微波真空干燥全解

合集下载

微波干燥原理

微波干燥原理
微波干燥原理
由于微波加热干燥与常规干燥方法相比,有着显著的优越性和良好的经济效益,因而近年来微波加热干燥在制药工业中得到进一步应用。综观目前用于药品微波干燥设备的现状,只有微波干燥机、微波带式干燥机、微波真空干燥机、微波回转真空干燥机等,上述微波干燥设备虽然均应用了微波技术,但总存在不完善之处,为了解决上述问题,研制了智能化微波真空连续干燥机,这种新型微波干燥机可实现在微波和真空环境中进行连续低温干燥作业。本文从微波干燥机理入手,对智能化 微波真空连续干燥机原理、结构和特点作一阐述,同时对其应用进行分析。
智能化微波真空连续干燥机主要用于医药、化工、食品等行业中粉状、粒状、片状、条状物料的干燥,还特别适用于膏状物料(如浸膏)的干燥。
其中,由于膏状物料的粘稠和热敏等特殊的物性,一直是干燥领域的技术难题。如果采用真空类干燥设备,由于真空状态下传导加热速度很慢,则干燥时间长、且不均匀;又如采用不能连续出料的微波真空干燥机,其最大的缺点是干燥物料处于静止状态,不同位置的物料接受的微波能差异很大,严重影响干燥质量;再如选择其它类干燥机设备,则会存在加热装置体积较大与干燥速度慢的不完善之处。总之,智能化微波真空连续干燥机克服了上述诸多干燥设备的不完善之处,对于极难干燥的浸膏类物料,也已取得了非常满意的效果。
(3)连续干燥。该机内部采用能够自动纠偏的特殊材料的输送带、破碎机构、加料枪和出料器等,从而可以进行大产量的连续干燥作业。为此,在结构设计中妥善地解决了真空状态下实现加料、出料和防止微波能泄漏等技术问题。
(4)低温干燥。一方面,在微波场中,微波只与物料中的溶剂而不与基质相耦合,因此湿分就被加热、汽化、排出,而湿分的载体(基质)则主要是通过热传导给热,所以物料的温度不高,即所谓“选择性加热”;另一方面,该机是在真空环境中对物料进行干燥,从而大幅降低了溶媒的汽化温度。干燥物料温度不高并可以对其控制,因此非常适宜于低融点、热敏性类物料的干燥。

食品微波真空干燥技术研究进展

食品微波真空干燥技术研究进展

食品微波真空干燥技术研究进展一、本文概述随着科技的不断进步,食品干燥技术也在持续革新,其中,食品微波真空干燥技术作为一种新型的食品干燥方式,近年来受到了广泛关注。

本文旨在全面综述食品微波真空干燥技术的研究进展,以期能为食品工业的发展提供有益的参考。

本文将首先介绍微波真空干燥技术的基本原理和特点,阐述其在食品干燥中的应用优势,包括干燥速度快、产品品质高、节能环保等。

接着,文章将回顾食品微波真空干燥技术的研究历程,包括国内外在该领域的研究现状和取得的重要成果。

然后,将重点讨论食品微波真空干燥技术在不同类型食品中的应用,以及应用过程中遇到的关键问题和解决策略。

文章将展望食品微波真空干燥技术的未来发展趋势,以期为食品工业的技术升级和产业发展提供新的思路和方向。

通过本文的综述,我们期望能够加深对食品微波真空干燥技术的理解,推动其在食品工业中的广泛应用,也为食品科技工作者和研究者提供有益的参考和启示。

二、微波真空干燥技术的基本原理微波真空干燥技术结合了微波加热和真空干燥两种技术的优势,其基本原理在于利用微波能量直接作用于物料内部的极性分子,使其在高频电磁场的作用下快速振动并产生热能,从而达到加热干燥的目的。

在微波真空干燥过程中,物料被放置在微波谐振腔内,受到微波电磁场的作用。

微波能量穿透物料,直接作用于物料内部的极性分子,如水分子的偶极子。

这些偶极子在微波电磁场的作用下快速旋转和振动,摩擦产生热能,使物料温度升高。

同时,由于真空环境的存在,物料表面水蒸气压力降低,水的沸点也随之降低,从而实现了在较低温度下对物料的干燥。

微波真空干燥技术的基本原理决定了其具有加热均匀、热效率高、干燥速度快、能耗低等优点。

由于微波加热是内部加热方式,物料内外受热均匀,避免了传统干燥方法中的热传导和热对流引起的温度梯度,从而减少了物料干燥过程中的变形和开裂现象。

然而,微波真空干燥技术也存在一些局限性,如对于某些非极性物料或含水量较低的物料,微波加热效果可能不佳;微波加热可能会引起某些物料的热敏性成分发生变化,从而影响其品质。

微波干燥

微波干燥

微波干燥法:是通过微波加热原理使物料内部水分加热蒸发得到干燥效果的一种干燥方式。

如果物料的初始含水率很高,物料内部的压力非常快地升高,则水分可能在压力梯度的作用下从物料中排除。

微波干燥过程中,温度梯度、传热和蒸汽压迁移方向均一致,从而大大改善了干燥过程中的水分迁移条件,当然要优于常规干燥。

同时由于压力迁移动力的存在,使微波干燥具有由内向外的干燥特点。

即对物料整体而言,将是物料内层首先干燥,这就克服了在常规干燥中因物料外层微波干燥原理:原理微波是一种波长极短的电磁波,波长在1mm到1m之间,其相应频率在300GHz至300MHz之间。

为了防止微波对无线电通信、广播和雷达的干扰,国际上规定用于微波加热和微波干燥的频率有四段,分别为:L段,频率为890~940MHz,中心波长330mm;S段,频率为2400~2500MHz,中心波长为122mm;C段,频率为5725~5875MHz,中心波长为52mm;K段,频率为22000~22250MHz,中心波长8mm。

家用微波炉中仅用L段和S段。

微波是在电真空器件或半导体器件上通以直流电或50Hz的交流电,利用电子在磁场中作特殊运动来获得的。

这种运动可以简单的这样来解释一下:介质从电结构看,一类分子叫无极分子电介质,另一类叫有极分子电介质。

在一般情况下,它们都呈无规则排列,如果把它们置于交变的电场之中,这些介质的极性分子取向也随着电场的极性变化而变化,这就叫做极化。

外加电场越强,极化作用也就越强,外加电场极性变化得越快,极化得也越快,分子的热运动和相邻分子之间的摩擦作用也就越剧烈。

在此过程中即完成了电磁能向热能的转换,当被加热物质放在微波场中时,其极性分子随微波频率以每秒几十亿次的高频来回摆动、摩擦,产生的热量足以使物料在很短的时间内达到热干的目的。

微波是指波长在lmm一lm,也即频率在300--300000 MHz之间的电磁波。

微波干燥利用磁场方向的高频转变,使极性分子产生运动和摩擦,从而产生热量。

微波真空干燥.

微波真空干燥.

◎微波真空干燥真空干燥箱内依靠气体分子运动使工作室温度达到均匀的可能性几乎已经没有了。

因此,从概念上我们就不能再把通常电热(鼓风)干燥箱所规定的温度均匀度定义用到真空干燥箱上来。

在真空状态下设这个指标也是没有意义的。

热辐射的量与距离的平方成反比。

同一个物体,距离加热壁20cm处所接受的辐射热只是距离加应用范围:ZG/FZG型方形、圆形真空干燥机适用于在高温下易分解,聚合和变质的热敏性物料的低温干燥;被广泛地采用在制药、化工、食品、电子等行业。

工作原理:所谓真空干燥,就是将干燥物料处于真空条件下,进行加热干燥。

如果利用真空泵进行抽气抽湿,则加快了干燥速度。

注:如采用冷凝器,物料中的溶剂可通过冷凝器加以回收;如采用SK系列水环真空泵,可不用冷凝器,节省能源投资。

产品特点:真空下物料溶液的沸点降低,使蒸发器的传热推动力增大,因此对一定的传热量可以节省蒸发器的传热面积。

蒸发操作的热源可采用低压蒸汽或发热蒸汽。

蒸发器的热损失少。

在干燥前可进行消毒处理,干燥过程中无任何不纯物混入,符合GMP要求。

ZG/FZG型方形、圆形真空干燥机属于静态式真空干燥器,故干燥物料的形体不会损坏。

技术参数:项目机型名称单ZP ZP ZP ZPD ZPD ZPD ZPD-50位D-500 D-750 D-1000 -1500 -2000 -3000 00 工作容积 L 300 450 600900 1200 1800 3000 内筒尺寸 M m O600×1500 O800 × 1500 O800 × 2000 O1000 × 2000 O1000 × 2600 O1200 × 2600 O1400 × 3400搅拌转速Rp m 5-25 5-12 5 功率Kw 4 5.5 5.5 7.5 11 15 22 夹层设计压力Mp a ≤ 0.3 筒内压力 MP a -0.9~-0.096注:水份蒸发量与物料的特性及干燥温度有关。

微波真空干燥技术的探讨

微波真空干燥技术的探讨

干燥既是古老的贮藏食品又是现代工业保藏食品的方法之一,食品干燥的主要目的是降低水分含量,使微生物和化学反应引起的腐败速度降到最低程度。

通常,普通的热风干燥容易使食品营养成分丢失,对食品质量产生不利影响;冷冻干燥虽然能使食品质量品质如色、香、味保持的较好,但成本相对较高高。

所以在干燥过程中,对于物料的品质与经济效益的综合考虑,微波真空干燥技术被认为是较好的一项新技术。

微波真空干燥是把微波干燥和真空干燥结合在一起,充分发挥二者的干燥优势,以优化干燥过程。

微波真空干燥设备由微波谐振腔(微波发生器)、真空系统、物料旋转盘和自动控制系统组成。

1 微波真空干燥原理及特性1.1原理微波是指频率在300MHz到300KMHz的电磁波。

介质物料由极性分子(水分子)和非极性分子组成,在电磁场作用下,这些极性分子从原来的随机分布状态转向按照电场的极性排列取向。

在高频电磁场的作用下,这些取向按交变电磁场的变化而变化,这一过程致使分子的运动和相互磨擦效应,从而产生热量。

此时交变电磁场的电磁能转化为介质内的动能,动能再转化成热能,使介质温度不断升高。

微波加热是使被加热物体本身成为发热体,故称之为内部加热方式。

这种方式不需要热传导的过程,电磁波从周围或特定的方向穿过物料,使得物料内各部分在同一瞬间获得热能而升温,因此能在短时间内达到均匀加热。

此时,由于物料表面水份蒸发,致使表面温度降低,从而造成一个内高外低的温度梯度,这个梯度的方向正好与水份蒸发的方向一致,使得蒸发加快,所以效率极高。

同时由于内部产生热量,以致于内部蒸汽迅速产生,形成压力梯度,如果物料的初始含水率很高,物料的内部压力非常快的升高,水分会在压力梯度的作用下从物料排除。

在干燥的过程中能量转化经过了两个步骤,先是电磁能转化为有序运动的分子动能,然后通过碰撞转化为热能。

在真空状态下,水的沸点降低,从而使物料在相对较低的温度下就可以沸腾蒸发。

真空不仅能使物料在保持低温状态下蒸发,还能产生压力梯度提高干燥效率。

微波真空干燥技术.

微波真空干燥技术.
LOGO
M icrowave vacuum Drying T echnology
微波真空干燥
学生:高田莉 学号:1208321145 指导老师:于江

Hot Tip
什么是微波真空干燥?
用微波辐射作为加热源,在真空条件(极限真空度为 0 . 08MPa)下,进行加热而使物料脱水的过程(工作频率为 ( 2450 50) MH z) 优点(快速、 高效、 低温)
. 微波功率计算 : P =Q( 7)t12 Text in here式中: P :微波功率 ( kW ); t:干燥时间 ( s);
加热效率 (% ); 2 表示微波转换效率(% ) 1 :微波

LOGO
Diagram
Eg: 以胡萝卜为例, 初始含水率和终含水率分别为 86% 和 5%, 比热容为 3. 88 kJ kg- 1 K- 1, 物料干燥前的 温度为 25 , 干燥后的温度为 75 , 水的汽化 潜热为 2418. 4 kJ kg- 1, 干燥时间为 3600 s. 所需热量? Q = m 0 [ 4. 18Xw 1 (T 2 - T 1 ) + c1 ( 1- Xw 1 ) (T 2 - T 1 ) + H r (Xw 1 - Xw2 ) ] . 经计算可得所需的热量 Q 为 8857. 88 kJ. Text in here 一般地, 微波真空干燥机的加热效率 1 为 80% , 微 波转换效率 2 为 80% , 据公式P =Q( 7)t12,则可 求得微波功率为 3. 8KW
1.2 1 0.8 0.6 0.4 0.2 0
色泽口感好营养成分保留率高 ↘
• 40以下
微 波 真 空 干 燥
冷 风 干 燥
热 其 风 它 时间

真空微波干燥原理

真空微波干燥原理

真空微波干燥原理
真空微波干燥是一种结合了真空技术与微波加热技术的干燥方法。

其原理是利用微波的热效应在真空环境下加热物料,使水分蒸发并快速干燥。

以下是真空微波干燥的原理描述:
1. 真空环境:真空微波干燥使用密封的容器,在真空状态下进行干燥。

通过降低环境中的气压,降低水分的沸点,加速水分的蒸发速度。

2. 微波加热:微波是一种高频电磁波,可以快速穿透物料。

在干燥过程中,微波进入物料中,与物料中的水分分子发生相互作用,使水分分子不断摩擦碰撞、振动并转化为热能。

3. 温度控制:在干燥过程中,通过控制微波功率和干燥时间,可以实现对干燥物料的温度控制。

通过监测干燥物料的温度变化,可以调整微波功率和干燥时间,确保物料受热均匀且不超过其热稳定性范围。

4. 水分蒸发:物料中的水分在受热的作用下迅速蒸发,通过真空环境,水分蒸发出容器并从物料中移除,使物料迅速干燥。

5. 干燥效果:真空微波干燥可以有效控制干燥过程中的温度和湿度,从而实现快速、均匀且高效的干燥效果。

与传统的热风干燥相比,真空微波干燥可以在较低的温度下实现较高的干燥速度,有助于保留物料的品质和营养成分。

总之,真空微波干燥通过结合真空技术和微波加热技术,在真
空环境下对物料进行快速、均匀的干燥。

这种干燥方法具有温度可控、干燥速度快、品质保留等优点,被广泛应用于食品、药品、化工等行业的干燥过程中。

微波真空干燥机的原理

微波真空干燥机的原理

微波真空干燥机的原理
微波真空干燥机是一种采用微波辐射的干燥设备,其工作原理如下:
首先,将待干燥物品放入微波真空干燥腔中,腔体通常是金属材料制成。

然后,通过真空泵将腔体内部抽成低压真空状态。

在真空状态下,微波辐射能更加充分地传递给物品表面。

接下来,通过微波发生器产生和供应微波辐射,微波辐射的频率通常在2.45 GHz左右。

这些微波辐射以无线电波的形式传递,会因为物体的反射、吸收、透射等特性而发生变化。

当微波辐射与物体表面接触时,一部分能量会被物体吸收,转化为热能。

这样,物体内部温度会逐渐升高,水分分子也会逐渐蒸发。

蒸发的水分会通过真空泵抽出腔内,从而实现干燥的目的。

需要注意的是,微波真空干燥机在干燥过程中需要保持恒定的微波功率和较低的压力。

微波功率的控制可以通过微波发生器和功率调节器实现;压力的控制则通过真空泵和控制阀门来实现。

总体而言,微波真空干燥机利用微波辐射的特性,通过真空泵抽出腔内空气和水分,从而将物品中的水分蒸发出来,实现干燥的目的。

这种干燥方法具有快速、均匀、高效的特点,适用于对物品表面和内部进行干燥的应用领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波加热主要特点
加热迅速 微波加热与传统加热方式完全不同。它是使被加热 物料本身成为发热体,不需要热传导的过程。因此, 尽管是热传导性较差的物料,也可以在极短的时间 内达到加热温度。
加热均匀 无论物体各部位形状如何,微波加热均可使物体表 里同时均匀渗透电磁波而产生热能。所以加热均匀 性好,不会出现外焦内生的现象。
真空干燥时物料的脱水是依靠热传导将 外来热量传递给被干燥物料的,而在低气 压环境下,用对流方式进行热传递速度较 慢,妨碍了真空干燥优点的发挥。
微波干燥是利用介电加热原理,依靠高频 电磁振荡来引发分子运动,使被加热物发 热,加热方式有别于传统的对流、传导与 辐射,系微波直接对物体进行加热,传热 这一限制因素被打破。
如果击穿放电发生在食品表面,则会 使食品焦糊,一般20kV/m的场强就 可击穿食品(介电常数不同)。
所以正确选择真空度大小非常重要, 真空度并非越高越好,过高的真空度 不仅能耗增大,而且击穿放电的可能 性增大。
3.3微波功率
微波对物质选择性加热的特性。 水是分子极性非常强的物质,较易受到微波作用而
现代食品加工技术
微微波真空干燥原理 二、微波真空干燥的特点 三、几个重要因素对微波真空干燥效果
的影响 四、微波真空干燥在农产品加工中的应
用 五、展望
一、微波真空干燥原理
微波是频率在300兆赫的电磁波。 被加热介质物料中的水分子是极性分子。
它在快速变化的高频电磁场作用下,其极 性取向将随着外电场的变化而变化,造成 分子的运动和相互摩擦效应。 此时微波场的场能转化为介质内的热能, 使物料温度升高,产生热化和膨化等一系 列物化过程而达到微波加热干燥的目的。
部逐渐形成疏松多孔状,其内部的导热性 开始减弱,即物料逐渐变成不良的热导体。
随着微波真空干燥过程的进行,内部温度 会高于外部,物料体积愈大,其内外温度 梯度就愈大,内部的热传导不能平衡微波 所产生的温差,使温度梯度达到不能接受 的水平。
因此,一般应预先把物料处理到较小的粒 状或片状以改进干燥的效果。
脱水农产品具有方便、健康、毋须冷藏、 保藏运输费用低等优点,在世界各地有着广 阔的市场前景。
目前传统的热风干燥已不能满足消费者追求 品质一流的要求
真空冷冻干燥的产品品质优良,但存在的问 题:
干燥时间长,设备投资大,生产成本高
微波加热干燥农产品时,微波能穿透产 品,因此热传递比其他形式的能更为有 效。而真空干燥后产品膨化性能提高, 口感酥脆
微波真空干燥
微波真空干燥把微波干燥和真空干燥两项 技术结合起来,充分发挥各自优势,在一 定的真空度下水分扩散速率加快,可以在 低温条件下对物料进行干燥,较好地保持 了物料的营养成分。微波可为真空干燥提 供热源,克服了真空状态下常规热传导速 率慢的缺点,因而大大缩短了干燥时间, 提高了生产效率。
2 微波真空干燥的特点
由此微波真空干燥技术就应运而生,它 表现出两者的优点:
既降低了干燥温度又加快了干燥速度, 产品的口感、风味和复水性都较佳。
1 微波真空干燥的原理
微波是一种电磁波,可产生高频电磁场。 介质材料由极性分子和非极性分子组成,在 电磁场作用下,极性分子从原来的随机分布 状态转向依照电场的极性排列取向,在高频 电磁场作用下造成分子的运动和相互摩擦从 而产生能量使得介质温度不断提高。因为电 磁场的频率极高,极性分子振动的频率很大, 所以产生的热量很高。
节能高效 由于含有水分的物质容易吸收微波而发热,因此除 少量的传输损耗外,几乎无其它损耗。故热效率高、 节能。它比红外加热节能1/3以上。
工艺先进 只要控制微波功率即可实现立即加热和终止。应用 人机界面和PLC可进行加热过程和加热.工艺规范的 可编程自动化控制。
安全无害 由于微波能是控制在金属制成的加热室内和波导管 中工作,所以微波泄漏极少,没有放射线危害及有 害气体排放,不产生余热和粉尘污染,既不污染食 物,也不污染环境。
粉末状产品在微波干燥时具有其独特性。 当它们被堆积在一起时不应看成是许多小 颗粒,而是一个整体,需要特别注意料层 的内外温差。
一般当物料以较大的形式出现时,需在物 料接近减速干燥期时,降低微波功率,从 而有效减少其内外温差,但反效果是延长 了干燥时间。
3.2真空度
P越低→P水的沸点温度越低→物料中水分扩散速度 加快
发热,因此含水量愈高的物质,愈容易吸收微波, 发热也愈快;当水分含量降低,其吸收微波的能力 也相应降低。
一般在干燥前期,物料中水分含量较高,微波功率 对干燥效果的影响高些,可采用连续微波加热,这 时大部分微波能被水吸收,水分迅速迁移和蒸发;
在等速和减速干燥期间,随着水分的减少,需要的 微波能也少,可采用脉冲间隙式微波加热。
当微波加热应用于食品工业时,在高频电磁 场作用下,食品中的极性分子(水分子)吸收 微波能产生热量,使食品迅速加热、干燥。
水和一般湿介质在一定的介质分压作用下, 对应一定的饱和温度,真空度越大,湿物料 所含的水或湿介质对应的饱和温度越低,即 沸点温度低,越易汽化逸出而使物料干燥, 真空干燥就是根据这一热物理特性,在真空 条件下将气相中的低压水蒸气及空气等含量 较少的不凝结气体,借真空泵的抽吸而除去。
(1)干燥均匀快速。 (2)能很好地保持食品的营养成分和风味。 (3)具有防霉、杀菌、保鲜的作用。 (4)节能高效、安全环保。 (5)易于控制及实现连续化生产。
3 几个重要因素对微波真空 干燥效果的影响
3.1物料的种类和大小 由于物料种类和状态千差万别,微波真空
干燥工艺并非固定不变。 事实上,在微波真空干燥过程中,物料内
微波真空谐振腔内真空度的大小主要受限于击穿电场 强度,因为在真空状态下,气体分子易被电场电离, 而且空气、水汽的击穿场强度随压力而降低;电磁波 频率越低,气体击穿场强越小。
气体击穿现象最容易发生在微波馈能耦合口以及腔体 内场强集中的地方。击穿放电的发生不仅会消耗微波 能,而且会损坏部件并产生较大的微波反射,缩短磁 控管使用寿命。
相关文档
最新文档