD沿BD折叠,使点C恰好落在OA边上,记作E点;(1)求点E的坐标及折痕DB的长;(2)在x轴上取两点M、N(点M在点N的左侧),且MN=4.5,求使四边形BDMN的周长最短的点M、点N的坐标.【答案】(1)E(4,0);(2)M(1.5,0);N(6,0);【解析】分析:(1)、根据矩形的性质得到BC=OA=10,AB=OC=8,再根据折叠的性质得到BC=BE=10,DC=DE,易得AE=6,则OE=10-6=4,即可得到E点坐标;在Rt△ODE中,设DE=x,则OD=OC-DC=OC-DE=8-x,利用勾股定理可计算出x,再在Rt△BDE中,利用勾股定理计算出BD;(2)、以D、M、N为顶点作平行四边形DMND′,作出点B关于x轴对称点B′,则易得到B′的坐标,D′的坐标,然后利用待定系数法求出直线D′B′的解析式,令y=0,得-2x+12=0,确定N点坐标,也即可得到M点坐标.详解:(1)、∵四边形OABC为矩形,∴BC=OA=10,AB=OC=8,∵△BCD沿BD折叠,使点C恰好落在OA边E点上,∴BC=BE=10,DC=DE,在Rt△ABE中,BE=10,AB=8,∴AE=6,∴OE=10-6=4,∴E点坐标为(4,0);在Rt△ODE中,设DE=x,则OD=OC-DC=OC-DE=8-x,∴x2=42+(8-x)2,解得x=5,在Rt△BDE中,=(2)、以D、M、N为顶点作平行四边形DMND′,作出点B关于x轴对称点B′,如图,∴B′的坐标为(10,-8),DD′=MN=4.5,∴D′的坐标为(4.5,3),设直线D′B′的解析式为y=kx+b,把B′(10,-8),D′(4.5,3)代入得,10k+b=-8,4.5k+b=3,解得k=-2,b=12,∴直线D′B′的解析式为y=-2x+12,令y=0,得-2x+12=0,解得x=6,∴M(1.5,0);N(6,0).点睛:本题考查了折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了矩形的性质和勾股定理以及待定系数法,综合性非常强.理解翻折图形的性质是解决这个问题的关键.。
勾股定理之折叠问题(人教版)(含答案)

勾股定理之折叠问题(人教版)一、单选题(共7道,每道12分)1.如图,矩形纸片ABCD中,AB=12,BC=5,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为( )A. B.6C. D.答案:D解题思路:试题难度:三颗星知识点:勾股定理的应用2.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=4cm,BC=5cm,则EF=( )A.2cmB.cmC.cmD.3cm答案:C解题思路:试题难度:三颗星知识点:勾股定理的应用3.如图,将边长为16cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F 处,折痕为MN,则线段CN的长是( )A.6cmB.8cmC.10cmD.12cm答案:A解题思路:试题难度:三颗星知识点:勾股定理之折叠问题4.如图,在矩形ABCD中,BC=4,DC=3,将该矩形沿对角线AC折叠,使点B落在点F处,CF交AD于点E,则EF的长为( )A. B.C.1D.答案:B解题思路:试题难度:三颗星知识点:勾股定理之折叠问题5.把一张矩形纸片(矩形ABCD)按如图所示方式折叠,使顶点B与点D重合,折痕为EF.若AB=6cm,BC=10cm,求重叠部分△DEF的面积为( ).A. B.C.20D.答案:A解题思路:试题难度:三颗星知识点:勾股定理之折叠问题6.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则AM=_____cm,BN=_____cm.( )A.,1B.,C.,D.,1答案:C解题思路:试题难度:三颗星知识点:勾股定理之折叠问题7.把Rt△OAB放置在平面直角坐标系中,边OA与x轴重合,边OB与y轴重合,若A(4,0),B(0,3),点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x 轴上,则点C的坐标是( )A. B.C.(0,3)D.(0,4)答案:B解题思路:试题难度:三颗星知识点:翻折变换(折叠问题)二、填空题(共1道,每道13分)8.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则DE的长为____cm.答案:3解题思路:由勾股定理知AB=10;由折叠知AC=AE=6,CD=DE.所以BE=4,且在Rt△BDE中有DE+BD=BC=8.由可知DE=3.试题难度:知识点:勾股定理的应用。
《勾股定理》典型例题折叠问题

《勾股定理》典型例题折叠问题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《勾股定理》典型例题折叠问题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《勾股定理》典型例题折叠问题的全部内容。
《勾股定理》典型例题折叠问题1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A 重合,折痕为DE,则CD 等于( )A。
B. C 。
D.2、如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC •于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.3、折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM ,求CF 和EC 。
4、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积42532247355、如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?6、如图,在长方形ABCD 中,将ABC 沿AC 对折至AEC 位置,CE 与AD 交于点F 。
(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长7、如图2所示,将长方形ABCD 沿直线AE 折叠,顶点D 正好落在BC 边上F 点处,已知CE=3cm,AB=8cm ,则图中阴影部分面积为_______.DCBAF E∆∆8、如图2—3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.9、如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.如果M为CD边的中点,求证:DE:DM:EM=3:4:5.10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,•则折叠后痕迹EF的长为( )A.3.74 B.3.75 C.3.76 D.3。
八年级数学勾股定理的应用——折叠问题(专题)(含答案)

勾股定理的应用——折叠问题(专题)一、单选题(共10道,每道10分)1.如图,长方形纸片ABCD中,AB=12,AD=5,折叠纸片使AD边与线段BD重合,折痕为DG,则AG的长为( )A. B.6C. D.答案:D解题思路:由题意得,BD=13;由折叠知D=AD=5,G=AG,∠DA′G=∠A=90°.∴B=8.设AG=x,则,BG=12-x.在Rt△BG中,∠BA′G=90°,由勾股定理得,,即,解得,.故选D.试题难度:三颗星知识点:略2.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=( )A.4cmB.3cmC.5cmD.6cm答案:C解题思路:如图,AF=AD=BC=10,在Rt△ABF中,由勾股定理得,BF=6,所以FC=4,设EF=DE=x,则CE=8-x,在Rt△ECF中,∠C=90°,由勾股定理得,,解得,x=5.故选C.试题难度:三颗星知识点:略3.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则AE的长为____,△ABE的周长为____.( )A.,7B.,7C.,D.,答案:A解题思路:解:由题意知,在Rt△ABC中,∠B=90°,AB=3,AC=5由勾股定理得,BC=4由折叠知,AE=EC设AE=EC=x,则BE=4-x在Rt△ABE中,∠B=90°由勾股定理得,解得,则AE=,BE=∴△ABE的周长为3+x+(4-x) =3+4=7综上,AE的长为,△ABE的周长为7故选A试题难度:三颗星知识点:略4.如图,将一长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为EF.若AB=4,BC=8,则△ABF的面积为( )A.6B.12C.10D.20答案:A解题思路:解:由题意知,将长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为EF,∴AF=CF,∵在长方形ABCD中,AB=4,BC=8∴设BF=x,则AF=FC=8-x,在Rt△ABF中,∠B=90°,AB=4,BF=x,AF=8-x,由勾股定理得,AB2+BF2=AF2,42+x2=(8-x)2,解得,x=3,即BF=3,∴△ABF的面积为故选A.试题难度:三颗星知识点:略5.如图,长方形纸片ABCD中,AD=4,CD=3,折叠纸片使AB边与线段AC重合,折痕为AE,记与点B重合的点为F,则△CEF的面积与纸片ABCD的面积的比为( )A. B.C. D.答案:B解题思路:如图,在长方形ABCD中,AB=CD=AF=3,AD=BC=4,在Rt△ABC中,∠B=90°由勾股定理得,∴∴AC=5由折叠知,EF=BE,∠AFE=∠B=90°,设BE=x,则EF=BE=x在Rt△EFC中,∠CFE=90°,CF=AC-AF=2,EC=4-x,根据勾股定理得,∴解得,x=1.5∴∵∴故选B.试题难度:三颗星知识点:略6.如图,将边长为16cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F 处,折痕为MN,则CN=_____cm,AM=_____cm.( )A.6,2B.8,3C.10,2D.12,3答案:A解题思路:∵点E是BC边的中点,∴EC BC=8,设CN=x,则EN=DN=16-x,在Rt△ECN中,∠C=90°,由勾股定理得,EC2+CN2=EN2解得,x=6如图,连接DM,EM,则DM=EM,设AM=y,则BM=16-y,在Rt△ADM中,∠A=90°,由勾股定理得,在Rt△BEM中,∠B=90°,由勾股定理得,,∵DM=ME,∴解得,y=2故选A.试题难度:三颗星知识点:略7.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的点E处,折痕为MN.若CE的长为8cm,则AM=_____cm,BN=_____cm.( )A.,1B.,C.,D.,1答案:C解题思路:如图,设AM=x,在Rt△MED中,∠D=90°,由勾股定理,得解得,x=,即AM=,MD=,连接AN,NE,则AN=NE,设BN=y,则CN=12-y,在Rt△ABN中,∠B=90°,由勾股定理,在Rt△CEN中,∠C=90°,由勾股定理,,∵AN=NE,∴解得,故选C.试题难度:三颗星知识点:略8.如图,把长方形ABCD沿AC折叠,AD落在处,交BC于点E,已知AB=2cm,BC=4cm,则EC的长为( )A.2cmB.cmC.5cmD.cm答案:D解题思路:如图,由折叠知,∠DAC=∠EAC,∵AD∥BC,∴∠DAC=∠ECA,∴∠EAC=∠ECA,∴AE=EC设EC=x,则AE=EC=x∵BC=4,∴BE=4-x在Rt△ABE中,∠B=90°,AB=2,BE=4-x,AE=x,由勾股定理得,解得,即EC的长为cm故选D.试题难度:三颗星知识点:略9.把长方形纸片ABCD按如图所示的方式折叠,使点B与点D重合,折痕为EF.若BC=5cm,CD=3cm,则DE=( )cm.A. B.C. D.答案:B解题思路:如图,由折叠知,∠BFE=∠DFE,BF=DF,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF设DF=x,则BF=DF=x∵BC=5,∴CF=5-x在Rt△CDF中,∠C=90°,CD=3,CF=5-x,DF=x,由勾股定理得,解得,∴DE=DF=故选B.试题难度:三颗星知识点:略10.如图,长方形ABCD中,AB=4,BC=3,点E是CD边上一点,连接BE,把∠C沿BE折叠,使点C落在点F处.当△DEF为直角三角形时,DE的长为( )A.1B.1或C. D.3或答案:B解题思路:∵四边形ABCD是长方形,∴AB=CD=4,AD=BC=3,分两种情况讨论:①当∠FED=90°时,如图所示,则∠CEF=90°,由折叠的性质得:CE=FE=BC=3,∴DE=CD-CE=1;②当∠DFE=90°时,如图所示,在Rt△ABD中,∠A=90°,AB=4,AD=3,∴BD=5,由折叠的性质得:∠BFE=∠C=90°,BF=BC=3,EF=EC,∴∠DFE=∠BFE=90°,即点B,F,D三点共线,点F在BD上,∴DF=BD-BF=5-3=2,设DE=x,则EF=CE=4-x在Rt△DEF中,∠EFD=90°,DE=x,EF=4-x,DF=2,由勾股定理得,解得,综上所述,DE的长为1或;故选B.试题难度:三颗星知识点:略第11页共11页。
利用勾股定理解决折叠问题

三角形中的折叠
例1:一张直角三角形的纸片,如图1所 示折叠,使两个锐角的顶点A、B重合。若 ∠B=30°,AC= 3,求DC的长。 B
E D
C
图1
A(B)
长方形中的折叠
例2:如图2所示,将长方形纸片ABCD的一边 AD向下折叠,点D落在BC边的F处。已知 AB=CD=8cm,BC=AD=10cm,求EC的长。
解:根据折叠可知,△AFE≌△ADE,
∴AF=AD=10cm,EF=ED,
AB=8 cm,EF+EC=DC=8cm, ∴在Rt△ABF中
A
D
BF AF2 AB2 102 82 6cm
FC=BC-BF=4cm 设EC=xcm ,则EF=DC-EC=(8-x)cm
E
在Rt△EFC中,根据勾股定理得
3、将已知边和未知边(用含x的代数式表示) 转化到同一直角三角形中表示出来。
4、利用勾股定理,列出方程,解方程,得解。
课堂小结
❖ 1、标已知; ❖ 2、找相等; ❖ 3、设未知,利用勾股定理,列方程; ❖ 4、解方程,得解。
EC²=FC²=EF² 即x²+4²=(8-x)²,x=3cm,
B
F 图2
C
∴EC的长为3cm。
发挥你的想象力
❖ 长方形还可以怎样折叠,要求折叠 一次,给出两个已知条件,提出问题, 并解答问题。
EAEຫໍສະໝຸດ DDCAD
F
B F
C
C
A
B
B
E FC
课堂小结
解题步骤
1、标已知,标问题,明确目标在哪个直角三 角形中,设适当的未知数x; 2、利用折叠,找全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小专题(二) 利用勾股定理解决折叠与展开问题 类型1利用勾股定理解决平面图形的折
叠问题
1.如图,有一张直角三角形纸片,两直角边 AC= 5 cm, BC= 10盯,将厶ABC
折叠,
使点B与点A重合,折痕为DE则CD的长为
( )
25 B. 15
A. cm 2 2 cm
25 D. 15
C. , cm 4 cm
4
2.如图所示, 有一块直角三角形纸片,/ C= 90°, AC= 4 cm, BC= 3 cm,将斜边 AB
翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD则CE的长为
( )
A. 1 cm B . 1.5 cm
C. 2 cm D . 3 cm
3. (青岛中考)如图,将长方形ABCD& EF折叠,使顶点C恰好落在AB边的中点C'
上,
若AB= 6, BC= 9,则BF的长为
( )
A. 4 B . 3 2
C. 4.5 D . 5
4. 如图,长方形纸片ABCD中,已知AD= 8,折叠纸片使AB边与对角线AC重合,点B
落在点F处,折痕为AE且EF= 3,则AB的长为
( )
A. 3 B . 4 C . 5 D . 6
5. (铜仁中考)如图,在长方形ABCD中, BC= 6, CD= 3,将厶BCD沿对角线BD
翻折,
点C落在点C'处,BC交AD于点E,则线段DE的长为
( )
15 15
A. 3 B. C . 5 D.
4 2
6. 如图,在长方形ABCD中 AB= 4, AD= 6, E是AB边的中点,F是线段BC
上的动点,
将厶EBF沿EF所在直线折叠得到△ EB F,连接B‘ D,则B‘ D的最小值是
( )
A. 2 10- 2
B. 6
C. 2- 13 - 2
D. 4
7.如图所示,在△ ABC中,/ B= 90°, AB= 3, AC= 5,将厶ABC折叠,使点C与点A
重
合,折痕为DE则厶ABE的周长为 ____________ .
8 如图,在 Rt△ABC中, Z C= 90°, BC= 6 cm, AC= 8 cm,按图中所示方法将△ BCD
沿
BD折叠,使点C落在AB边的C点,那么△ ADC
的面积是 _______________ .
9. 如图,已知Rt△ ABC中, Z C= 90°, AC= 6, BC= 8,将它的锐角A翻折,使得点A
落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为 _____________ .
10. 如图,在 Rt△ABC中,Z B= 90°, AB= 3, BC= 4,将厶ABC折叠,使点B
恰好落
在边AC上,与点B'重合,AE为折痕,则EB' = ____________ .
11.
为了
向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级
(1)
班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制 作手工
作品的第一、二个步骤是:
① 先裁下了一张长BC= 20 cm,宽AB= 16 cm的长方形纸片
ABCD
② 将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,
请你根据①②步骤解答下列问题:计算 EC FC的长.
类型2利用勾股定理解决立体图形的展开问题
1.如图,一圆柱体的底面周长为 24 cm,高AB为5 cm, BC是直径,一只蚂蚁从点 A
C. 13 cm
12 cm,底面周长为18 cm,在杯内离杯底4 cm
的点
出发沿着圆柱体的表面爬行到点
C的最短路程是(
A. 6 cm B . 12 cm
16 cm
2
.如图,圆柱形玻璃杯,高为
C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4 cm与蜂蜜相对的点A
处,
则蚂蚁到达蜂蜜的最短距离为 _________
cm.
3. 如图,在一个长为2 m,宽为1m
的长方形草地上,放着一根长方体的木块,它的
棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁 从点
A
处到达C处需要走的最短路程是 _______________ m精确到0.01 m).
4.
一位同学要用彩带装饰一个长方体
礼盒.长方体高 6 cm,底面是边长为4 cm的正 方
形,从顶点A到顶点C如何贴彩带用的彩带最短?最短长度是多少?
5. 如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙)
,有一只蚂蚁 从柜
角A处沿着木柜表面爬到柜角 C处.
(1)
请你画出蚂蚁能够最快到达目的地的可能路径;
(2) 当AB= 4, BC= 4, CG= 5
时,求蚂蚁爬过的最短路径的长.
参考答案
类型
1
2
13
I. D 2. A 3. A 4. D 5. B 6.
A 7.7 8.6 cm2 9.— 10. 1.5
3
II. 因为△ ADE-与^ AFE关于 AE对称,所以△ ADE^A AFE.
所以 DE= FE, AD= AF.因为 BC= 20 cm, AB= 16 cm,
所以 CD= 16 cm, AD= AF= 20 cm.在 Rt△ ABF中,由勾股定理,得 BF= 12 cm.所以
CF
=20- 12 = 8(cm).
因为四边形ABCD是长方形,所以/ C= 90° .设CE= x,则DE= EF= 16-x,
在Rt△ CEF中,由勾股定理,得(16 — x)2 = 64 + x2.解得:x= 6.所以
EC= 6 cm.
答:EC= 6 cm, CF=
8 cm.
类型
2
1. C 2. 15 3.2.60
4.把长方体的面DCC D沿棱C D‘展开至面ABCDt,如图.构成矩形 ABC D‘
,
则A到C的最短距离为 AC的长度,连接AC交DC于 Q易证△ AOD2A C OC.「.
OD= OC即 O为 DC的中点,由勾股定理,得 AC 2 = AD 2+ D‘ C 2= 82 + 62= 100,二 AC
=
10 cm.即从顶点A沿直线到DC中点O,再沿直线到顶点 C,贴的彩带最短, 最短长度为10
cm.
5. (1)如图,木柜的表面展开图是两个矩形 ABC iD和ACC1.
蚂蚁能够最快到达目的
地的可能路径有如图所示的 AC i和AG两种.(2)蚂蚁沿着木柜表面经线段 AiBi到C 1, 爬过
的路径的长丨1 =「42 +(4+ 5) 2=- 97.蚂蚁沿着木柜表面经线段 BB到G,爬过的 路径的长
丨
2=「,(4+ 4) $ + 5 = ■ 89. v l 1
>l 2,A最短路径的长是 89.