平方根和立方根练习

合集下载

平方根和立方根解方程练习题

平方根和立方根解方程练习题

平方根和立方根解方程练习题一、平方根解方程练习题1. 解下列方程:x^2 - 7x + 12 = 0解析:根据一元二次方程的求解公式,可以得到:x = (7 ± √(7^2 - 4・1・12)) / (2・1)= (7 ± √(49 - 48)) / 2= (7 ± √1) / 2化简得:x1 = (7 + 1) / 2 = 8 / 2 = 4x2 = (7 - 1) / 2 = 6 / 2 = 3因此,方程x^2 - 7x + 12 = 0的解为x = 3和x = 4。

2. 解下列方程:2x^2 + 5x - 3 = 0解析:同样利用一元二次方程的求解公式,我们可以有:x = (-5 ± √(5^2 - 4・2・-3)) / (2・2)= (-5 ± √(25 + 24)) / 4= (-5 ± √49) / 4化简得:x1 = (-5 + 7) / 4 = 2 / 4 = 1/2 = 0.5x2 = (-5 - 7) / 4 = -12 / 4 = -3所以,方程2x^2 + 5x - 3 = 0的解为x = 0.5和x = -3。

二、立方根解方程练习题1. 解下列方程:x^3 + 8 = 0解析:根据立方根的性质,我们知道立方根函数是一个奇函数,即f(-a) = -f(a)。

因此,可以得到:x^3 = -8原方程的解可以表示为:x = -2,因为-2的立方是-8。

2. 解下列方程:x^3 + 27 = 0解析:同样利用立方根的性质,我们可以得到:x^3 = -27原方程的解可以表示为:x = -3,因为-3的立方是-27。

综上所述,我们完成了平方根和立方根解方程的练习题。

通过应用相应的数学公式和运算规则,我们成功地求解了给定方程中的未知数x 的值。

这些练习题可以帮助我们提高解方程的能力,并夯实我们在代数和数学上的基础知识。

希望通过不断练习和探索,我们能够熟练地应用这些技巧来解决更加复杂的方程。

六年级平方根与立方根的运算练习题

六年级平方根与立方根的运算练习题

六年级平方根与立方根的运算练习题第一部分:平方根的计算(共10小题,每题2分,满分20分)1. 27的平方根是多少?2. 64的平方根是多少?3. 求下列各数的平方根:(1) 100 (2) 144 (3) 400 (4) 6254. 求下列各数的平方根:(1) 1 (2) 4 (3) 9 (4) 165. 求下列各数的平方根:(1) 0 (2) 1 (3) 25 (4) 496. 求下列各数的平方根:(1) 81 (2) 121 (3) 169 (4) 1967. 求下列各数的平方根:(1) 256 (2) 324 (3) 625 (4) 7298. 求下列各数的平方根:(1) 14 (2) 31 (3) 63 (4) 929. 求下列各数的平方根:(1) 10 (2) 17 (3) 29 (4) 3710. 求下列各数的平方根:(1) 50 (2) 75 (3) 125 (4) 225第二部分:立方根的计算(共10小题,每题2分,满分20分)1. 求下列各数的立方根:(1) 8 (2) 27 (3) 64 (4) 1252. 求下列各数的立方根:(1) 1 (2) 2 (3) 3 (4) 43. 求下列各数的立方根:(1) 0 (2) 1 (3) 8 (4) 274. 求下列各数的立方根:(1) 16 (2) 64 (3) 125 (4) 2165. 求下列各数的立方根:(1) 243 (2) 512 (3) 729 (4) 10006. 求下列各数的立方根:(1) 10 (2) 20 (3) 30 (4) 407. 求下列各数的立方根:(1) 125 (2) 216 (3) 343 (4) 5128. 求下列各数的立方根:(1) 6 (2) 12 (3) 18 (4) 249. 求下列各数的立方根:(1) 15 (2) 30 (3) 45 (4) 6010. 求下列各数的立方根:(1) 100 (2) 200 (3) 300 (4) 400第三部分:综合运算(共5小题,每题6分,满分30分)1. 每个城市的人口是2356万,全国的城市有多少人?2. 一个盒子中有15个糖果,现在一共有6个盒子,一共有多少个糖果?3. 中国的国土面积是960万平方千米,美国的国土面积约为中国的4倍,美国的国土面积有多大?4. 一根铁丝用来制作鸟笼,总共需要14米,已经使用了9米,还剩下多少米?5. 一个矩形花坛的长是6米,宽是4米,需要铺上一层砖,每块砖的面积为0.5平米,一共需要多少块砖?请将答案写在答题纸上。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数学作为一门基础学科,对于我们的日常生活和学习都有着重要的作用。

而在数学中,平方根和立方根是我们常常会遇到的概念。

它们不仅有着实际应用,还能够锻炼我们的逻辑思维和计算能力。

下面,我们将给大家提供一些平方根和立方根的练习题及答案,希望能够帮助大家更好地理解和掌握这两个概念。

一、平方根练习题1. 计算下列各数的平方根:a) 9b) 16c) 25d) 36e) 49答案:a) √9 = 3b) √16 = 4c) √25 = 5d) √36 = 6e) √49 = 72. 计算下列各数的平方根(保留两位小数):a) 2b) 5c) 8d) 10e) 13答案:a) √2 ≈ 1.41b) √5 ≈ 2.24c) √8 ≈ 2.83d) √10 ≈ 3.16e) √13 ≈ 3.613. 判断下列各数是否为完全平方数:a) 16b) 21c) 36d) 42e) 49答案:a) 是b) 否c) 是d) 否e) 是二、立方根练习题1. 计算下列各数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 4d) ∛125 = 5e) ∛216 = 62. 计算下列各数的立方根(保留两位小数):a) 1b) 10c) 25d) 50e) 100答案:a) ∛1 = 1b) ∛10 ≈ 2.15c) ∛25 ≈ 2.92d) ∛50 ≈ 3.68e) ∛100 ≈ 4.643. 判断下列各数是否为完全立方数:a) 8b) 27c) 36d) 49e) 64答案:a) 否b) 是c) 是d) 否e) 是通过以上的练习题,我们可以更好地理解和掌握平方根和立方根的概念。

同时,这些练习题也能够帮助我们提高计算能力和逻辑思维能力。

在实际生活中,平方根和立方根的运用也非常广泛,比如在测量、建模和解决实际问题时,我们常常需要用到这些概念。

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。

学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。

下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。

练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。

2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。

3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。

练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。

2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。

3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。

练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。

2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。

3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。

通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。

不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。

实数平方根、立方根基础练习题

实数平方根、立方根基础练习题

实数平方根、立方根基础测试题一、算术平方根与平方根填空:1、 口算:(1)144的平方根 , 225的平方根 , 169的平方根 ,196的平方根 , 121的平方根 , 289的平方根(2) 100的平方根 , 10000的平方根 , 104的平方根 ,1010的平方根 , 0.01的平方根 , 0.000001的平方根 。

(3) 640000的平方根是 , 12100的算术平方根 ,0.64的平方根 ,1.44的算术平方根 , 0.0255的平方根是 ,1169的平方根是(4) 7的平方根 ,11的平方根 ,35的算术平方根 ,(5)平方根 , 算术平方根 , 225平方根 ,169平方根 ,|-972|的算术平方根是______的平方根是______,(6) 5的平方的平方根是 ,-8的平方的平方根是 ,-0.8的平方的算术平方根是 ,2)8( = ,2)8(= 。

2、逆运算:(1) 的算术平方根是15, 的算术平方根是0.5;的平方根是±8, 的平方根是±57. (2)若-21是数a 的一个平方根,则a =_____. (3)若a 的平方根是±5,则a = 。

(4)如果a 的平方根等于2±,那么_____=a ;(5)若a 的算术平方根是2,则a 是2、估算与大小比较:(1) 3介于整数 和 之间,它的整数部分是a ,小数部分是b ,则a = ,b = , (用含3式子表示)(2a 和b 之间,那么ab=(3) 满足x 是(4)在整数 和 之间;(5)在整数 和 之间(6)2-5 0(比大小)3、小数点的移动(1) 2.676=,26.76=,则a 的值等于 。

(2) 若896=29.933 则8960000=4、其他(1)的相反数是 ;绝对值是 .(2) 的点表示的数是 .(3)一个数的平方根是3a +1和7+a ,则a = .(4)一个数的平方根是4b-5和10+b ,则3b-10= 。

平方根、立方根练习题

平方根、立方根练习题

平方根:如果一个数的平方等于a ,那么这个数叫做的a 平方根,也称为二次方根。

正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“a -”,这两个平方根合起来记作“a ±”,读作“正、负根号a ”。

平方根性质:一个正数的平方根有2个,它们互为相反数;0只有1个平方根,它是0本身;负数没有平方根。

算术平方根 :正数a 有两个平方根,其中正的平方根,叫做a 的算术平方根.算术平方根性质:),0_____(2≥=a a ).0_____(2≤=a a练习:(1)()201.0= (2)()=25 (3)241⎪⎪⎭⎫ ⎝⎛= (4) 216= , (5) ()=-216 , (6)()25-= 。

立方根 1、如果一个数的立方等于a ,这个数就叫做a 的立方根,也称为三次方根。

也就是说,如果x 3=a ,那么x 叫做a 的立方根,记为x =3a ,读作“a 的立方根”或a 的三次方根。

2、练习:求下列各数的立方根(1) 64 (2) 1258- (3)0 (4)9立方根的性质:任何数都有一个立方根,正数的立方根是_____数, 负数的立方根是_____数,0的立方根是______.3、讨论: (!)讨论(38-)3等于多少?(32)3等于多少? (2)33)8(-等于多少?332等于多少?归纳出一般形式:(3a )3=_____, 33a =______一、填空题:1、144的算术平方根是 ,16的平方根是 ;2、327= , 64-的立方根是 ;3、7的平方根为 ,21.1= ;4、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;5、若3x x =,则x= ;若x x -=2,则x ;6、若0|2|1=-++y x ,则x+y= ;7、 的最小值是________,此时a 的取值是________。

8、若 , 则y=______ 。

二、选择题1、若a x =2,则( )A 、x>0B 、x≥0C 、a>0D 、a≥02、一个数若有两个不同的平方根,则这两个平方根的和为( )A 、大于0B 、等于0C 、小于0D 、不能确定3、一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±= D 、a b = 4、若a≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a |5、若正数a 的算术平方根比它本身大,则( )A 、0<a<1B 、a>0C 、a<1D 、a>16、若a<0,则aa 22等于( ) A 、21 B 、21- C 、±21 D 、0 7、若有 意义,则a 能取的最小整数为( ). 14+a 21++a x x x y 120052005+-+-=A 、0B 、1C 、-1D 、-48、若 ,则x+y 的值是( ). A 、-2 B 、-3 C 、-4 D 、无法确定三、一个小正方体的体积是27cm 3,另一个正方体的体积是它的8倍。

平方根与立方根计算练习题

平方根与立方根计算练习题

平方根与立方根计算练习题在数学中,平方根和立方根是常见的数学运算。

它们用于计算给定数的平方和立方根。

本文将为您提供一些关于平方根和立方根的计算练习题,帮助您巩固和提升这两个运算的能力。

一、平方根计算练习题1. 计算以下数的平方根:a) 25b) 36c) 81d) 1002. 请计算下列数的平方根,并保留两位小数:a) 2b) 5c) 10d) 133. 判断以下数是否是完全平方数(即存在整数的平方根):a) 16b) 17c) 254. 请计算下列数的平方根,并详细说明计算步骤:a) 64b) 121c) 196d) 289二、立方根计算练习题1. 计算以下数的立方根:a) 8b) 27c) 64d) 1252. 请计算下列数的立方根,并保留两位小数:a) 2b) 5c) 10d) 153. 判断以下数是否是完全立方数(即存在整数的立方根):a) 64c) 100d) 1204. 请计算下列数的立方根,并详细说明计算步骤:a) 216b) 343c) 512d) 729三、平方根与立方根混合计算练习题1. 计算以下数的平方根和立方根的乘积:a) 4b) 9c) 16d) 252. 计算以下数的平方根的立方:a) 2b) 3c) 5d) 73. 计算以下数的立方根的平方:a) 8b) 27c) 64d) 125四、实际问题求解练习题1. 根据以下信息,请计算一个正方形的边长:正方形的面积等于64平方厘米。

2. 根据以下信息,请计算一个立方体的边长:立方体的体积等于512立方厘米。

3. 根据以下信息,请计算一个球的半径:球的体积等于314立方厘米。

练习题答案:一、平方根计算练习题答案:1. a) 5 b) 6 c) 9 d) 102. a) 1.41 b) 2.24 c)3.16 d) 3.613. a) 是 b) 否 c) 是 d) 否4. a) 8 = √64 b) 11 = √121 c) 14 = √196 d) 17 = √289二、立方根计算练习题答案:1. a) 2 b) 3 c) 4 d) 52. a) 1.26 b) 1.71 c) 2.15 d) 2.473. a) 是 b) 是 c) 否 d) 否4. a) 6 = ∛216 b) 7 = ∛343 c) 8 = ∛512 d) 9 = ∛729三、平方根与立方根混合计算练习题答案:1. a) 8 b) 27 c) 64 d) 1252. a) 2^3 = 8 b) 3^3 = 27 c) 5^3 = 125 d) 7^3 = 3433. a) √8 = 2 b) √27 = 3 c) √64 = 8 d) √125 = 5四、实际问题求解练习题答案:1. 正方形的边长为8厘米。

平方根立方根解方程练习题

平方根立方根解方程练习题

平方根立方根解方程练习题一、平方根解方程题1. 解方程 $\sqrt{x} + 4 = 8$解:首先将常数项移项,得到 $\sqrt{x} = 8 - 4 = 4$。

然后对方程两边同时进行平方操作,得到 $x = 4^2 = 16$。

所以解为 $x = 16$。

2. 解方程 $\sqrt{2x + 6} = 4$解:将常数项移项,得到 $\sqrt{2x + 6} - 4 = 0$。

然后对方程两边同时进行平方操作,得到 $2x + 6 = 4^2 = 16$。

接着移项,得到 $2x = 16 - 6 = 10$。

最后除以 2,得到解 $x = \frac{10}{2} = 5$。

所以解为 $x = 5$。

二、立方根解方程题1. 解方程 $\sqrt[3]{x} = 3$解:将幂指数移到等号右边,得到 $x = 3^3 = 27$。

所以解为 $x = 27$。

2. 解方程 $\sqrt[3]{3x - 2} = 1$解:将幂指数移到等号右边,得到 $3x - 2 = 1^3 = 1$。

接着将常数项移项,得到 $3x = 1 + 2 = 3$。

最后除以 3,得到解 $x = \frac{3}{3} = 1$。

所以解为 $x = 1$。

三、平方根立方根解方程题1. 解方程 $\sqrt[3]{\sqrt{x}} = 2$解:首先对方程两边同时进行立方操作,得到 $\sqrt{x} = 2^3 = 8$。

然后对方程两边同时进行平方操作,得到 $x = 8^2 = 64$。

所以解为 $x = 64$。

2. 解方程 $\sqrt{\sqrt[3]{x}} = 3$解:首先对方程两边同时进行平方操作,得到 $\sqrt[3]{x} = 3^2 = 9$。

然后对方程两边同时进行立方操作,得到 $x = 9^3 = 729$。

所以解为 $x = 729$。

以上是平方根、立方根以及平方根与立方根复合解方程的练习题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根和立方根练习 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】平方根和立方根练习题 一、平方根 1.如果一个正数x 的平方等于a ,即x 2=a ,那么________叫做_________的算术平方根;0的算术平方根是______,∴当a ≥0时,a 表示a 的_________________;2. 如果x 2=a ,那么_________叫做_______的平方根;一个正数a 的平方根,记为________;____数没有平方根;平方根等于本身的数是_____________;3.下列说法正确的是( )(A )a 2的平方根是a , (B )a 2的平方根是-a(C )a 2的算术平方根是a , (D )a 2的算术平方根是a ;4.在数轴上实数a ,b 的位置如图所示,化简|a +b |+的结果是( )A .﹣2a ﹣bB .﹣2a +bC .﹣2bD .﹣2a 5.直接写出下列各式的值:(1)=16 (2)=04.0 (3)()=-22.0 (4)=-2)4((5) =--)2)(8( (6) =-221213 (7)-=16 (8)=0001.0(9)-=2569 (10)±=16 (11)=3600 6.若x 2= 4,则x=______;若=x 4,则x=______7.要使式子75-x 有意义,则x 的取值范围是( ) (A ) x ≠5 ,(B ) x ≥5 ,(C ) x >5 ,(D )x ≤5 ;8、计算:÷+(2﹣)0﹣(﹣1)2014+|﹣2|+(﹣)﹣2.9、.若(x -5)2+3+y =0,则xy=______;10.化简下列二次根式(1) (2) (3) (4). 11.若一个长方体的长为,宽为,高为,则它的体积为 cm 3. 12.计算的结果是 .13.计算:= .14.化简2﹣+的结果是( )A .B .﹣C .D .﹣15.化简(﹣2)2002(+2)2003的结果为( )A .﹣1B .﹣2C .+2D .﹣﹣216.如果下列二次根式中有一个与是同类二次根式,那么这个根式是() A . a B . C . D .17.如果=2﹣a ,那么( )A .a <2B .a ≤2C .a >2D .a ≥218.若代数式﹣在实数范围内有意义,则x 的取值范围是( )A .x ≠﹣2B .x ≤5C .x ≥5D .x ≤5且x ≠﹣219.式子(a >0)化简的结果是( )A .B .C .D .20.下列计算正确的是( )A .2=B .=C .4﹣3=1D .3+2=521、下列根式中,不是..最简二次根式的是( )A 7B 3C 12D 222、已知1x <,221x x -+( )A .1x - B.1x + C.1x -- D.1x -12.解下列方程:(1)36x 2-49=0 (2)(x -4)2=225 (3) x 2-289144=0 解:13.若一个正数的两个平方根分别为a +2和3a -1,求a 的值;解:14.若a 2=25,=b 4,求a +b 的值解:二、立方根1.±100的值等于( )A ±100B -10C ±10D 102.下列说法中正确的是( )A 512的立方根是±8B 39-没有意义C 64的立方根是4D -3320092009-=3.不使用计算器,估计76的大小应在( )A 7~8之间B ~之间C ~之间D 9~10之间4.若213=+x ,则(x +1)3等于( )A 8B ±8C 512D -5125.若x -6能开立方,则x 为( )A x ≥6B x =6C x <6D x 为任何数6.计算:(1)=-31 (2)=3125 (3)-3216-=7.求下列各式中的x 的值:解:(1)x 3=-64 (2) 3x 3-81=0 (3) (x+3)3=8(4) x 3-3=83 8.求下列各式的值:(1)364611+= (2)-3187-= (3)31834⨯⨯= (4)×=9、已知:43=c 且(a-2b+1)2+3-b =0, 求a 3+b 3+c 的立方根。

10、1.511+a ,511-b ,求a b +的值.1.把下列各数分别填入相应的集合里:正有理数{}; 负有理数{}; 正无理数{}; 负无理数{ }.2.23-的相反数是_______________;37-的绝对值是________________;3. 比较大小(填“>”,“<”,或“=”⑴π ⑵5 ⑶5_____22⑷312-_______313-4. 若式子x x 2442-+-是实数,则x=________5.若m=440-,则估计m 的值所在范围是( )A 1<m <2B 2<m <3C 3<m <4D 4<m <56.估计204164+⨯运算结果应在( ) A 6和7之间 B 7和8之间 C 8和9之间 D 9和10之间712x +有意义,则x 的取值范围为( )≥12 B. x≤12 ≥12- ≤12- 8.计算(1)(2). 9.(1)计算:(2﹣)2012(2+)2013﹣2|﹣|﹣(﹣)0. 10.求下列各式的值:⑴()22.0-= ⑵36425+= ⑶5104.0+= ⑷25232-+= ⑸⎪⎪⎭⎫ ⎝⎛-6616= 11.已知a 、b 互为倒数,c 、d 互为相反数,求()1332+++-d c ab ab 的值解:12.求下列各式中的x⑴()1632=-x ⑵21=-x ⑶272103=-x ⑷()81323=-x 13.已知12,12-=+=b a ,求b a +的值第四辑1.当x__________时,3-x 是实数;当x______________时,12+x 是实数.2.点A 在数轴上和原点相距5个单位,则点A 表示的实数为___________.3.a 与 3互为相反数,则a=_______,3+a =_________.4.比较下列各组数的大小:⑴3-______2,⑵38-______37-,⑶π-____- ⑷12+-______13+-,⑸75.0-_____-75.0,⑹3411_____4115.8的整数部分是数________,90的整数部分是数________,6.在实数-π,-,-5,-,0,2536,37-,-163……中, 无理数有________________________________________________.7.21-的相反数是__________,21-的绝对值是__________,21-的倒数是__________.8.若3++b a 与2--b a 互为相反数,则a=________,b=_________.9.绝对值小于20的负整数是__________________________10.2π与________是互为相反数,11 )A .3-B .3或3-C .9D .311.已知b y a x ==,,且a 是b 的10倍,则x 是y 的_______倍.12.若一个数的平方根等于这个数的立方根,则这个数是_____________.13.判断下列计算是否正确:⑴853=+ ( ) ⑵2222=+ ( )⑶323323= ( ) ⑷52125=⨯÷ ( )14.下列各数中没有平方根的是( )A ()21-B 0C 1001- D ()23±-15.能使2+x 在实数范围内开平方的x 的值为( )A x≥0 B x≤2 C x≥2 D x≥-216.写出下列各数的绝对值: ⑴-6,⑵23-,⑶325--,⑷26-,解:⑴ ⑵ ⑶ ⑷17.观察下列各式: ⑴312311=+ ⑵413412=+ ⑶514513=+…… 请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是___________________.18、先化简)12232461(32--= ,x 的取值范围是 .19、 比较大小; 310; 6 .(填“>”或“<”)20、③92731⋅+; ④0)31(33122-++; ⑤)31)(21(-+; ⑥2)52(-; ⑦2)3322(+; ⑧)32)(32(-+.21. 以下语句及写成式子正确的是( )是49的算术平方根,即749±= 是2)7(-的平方根,即7)7(2=- C.7±是49的平方根,即749=± D.7±是49的平方根,即749±=22. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a23、设0>a 、0>b ,则下列运算中错误..的是( ) (A )b a ab ⋅=(B )b a b a +=+ (C )a a =2)((D )b a b a =24、计算。

相关文档
最新文档