最新全等三角形的判定(SSS)练习题

合集下载

11.2 三角形全等的判定(SSS)(含答案)

11.2 三角形全等的判定(SSS)(含答案)

11.2 三角形全等的判定(SSS)题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

◆课堂测控测试点边边边1.如图,点B,E,C,F在同一直线上,AB=DE,AC=DF,BE=CF,∠A=•43°,求∠D的度数,下面是小红同学的求解过程,请你说明每一步的理由.解:因为BE=CF,所以BE+EC=CF+EC,即BC=EF.在△ABC与△DEF中,,,AB DEAC DFBC EF=⎧⎪=⎨⎪=⎩所以△ABC≌△DEF().所以∠D=∠A=43°().2.已知:如图,C是AB的中点,AD=CE,CD=BE,求证:△ACD≌△CBE.◆课后测控3.如图,AC=BD,AB=DC,求证:∠B=∠C.4.已知:如图,点A,C,B,D都在一条直线上,AC=BD,AM=CN,BM=DN.求证:AM∥CN.5.三月三放风筝,下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学知识给予证明.◆拓展测控6.有一块三角形的厚铁板(如图),根据实际生产需要,工人师傅要把∠MAN平分开,现在他手边只有一把尺子(没有刻度)和一根细绳,•你能帮助工人师傅想个办法吗?并说明你这样做的理由.答案:1.SSS 全等三角形对应角相等2.∵C是AB的中点,∴AC=BC.在△ACD与△CBE中,,,,AC CBAD CECD BE=⎧⎪=⎨⎪=⎩∴△ACD≌△CBE(SSS).[总结反思]三条边对应相等的两个三角形全等,•运用此结论可证明两个三角形全等.3.证明:在△ABD与△DCA中,,,,AB DCDB ACAD DA=⎧⎪=⎨⎪=⎩∴△ABD≌△DCA(SSS),∴∠B=∠C.[解题规律]证明线段相等或角相等时,常证明它们所在的两个三角形全等,本题中证明两个三角形全等已具备两个条件,运用公共边这个隐含条件是解题关键.4.∵AC=BD,∴AC+CB=BD+CB,即AB=CD.在△AMB和△CND中,,,,AM CNBM DNAB CD=⎧⎪=⎨⎪=⎩∴△AMB≌△CND(SSS).∴∠A=∠NCD,∴AM∥CN.[解题技巧]题目中条件AC=BD不能直接用来证明,可运用等式的性质变为AB=CD.5.证明:连结DH.在△DEH和△DFH中,,,.DE DFEH FHDH DH=⎧⎪=⎨⎪=⎩∴△DEH≌△DFH(SSS),∴∠DEH=∠DFH.[解题规律]连结EH即将原图形分成一对三角形,利用公共边运用SSS可得两个三角形全等.6.用绳子的一定长度在AM,AN边上截取AB=AC,再选取适当长度的绳子,将其对折,得绳子的中点D,把绳子的两端点固定在B,C两点,拽住绳子中点D,向外拉直BD和CD,•再在铁板上点出D的位置,作射线AD,则AD平分∠MAN.理由如下:如图,∵在△ABD和△ACD中,,,,AB ACBD CDAD AD=⎧⎪=⎨⎪=⎩∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠MAN.[解题技巧]这是一道实际应用问题,通过构造两个三角形全等将∠MAN平分,•解题关键是得到绳子的中点并拉直绳子,从而可知DB=DC.可以编辑的试卷(可以删除)This document is collected from the Internet, which is convenient for readers to use. If there is any infringement, please contact the author and delete it immediately.。

全等三角形判定SSS练习题

全等三角形判定SSS练习题
全等三角形判定SSS练习题
5、已知:如图,AB=DC,AD=BC, 求证:∠A=∠C
A
D
B
C
全等三角形判定SSS练习题
6、已知:如图 , AB=AC , AD=AE , BD=CE.求证:∠BAC=∠DAE.
A
E
D
B
C
全等三角形判定SSS练习题
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
4、 如图,已知AB=CD,AC=BD, 求证:∠A=∠D.
AD
O
B
C
全等三角形判定SSS练习题
5、如图,已知AB=AD,AC=AE, BC=DE,求证:∠1=∠2
A
12ELeabharlann CBD全等三角形判定SSS练习题
1、已知AD=BE,BC=EF, AC=DF,求证EF//BC
D
A
E
F
B
C
全等三角形判定SSS练习题
1、已知AB=DE,BC=EF,D,C在 AF上,且AD=CF,求证: AB//DE.
全等三角形判定SSS练习题
2、已知AB=DE,BC=EF,AF=CD, 求证EF//BC:
E
F1
A
2
C
D
B
全等三角形判定SSS练习题
3、如图,已知AB=AC,AD为 △ABC的中线,求证:AD⊥BC
A
BD C
全等三角形判定SSS练习题
2、如图,△ABC中,D是BC边的中 点,AB=AC,求证:∠B=∠C
A
B
D
C
全等三角形判定SSS练习题
3、已知:如图,B、E、C、F在一 条直线上,且BE=CF,AB=DE, AC=DF。 求证:△ABC≌△DEF

全等三角形的判定(SSS)

全等三角形的判定(SSS)

。 A
c
D
=
=
。B
E
图1
F
(2)∵△ABC≌△FDE(已证) ∴∠C=∠E(全等三角形的对应角相等)
(3)∵△ABC≌△FDE(已证) ∠A=∠F(全等三角形的对应角相等)
AC//EF(内错角相等,两直线平行)
例.有一种作已知角的平分线的方法,如图,在∠AOB的两边上 分别取点D、E,使OD=OE,再分别以D、E为圆心,大于DE一 半的长为半径作弧,两弧相交于点C,作射线OC,则OC就是 ∠AOB的平分线。试说明这种作法的正确性。
3.两个等腰直角三角形全等
(×)
4.都有两边长分别为3厘米和5厘米的两个 等腰三角形全等
(×)
5.都有两边长分别为3厘米和8厘米的两个
等腰三角形全等
(√ )
练习
已知:如图,AB=AC,DB=DC,
求证:∠B =∠C.
A
证:连接AD
在△ABD和△ACD中,
AB=AC (已知)
DB=DC (已知)
D
AD=AD (公共边)
3.连接线段A′B′ , A′C′.
A
A
B
C
B
C
△A′ B′ C′ 与 △ABC 能不能重合?是不是全等?
边边边公理:
三边对应相等的两个三角形全等。 简写为“边边边”或“SSS”
注:这个定理说明,只要三角形的三边的长度确定了, 这个三角形的形状和大小就完全确定了, 这也是三角形具有稳定性的原理。
A
B
C
∴△ABD≌△ACD (SSS)
∴∠B =∠C (全等三角形的对应角相等)
练习
已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线.

全等三角形判定SSS练习题(优选)

全等三角形判定SSS练习题(优选)

A
C
F
E
B
D
11
2、如图,△ABC中,D是BC边的中 点,AB=AC,求证:∠B=∠C
A
B
D
C
12
3、已知:如图,B、E、C、F在一 条直线上,且BE=CF,AB=DE, AC=DF。 求证:△ABC≌△DEF
A
D
B
E
C
F
13
4、已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC
14
A
D
B
C
8
4、已知C是BD上一点, AC=CE,AB=CD,BC=DE, ∠B=900 求证:AC⊥CE
A
B C
E D
9
5、如图,已知AE=AB,AF=AC, EC=BF,求证:∠CMF=∠CAF
F
ቤተ መጻሕፍቲ ባይዱ
E
A
M
B
C
10
1、已知:如图,A、B、E、F在一条 直线上,且AC=BD,CE=DF, AF=BE。求证:△ACE≌△BDF
5、已知:如图,AB=DC,AD=BC, 求证:∠A=∠C
A B
D C
15
6、已知:如图 , AB=AC , AD=AE , BD=CE.求证:∠BAC=∠DAE.
A
E
D
B
C
16
点击此处添加标题
欢迎使用 可删
AD
O
B
C
4
5、如图,已知AB=AD,AC=AE, BC=DE,求证:∠1=∠2
A
12
E
C
B
D
5
1、已知AD=BE,BC=EF, AC=DF,求证EF//BC

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。

120°B.125°C。

127° D。

104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BAD B。

∠CAB=∠DBA C.OB=OC D。

∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论。

5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3 B。

4 C.5 D。

6CBA 2、如图2,AB=AC ,AD=A E,欲证△A BD ≌△A CE ,可补充条件( ) A 。

∠1=∠2B .∠B=∠C C.∠D=∠ED 。

∠BAE=∠C AD 3、如图3,AD=B C,要得到△AB D和△CD B全等,可以添加的条件是( )A .AB∥CD B。

AD ∥B CC .∠A=∠C D.∠ABC =∠CDA4、如图4,AB 与CD 交于点O ,O A=OC ,OD =OB ,∠A OD =________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,A D平分∠BAC ,请补充完整过程说明△A BD≌△ACD 的理由。

三角形全等的判定(SSS,SAS)同步训练

三角形全等的判定(SSS,SAS)同步训练

1、如图,AB=AC ,BD=CD ,求证:∠1=∠2.
2.如图, DA DB = ,AC BC =。

求证:DAC
DBC ∆≅∆
3、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .
4、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.
5.如图,点E,F在BD上,且AB=CD,BF=DE,AE=CF,AC与BD相交于点O.求证:AE∥CF.
6、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.
⑴请你添加一个条件,使△DEC≌△BFA;
⑵在⑴的基础上,求证:DE∥BF.
C B A 7、如图6,已知AB=A
D ,AC=A
E ,∠1=∠2,求证∠ADE=∠B.
8、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?
9.如图,已知在ABC △中,AB AC =,12∠=∠.
求证:AD BC ⊥,BD DC =.
A C
2 1
3 4
10. 如图,CF BE =, DC AB =, C B ∠=∠ ,求证:DCE ABF ∆≅∆
11.如图,点C 是BD 的中点 ,EC AC =, , ECB ACD ∠=∠ ,求证:EDC ABC ∆≅∆
12.如图,点M ,N 在线段AC 上,AM =CN ,AB ∥CD ,AB =CD.求证:∠1=∠2.。

全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题

全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题

全等三角形的性质与判断(SSS、SAS、ASA 、AAS )练习题1.如图,在△2.如图,把△则∠ A=A ABC中,∠ A=90°, D、 E 分别是 AC、 BC上的点,若△ ADB≌△ EDB≌△ EDC,则∠ C= ABC 绕点 C 顺时针旋转35°,获得△ A′ B′ C, A′ B′交 AC 于点 D,若∠ A′ DC=90°,A' BEDAD D A' C FCB'B'AB E CB CO A B1题图2题图3题图4题图3.如图,△ AOB 中,∠ B=3 0°,将△ AOB 绕点 O 顺时针旋转 52°,获得△ A′ OB′,边 A′B′与边OB交于点 C( A′不在 OB上),则∠ A′ CO=4.如图,△ AB C≌△ ADE , BC 的延伸线过点 E,∠ ACB= ∠ AED=10 5°,∠ CAD=1 0°,∠ B=50°,则∠ DEF=5.如图, Rt △ ABC中,∠ BAC=90°, AB=AC,分别过点 B、 C 作过点 A 的垂线 BC、CE,垂足分别为 D、E,若 BD=3 , CE=2 ,求 DE 的长 .BCD A E6.如图, AD 是△ ABC的角均分线, DE⊥AB, DF⊥AC,垂足分别是 E、 F,连结 EF,交 AD 于 G,试判断AD与 EF的关系,并证明你的结论。

AEGFBDC7.如下图,在△ ABC 中, AD 为∠ BAC 的角均分线, DE⊥ AB 于 E, DF⊥ AC 于 F,△ ABC 的面积是28cm2,AB=20cm,AC=8cm,求 DE的长。

AE FB D C8.如图, AD=BD , A D⊥ BC于 D, BE⊥ AC于 E, AD与 BE 订交于点 H,则 BH与 AC相等吗?为何?AEH- 1 -B D C1 / 49.已知: BD 、 CE 是△ ABC 的高,点 F 在 BD 上, BF=AC ,点 G 在 CE 的延伸线上, CG=AB ,求证: A G⊥AFG AE DFB C10.如图:在△ ABC中, BE、 CF 分别是 AC、AB 两边上的高,在 BE 上截取 BD=AC,在 CF 的延伸线上截取CG=AB,连结 AD、 AG.试判断 AD与 AG的关系怎样?并证明之.AGF EDHB C11.已知,如图:AB=AE,∠ B=∠ E,∠ BAC=∠ EAD,∠ CAF=∠ DAF,求证:AF⊥ CDAEBC F DA12.已知:∠ B=∠ E,且AB=AE。

全等三角形综合练习题含答案

全等三角形综合练习题含答案

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )°°°°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBA =OC D.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定(SSS )练习题
1.如图,ABE ∆≌DCF ∆,
点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 .
2.如图,ABC ∆≌AED ∆,
若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,=∠DAC .
3.已知ABC ∆≌DEF ∆,若ABC ∆的周长为23,AB=8,BC=6,则AC= ,EF= .
4.如图,若AB=AC ,BE=CD ,AE=AD ,则ABE ∆ ACD ∆,所以
=∠AEB ,=∠BAE ,=∠BAD .
5.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.
6.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求DEF ∠的度数及CF 的长.
7.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠
B
第1题图
D
第2题图

4题图
8.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠
9.如图,已知AB=EF ,BC=DE ,AD=CF ,求证:①ABC ∆≌FED ∆;②AB//EF
10.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠
D
F
E。

相关文档
最新文档