初中数学圆和垂直于弦的直径考试卷及答案.docx

合集下载

九年级数学:-垂径定理课堂测试卷(含答案)

九年级数学:-垂径定理课堂测试卷(含答案)

2020 九级数学上册圆圆的基本性质-垂径定理课堂测试卷一、选择题:1、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.52、如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DMB.CB=DBC.∠ACD=∠ADCD.OM=MD3、如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,如果OC=3,那么弦AB的长为()A.4B.6C.8D.104、下列判断正确的是( )A.平分弦的直径垂直于弦B.平分弦的直径必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦5、如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.86、一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4B.6C.8D.97、如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)8、如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<59、如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A. B. C. D.10、如图,AB是⊙O的直径,半径OC⊥AB,点D是弧ACB上的动点(不与A、B、C重合),DE⊥OC,DF⊥AB,垂足分别是E、F,则EF长度()A. 变大B. 变小C. 不变D. 无法确定二、填空题:11、如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC= cm.12、如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是.13、如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为.14、如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB长是.15、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的半径是米.16、如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是 .三、解答题:17、如图,⊙O的半径为5,AB为弦,OC⊥AB,交AB于点D,交⊙O于点C,CD=2,求弦AB的长.18、如图,在以点O为圆心的两个圆中,大圆的弦AB交小圆于点C、D,求证:AC=BD.19、如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.20、每位同学都能感受到日出时美丽的景色.右图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.参考答案1、D2、D3、C4、C5、C6、D.7、C8、A9、D10、C11、512、213、答案为:3;14、答案为:10.15、答案为:0.516、答案为:5.17、解:∵OC是⊙O的半径,OC⊥AB于点D,∴AD=BD=AB.∵OC=5,CD=2,∴OD=OC-CD=3.在Rt△AOD中,OA=5,OD=3,∴AD===4,∴AB=2AD=8.18、证明:过圆心O作OE⊥AB于点E,在大圆O中,OE⊥AB,∴AE=BE.在小圆O中,OE⊥CD,∴CE=DE.∴AE﹣CE=BE﹣DE.∴AC=BD.19、连接OA,过点O作OD⊥AB于点D.∵AC=4,CB=8,∴AB=12.∵OD⊥AB,∴AD=DB=6,∴CD=2.在Rt△CDO中,∠CDO=90°,∴OD=2.在Rt△ADO中,∠ADO=90°,由勾股定理,得OA=4,即⊙O的半径是4.20、解:连接OA,过点O作OD⊥AB,∵AB=8厘米,∴AD=AB=4厘米,∵OA=5厘米,∴OD==3厘米,∴海平线以下部分的高度=OA+OD=5+3=8(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度==0.5厘米/分钟.。

垂直于弦的直径-九年级数学人教版(上)(原卷版+解析版)

垂直于弦的直径-九年级数学人教版(上)(原卷版+解析版)

第二十四章圆24.1.2垂直于弦的直径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.B.2C.2D.2.如图是⊙的直径,弦⊥于点则A.B.C.D.3.如图,在半径为5的圆O中,AB,C D是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为A.3 B.4C.D.4.如图,A、B是⊙O上两点,若四边形ACB O是菱形,⊙O的半径为r,则点A与点B之间的距离为A.B.C.r D.2r二、填空题:请将答案填在题中横线上.5.如图,AB为圆O的直径,CD为圆O的弦,AB⊥CD于M,若AB=10 cm,CD=8 cm,则AM=_________cm.6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.7.如图,AB是⊙O的直径,点D平分弧AC,AC=5,DE=1.5,则OE=_____.8.“圆材埋壁”是我国古代名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小。

以锯锯之,深一寸,锯道长一尺。

问:径几何?”大意是:如图,CD是⊙O的直径,弦A B⊥CD,垂足为E,CE=1寸,AB=10寸,则CD=________.9.如图是一个高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=8米,净高CD=8米,则此圆的半径OA为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.一条排水管的截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m,某天下雨后,水管水面上升了0.2 m,求此时排水管水面的宽CD.第二十四章圆24.1.2垂直于弦的直径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.B.2C.2D.【答案】D2.如图是⊙的直径,弦⊥于点则A.B.C.D.【答案】A3.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为A.3 B.4C.D.【答案】C【解析】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON=,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°,∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3.故选:C.4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为A.B.C.r D.2r【答案】B∴AD=OA sin60°=则AB=2AD=.故选:B.【名师点睛】考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.二、填空题:请将答案填在题中横线上.5.如图,AB为圆O的直径,CD为圆O的弦,AB⊥CD于M,若AB=10 cm,CD=8 cm,则AM=_________cm.【答案】2【解析】连接OD,如图,6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.【答案】5【解析】∵⊙O的直径CD垂直弦AB于点E,AB=8,∴BE=4,∠OEB=90°,设OB=x,则OC=x,∵CE=2,∴OE=x-2,∵在Rt△OBE中,OB2=OE2+BE2,∴,解得:,∴OB=5.故答案为5.7.如图,AB是⊙O的直径,点D平分弧AC,AC=5,DE=1.5,则OE=_____.【答案】8.“圆材埋壁”是我国古代名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小。

初中数学九年级上册垂直于弦的直径练习题含答案

初中数学九年级上册垂直于弦的直径练习题含答案

初中数学九年级上册垂直于弦的直径练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,直线与两个同心圆分别交于图示的各点,则正确的是()A.MP>RNB.MP=RNC.MP<RND.MP与RN的大小关系不定2. 如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BAC等于()A.15∘B.20∘C.30∘D.45∘3. 如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30∘,⊙O的半径为5cm,则圆心O到弦CD的距离为()cm B.3cm C.3√3cm D.6cmA.524. 已知⊙O的半径为5cm,圆内两平行弦AB、CD的长分别为6cm、8cm,则弦AB、CD间的距离为()A.1cmB.7cmC.7cm或1cmD.4cm或3cm5. 已知:如图,弦AB的垂直平分线交⊙O于点C、D,则下列说法中不正确的是()A.弦CD一定是⊙O的直径B.点O到AC、BC的距离相等C.∠A与∠ABD互余D.∠A与∠CBD互补6. 如图,在⊙O中,已知半径为13,弦AB的长为24,那么圆心O到AB的距离为()A.1B.3C.5D.107. 如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米8. 在⊙O中,r=13,弦AB=24,则圆心O到AB的距离为()A.5B.10C.12D.139. 下列命题中,真命题的个数是()①平分弦的直径垂直于弦;②圆内接平行四边形必为矩形;③90∘的圆周角所对的弦是直径;④任意三个点确定一个圆;⑤同弧所对的圆周角相等.A.5B.4C.3D.210. 如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.AD ⌢=BD ⌢B.AF =BFC.OF =CFD.∠DBC =90∘11. 点M 是半径为5的⊙O 内一点,且OM =3,在过M 所有⊙O 的弦中,弦长为整数的弦的条数为________.12. 如图,⊙O 的弦AB 垂直于CD ,E 为垂足,AE =3,BE =7,且AB =CD ,则圆心O 到CD 的距离是________.13. 若圆的半径为3,圆中一条弦为2√5,则此弦中点到弦所对劣弧的中点的距离为________.14. 圆外一点到圆的最大距离是18cm ,到圆的最小距离是5cm ,则圆的半径是________cm .15. 如图,点P 是半径为5的⊙O 内一点,且弦AB ⊥OP ,OP =3,则弦AB 长是________.16. 如图,在⊙O中,AB是弦,∠AOB=120∘,OA=5cm,那么圆心O到AB的距离是________cm,弦AB的长是________cm.17. 如图,已知:点M为⊙O内一点,且过点M最长的弦为10cm,最短的弦为6cm,则OM的长为________cm.18. 如图所示,⊙P表示的是一个摩天轮,最高处A到地面的距离是80.5米,最低处B 到地面的距离是0.5米.小红由B处登上摩天轮,乘坐一周需要12分钟.乘坐一周的过程中,小红距离地面的高度是60.5米的时刻是第________分钟.19. 如图,工程上常用钢珠来测量零件上小孔的宽度,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,则这个小孔的宽度AB是________毫米。

中考数学专题复习题:垂直于弦的直径

中考数学专题复习题:垂直于弦的直径

中考数学专题复习题:垂直于弦的直径一、单项选择题(共10小题) 1.下列说法正确的是( )A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径的弦平分这条直径D. 弦的垂直平分线经过圆心2.如图所示,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,则下列结论中不一定成立的是( )A. CM =DMB. CB ⌢=DB ⌢C. AC ⌢=AD ⌢D. OM =MB3.如图,A 是⊙O 上一点,连接OA ,弦BC ⊥OA 于点D.若OD =2,AD =1,则BC 的长为( )A. 2√ 5B. 4C. 2√ 3D. 2√ 24.如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5cm ,CD =8cm ,则AE 的长为( )A. 8cmB. 5cmC. 3cmD. 2cm5.已知⊙O 的直径CD =100cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,AB =96cm ,则AC 的长为( ) A. 36cm 或64cmB. 60cm 或80cmC. 80cmD. 60cm6.如图所示,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 长的取值范围一定是()A. 4≤OM≤5B. 3≤OM<5C. 3<OM≤5D. 3≤OM≤57.如图所示,AB,CD是⊙O的两条平行弦,且AB=4,CD=6,AB,CD之间的距离为5,则⊙O的直径是()A. √ 13B. 2√ 13C. 8D. 108.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A. 10cmB. 16cmC. 24cmD. 26cm9.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽度AB 是16dm,则截面水深CD是()第9题图第10题图A. 3dmB. 4dmC. 5dmD. 6dm10.如图所示,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,如果AB=8,OC=3,那么EC的长为()A. 2√ 15B. 8C. 2√ 10D. 2√ 13二、填空题(共8小题)11.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为________.12.下列四个说法:①经过圆心的直线是圆的对称轴;②直径是圆的对称轴;③圆的对称轴有无数条;④当圆绕它的圆心旋转180∘时,仍会与原来的圆重合.其中一定正确的有________.(填序号)13.如图,工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则这个小圆孔的宽口AB的长度为_______mm.14.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.15.如图所示,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15∘,半径为2,则弦CD的长为________.16.如图所示,在半径为10cm的⊙O中,AB=16cm,弦OC⊥AB于点C,则OC一定等于________cm.17.如图,AB 为⊙O 的直径,弦CD 交AB 于点P ,且PA =1,PB =5,∠DPB =30∘,则CD 的长为________.18.如图,某主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为________m .三、解答题(共5小题)19.如图,两个圆都以点O 为圆心.求证:AC =BD .20.如图,AB 是⊙O 的弦,C 是AB ⌢的中点,OC 交AB 于点D.若AB =8cm ,CD =2cm ,求⊙O 的半径.21.如图,在⊙O 中,AB ,AC 是互相垂直的两条弦,OD ⊥AB 于点D ,OE ⊥AC 于点E ,且AB =8cm ,AC =6cm ,求⊙O 的半径.22.如图所示,AB是⊙O的直径,C,D为⊙O上的点,且BC//OD,过点D作DE⊥AB 于点E.(1)求证:BD平分∠ABC;(2)若BC=3,DE=2,求⊙O的半径长.23.如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施.(1)求拱桥所在圆的半径;(2)若某次洪水中,拱顶离水面只有2m,即PN=2m,通过计算说明是否需要采取紧急措施.。

九年级数学上册《垂直于弦的直径》练习题含答案

九年级数学上册《垂直于弦的直径》练习题含答案

九年级数学上册《垂直于弦的直径》练习题复习巩固1.下列说法中正确的是( )A .直径是圆的对称轴B .经过圆心的直线是圆的对称轴C .与圆相交的直线是圆的对称轴D .与半径垂直的直线是圆的对称轴2.如图,AB 是O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定成立的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED .BD BC3.如图所示,O 的弦AB 垂直平分半径OC ,则四边形OACB是( )A .正方形B .长方形C .菱形D .以上答案都不对4.如图,AB 是O 的弦,半径OC ⊥AB 于点D ,且AB =6cm ,OD =4cm ,则DC 的长为( )A .5cmB .2.5cmC .2cmD .1cm5.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,则AC 的长为( )A .0.5cmB .1cmC .1.5cmD .2cm6.右图是一个单心圆隧道的截面,若路面AB 宽为10m ,拱高CD 为7m ,则此隧道单心圆的半径OA 是( )A .5mB .377m C .375m D .7m7.已知O中,弦AB的长为6cm,圆心O到弦AB的距离为4cm,则O的直径为__________cm8.如图,AB,AC分别是O的直径和弦,OD⊥AC于点D,连接BC,若BC=12,则OD=__________9.如图,在O中,直径AB⊥弦CD于点M,AM=18,BM=8,则CD的长为__________.10.如图,在O中,AB,AC是互相垂直且相等的两条弦,OD⊥AB于点D,OE⊥AC于点E,求证:四边形ADOE是正方形.能力提升11.如图,已知O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5C.4.5 D.5.512.如图,以点P为圆心的圆弧与x轴交于A,B两点,若点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为__________.13.在半径为5cm的圆内有两条平行弦,一条弦长为8cm,另一条弦长为6cm,则两弦之间的距离为__________.14.在直径为650mm的圆柱形油桶内装进一些油后,其截面如图所示,若油面宽为600mm,求油的最大深度.15.有一座弧形的拱桥,桥下的水面宽度为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为长方形并高出水面2m的货船要经过这里,此货船能顺利通过这座拱形桥吗?参考答案复习巩固1.B 2.C3.C 由垂径定理知AB 也被OC 平分,所以AB 和OC 互相垂直平分,即四边形OACB 为菱形.4.D 连接OB .∵OC ⊥AB ,AB =6cm ,∴BD =12AB =3cm. ∴OB =222243OD BD +=+=5(cm).∴OC =OB =5cm.∴DC =OC -OD =5-4=1(cm).5.D 如图,过O 作OE ⊥AB 于点E ,由垂径定理,得AE =12AB =12×10=5(cm),CE =12CD =12×6=3(cm). 所以AC =AE -CE =5-3=2(cm).6.B 根据题意,得AD =DB .所以AD =5m ,OD =CD -OC =7-OA .在Rt △ADO 中,OA 2=AD 2+OD 2,即OA 2=52+(7-OA )2,解得OA =377m.7.10 8.69.24 连接OD ,∵AM =18,BM =8,∴OD =18822AM BM ++==13. ∴OM =13-8=5.在Rt △ODM 中,222213512DM OD OM =-=-=.∵直径AB ⊥弦CD ,∴CD =2DM =2×12=24.10.证明:∵OE ⊥AC ,OD ⊥AB ,AB ⊥AC ,∴∠OEA =90°,∠EAD =90°,∠ODA =90°.∴四边形ADOE 为矩形.由垂径定理,得AE =12AC ,AD =12AB . 又AC =AB ,∴AE =AD .∴四边形ADOE 为正方形.能力提升11.C 如图,过点O 作OC ⊥AB 于点C ,连接OA ,则由垂径定理得AC =12AB =3.在Rt △OAC 中,由勾股定理得OC =22OA AC =4,∵OC ≤OM ≤OA ,即4≤OM ≤5,∴线段OM 的长可能是4.5.故选C.12.(6,0) 过点P 作PC ⊥AB 于点C ,∵AC =BC =OC -OA =4-2=2,∴OB =OC +BC =4+2=6.∴点B 的坐标为(6,0).13.1cm 或7cm 已知两条平行弦的长,求两弦之间的距离,这两条弦可能在圆心的同侧也可能在圆心的两侧(如图所示),因此应分两种情况讨论.(1)当两弦在圆心的同侧时,如图①,作OM ⊥AB 于点M ,交CD 于点N .∵AB ∥CD ,∴OM ⊥CD .∴MN 即为所求的距离.连接OB ,OD ,这时OB =OD =5cm ,AM =BM =12AB =3cm ,ND =CN =12CD =4cm.在Rt △OBM 中, 2222534OM OB BM =-=-=(cm).在Rt △ODN 中,2222543ON OD DN =-=-=(cm).∴MN =OM -ON =1(cm).故当两弦在圆心的同侧时,两弦之间的距离为1cm.(2)当两弦在圆心的两侧时,如图②,作OM ⊥AB 于点M ,延长MO 交CD 于点N . ∵AB ∥CD ,∴MN ⊥CD .∴MN 即为所求的距离.同样地,可以求出OM =4cm ,ON =3cm.∴MN =OM +ON =4+3=7(cm).故当两弦在圆心的两侧时,两弦之间的距离为7cm.14.解:作OD ⊥AB ,交O 于点D ,垂足为点C ,连接AO .∵OD ⊥AB ,OD 为半径,∴AC =BC =12AB =12×600=300(mm). 在Rt △AOC 中,22226503001252OC AO AC ⎛⎫=-=-= ⎪⎝⎭(mm), 因此CD =OD -OC =325-125=200(mm).故油的最大深度为200mm.15.解:判断货船能否顺利通过这座拱桥,关键是看船舱顶部两角是否会被拱桥顶部挡住.如图所示,用AB 表示拱桥,计算出FN 的长度,若FN >2m ,则货船可以顺利通过这座拱桥;否则,货船不能顺利通过这座拱桥.设拱桥AB的圆心为O,连接OA,OB,作OD⊥AB于点D,交AB于点C,交MN于点H,由垂径定理可知,D为AB的中点.设OA=r m,则OD=OC-DC=r-2.4(m),AD=1AB=3.6(m).2在Rt△AOD中,由勾股定理,得OA2=AD2+OD2,即r2=3.62+(r-2.4)2,解得r=3.9.在Rt△O HN中,2222=--=(m).OH ON NH3.9 1.5 3.6所以FN=DH=OH-OD=3.6-(3.9-2.4)=2.1(m).因为2.1m>2m,所以货船能够顺利通过这座拱桥.。

24.1.2_垂直于弦的直径精选练习题及答案

24.1.2_垂直于弦的直径精选练习题及答案

A.3v2 241.2垂直于弦的直径一、课前预习(5分神训练)1 .如图24-1-2-1, AB是。

的弦,CD是。

的直径,CD1AB,垂足为E,则可推出的相等关系是2. 圆中一条弦把和它垂直的直径分「成3 cm和4 cm两部分,则这条弦弦长为・3. 判断正误.(】)直径是圆的对称轴;(2)平分弦的直径垂直于弦.4. 圆O的半径OA=6QA的垂直平分线交圆。

于B、C,那么弦BC的长等于•二、课中强化(1。

分仲训练)1 .圆是轴对称图形,它的对称轴是 _____________ .2. 如图24-1-2-2,在。

中,直径MN垂直于弦AB,垂足为C,图中相等的线段有,相等的劣弧有______________3. 在图24-1-2-3中,弦AB的长为24 cm,弦心距O05 cm,则。

的半径区cm.4. 如图24-1-2-4所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长.图24-1-2-4三、课后巩固(30分钟训练)1 .如图24-1-2-5,00的半径OA=3,以点A为圆心QA的长为半径画弧交。

于B、C,则BC等于()C图 24-1-2-5 2. 如图24-1-2-6, AB 是。

的弦,半径OC1AB 于点D,旦AB=8 cm, OC=5 cm,则OD 的长是()A.3 cmB.2.5 cmC.2 cmD.l cm3.00半径为10,弦AB=12, CD=16,旦AB II CD.求AB 与CD 之间的距离.4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两 边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60。

,则秋千踏板与地面的最大距离约为 多少?5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5 月】2日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高.的圆拱的跨度为110米, 拱高为22米,如图(2),那么这个圆拱所在圆的直径为 米.⑴ ⑵图 24-1-2-8图 24-1-2-6图 24-1-2-76. 如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A、B、C.(1)用尺规作图法,找出弧BAC所在圆的圆心。

人教版九年级上2412垂直于弦的直径同步练习含答案解析

2018-2019学年度人教版数学九年级上册同步练习24.1.2垂直于弦的直径一•选择题(共15小题)1 .下列说法中正确的是()A. 平分弦的直径一定垂直于弦B. 长度相等的弧是等弧C•平行弦所夹的两条弧相等D.相等的圆心角所对的弦相等2. 如图O的半径为6,直径CD过弦EF的中点G,若/ EOD=60,则弦CF的长等于()A. 6B. 6 —C. 3 —D. 93. 如图,在。

O中,直径AB丄弦CD,垂足为M,则下列结论一定正确的是()ABA. AC=CDB. OM=BMC.Z A= . / ACDD.Z A=. / BOD4 .如图,AB是。

O 的直径,AB丄CD于E, AB=10, CD=8,则BE%( )A. 2B. 3C. 4D. 3.55. 如图,在O O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则O O截面圆心O 到水面的距离OC 是(10.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一B . 10cm C. 8cm D . 20cm6. 在半径为25cm 的。

O 中,弦AB=40cm,则弦AB 所对的弧的中点到 AB 的距 离是( )A . 10cmB . 15cmC. 40cm 7.下列说法中正确的个数有()① 相等的圆心角所对的弧相等; ②平分弦的直径一定垂直于弦;③ 圆是轴对称图形,每一条直径都是对称轴; ④ 直径是弦;⑤ 长度相等的弧是等弧.D . 10cm 或 40cmD . 4个8 .如图,O O 过点B C,圆心O 在等腰Rt A ABC 的内部,/ BAC=90, OA=2 BC=8则O O 的半径为(B . 5C.下 D . 69.一条排水管的截面如图所示,已知排水管的半径 OB=1O,水面宽 AB=16,则B . 5 D . 6的半径是(A . 6cm A . 4千多年,其中有这样一个问题:今有圆材埋在壁中,不知大小•以锯锯之,深一寸,锯道长一尺•问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1 尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A. 13 寸B. 6.5 寸C. 26 寸D. 20 寸11•如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A. 10 cmB. 16 cmC. 24 cmD. 26 cm 12 .把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm则球的半径长是();I\ /\ /* _* I8 CA. 2 cmB. 2.5 cmC. 3 cmD. 4 cm13.如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()疋—L_____ 卫A D BA. 6 mB. 8 mC. 10 mD. 12 m14.如图,在半径为10cm的圆形铁片上切下一块咼为4cm的弓形铁片,则弓形弦AB的长为()15.圆材埋壁”是我国古代《九章算术》中的一个问题,今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何? ”用现代的数学语言表示是: 如图,CD 为O O 的直径,弦 AB 丄CD,垂足为E, CE=1寸,AB=10 寸,求直径CD 的长”依题意,CD 长为( )二.填空题(共10小题)16.如图,在O O 中,半径0C 丄弦AB,垂足为点D ,AB=12, CD=2则O O 半 径的长为 ___________ .17 .如图,AB 是O O 的弦,OC 丄AB 于点C ,且AB > OC,若OC 和AB 是方程x 2 -11x+24=0的两个根,则O O 的半径OA= _______ .19.在平面直角坐标系中,过三点 A (0, 0), B (2, 2), C (4, 0)的圆的圆 心坐标为 _____________ .B . 12cm C. 16cm D . 20cm △ 寸 A .寸 B. 13 寸 C. 25 寸 D. 26 寸 DA . 8cm320.如图,AB是。

初中垂径定理试题及答案

初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。

A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。

A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。

A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。

答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。

答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。

答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。

7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。

答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。

根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。

四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。

答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。

要证明CM=MD。

由于CD是直径,所以∠CMO=∠DMO=90°。

根据垂径定理,CM=MD,因此这条直径将弦平分。

初三垂径定理练习试题和答案解析

垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8答案:D★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM 长的最小值为()A.2 B.3 C.4 D.5答案:B★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()A.9cm B.6cm C.3cm D.cm41答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O 点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位答案:B★★5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD ,则直径AB的长是()A. B. C. D.答案:D★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米答案:B★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm答案:D★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( )A.2 B.8 C.2或8 D.3答案:C二.填空题★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米图 4答案:★★6.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.答案:★★7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于cm★★8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________ 答案:★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD =l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)★★12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm答案:3★★13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cmPBAO答案:6★★★15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm 答案:7cm 或17cm★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 答案:5★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米 答案:52★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米 答案:7或1★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

2020-2021学年人教版数学九年级上学期《24.1.2 垂直于弦的直径》测试卷及答案解析

2020-2021学年人教版数学九年级上学期《24.1.2 垂直于弦的直径》测试卷一.填空题(共1小题)1.如图,AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.若AB=10,CD=6,则DE的长为二.解答题(共48小题)2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.3.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?4.往水平放置的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB和油的最大深度都为80cm.(1)求油槽的半径OA;(2)从油槽中放出一部分油,当剩下的油面宽度为60cm时,求油面下降的高度.5.已知:如图⊙O中,弦AB⊥CD,垂足为H,OG⊥BC,垂足为G,求证:弦AD=2OG.6.如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.7.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.8.如图,⊙O的半径为5,弦AB⊥CD于E,AB=CD=8.(1)求证:AC=BD;(2)若OF⊥CD于F,OG⊥AB于G,试说明四边形OFEG是正方形.9.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.10.如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,P A=6.求:(1)⊙O的半径;(2)求弦CD的长.11.如图所示,射线AM交一圆于点B,C,射线AN交该圆于点D,F,且BC=DE,求证:AC=AE.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.13.如图,AB为圆O的直径,CD为弦,AM⊥CD于M,BN⊥CD于N.(1)求证:CM=DN.(2)若AB=10,CD=8,求BN﹣AM的值.14.如图,在半径为5的四分之一圆中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)连接AB,求DE的长.15.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,求BD的长.16.如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,AE=BF,请找出线段OE 与OF的数量关系,并给予证明.17.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.18.已知:如图,OA=OB,AB交⊙O于C、D两点,求证:AC=BD.19.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.20.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AE=,ON=1,求⊙O的半径.21.如图,AB为⊙O上,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.22.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O 交△ABC于D、E、F、G.(1)求证:CD=EF;(2)若⊙O的半径为4,AE=2,求AB的长.23.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?为什么?②若AD=EC,求的值.24.如图,⊙O的两条弦AB∥CD(AB不是直径),点E为AB中点,连结EC,ED (1)直线EO与AB垂直吗?请说明理由;(2)求证:EC=ED.25.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE.(1)求证:AP=AO;(2)若弦AB=24,求OP的长.26.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.27.如图,某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道,污水水面宽度为30cm,污水深度为50cm,则修理人员应准备的新管道内径为多大?28.如图,矩形ABCD的四个顶点在⊙O上,过O作OE⊥AD于F,交⊙O于E点,连AE、DE(1)求证:AE=DE;(2)若AB=AE=2,求⊙O的半径.29.已知⊙O中ABC为等边三角形,点O在AB上,点A在弦CD上;(1)如图(1)连接OD,OC,在BC上取一点M,使MB=OB,连接OM,求证:OB+BC =CD;(2)如图(2),在(1)的条件下,过O作OE⊥AC于E,若CD=4OB,OE=2,求⊙O半径.30.如图,在⊙O中,直径AB交弦CD于点E,OF⊥CD,垂足为F,AE=1,OE=2,OF =1.求ED,EC的长.31.如图,已知⊙O的半径长为4,弦AB垂直平分半径OC,弦DE∥AB,过点B作AD的平行线交直线DE于点F.(1)当点E,F不重合时,试说明△BEF是等腰三角形.(2)填空:当AD=时,四边形ABFD是菱形.32.如图所示,要把残破的轮片复制完整,已知弧上的三点A,B,C.(1)用尺规作图法找出所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.33.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.34.如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CE⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长35.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.36.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.37.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE 的长.38.如图,AB是⊙O的直径,延长BA到D,使DA=AO,AE垂直于弦AC,垂足为点A,点E在DC上,求S△AEC:S△AOC.39.如图,△ABC内接于⊙O,弦AD⊥BC于E,CF⊥AB于F,交AD于G,BE=3,CE =2,且tan∠OBC=1,求四边ABDC的面积.40.如图,⊙O的半径为10cm,G是直径AB上一点,弦CD经过点G,CD=16cm,AE⊥CD于E,BF⊥CD于F,求AE﹣BF的值.41.如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,求AB的长.42.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.试探究∠OBA与∠OCD的关系,并说明理由.43.如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.44.如图,AB是圆O的直径,作半径OA的垂直平分线,交圆O于C、D两点,垂足为H,连接BC、BD.(1)求证:BC=BD;(2)已知CD=6,求圆O的半径长.45.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD、BC,AB=5,AC =4,求:BD的长.46.如图,AB,CD是⊙O的两条弦,AB=CD,OE⊥AB于E,OF⊥CD于F,求证:OE =OF.47.如图,点A,B是⊙O上两点,点P是⊙O0上的动点(P与A,B不重合),连接AP,BP,过点O分别作OE⊥AP,OF⊥BP,点E、F分别是垂足.(1)求证:∠OEF+∠OFE=∠P;(2)EF=5,点O到AB的距离为2,求⊙O的半径的长.48.如图,在Rt△A0B中,∠O=90°,OA=6,OB=8,以点O为圆心,OA为半径作圆交AB于点C,求BC的长.49.如图,AB为⊙O的直径,点C在⊙O上,∠BAC的平分线交BC于D,交⊙O于E,且AC=6,AB=8,求CE的长.2020-2021学年人教版数学九年级上学期《24.1.2 垂直于弦的直径》测试卷参考答案与试题解析一.填空题(共1小题)1.如图,AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.若AB=10,CD=6,则DE的长为【分析】设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,根据垂径定理得出CH=DH,DM=EM,BN=CN,利用勾股定理求得OH,即可求得BH,进而求得BC,求得ON,根据三角形函数求得DG,因为MN=DG,即可求得OM,根据勾股定理求得DM,得出DE.【解答】解:设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,∵DE∥BC,∴MN⊥BC,DG⊥DE,∴DG=MN,∵OM⊥DE,ON⊥BC,∴DM=EM=DE,BN=CN,∵AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.∴CH=DH=CD=3,∴OH===4,∴BH=9,∴BC==3,∴BN=BC=,∴ON==,∵sin∠BCH==,即=,∴DG=,∴MN=DG=,∴OM=MN﹣ON=,∴DM==,∴DE=2DM=.故答案为.【点评】本题考查了垂径定理和勾股定理的应用,作出辅助线构建直角三角形是解题的关键.二.解答题(共48小题)2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【点评】此题考查了垂径定理,勾股定理,以及含30°直角三角形的性质,利用了转化的思想,熟练掌握定理是解本题的关键.3.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4.往水平放置的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB和油的最大深度都为80cm.(1)求油槽的半径OA;(2)从油槽中放出一部分油,当剩下的油面宽度为60cm时,求油面下降的高度.【分析】(1)根据垂径定理和勾股定理进行解答即可;(2)利用垂径定理和勾股定理进行解答即可.【解答】解:(1)设OA为xcm,根据勾股定理可得:x2=402+(80﹣x)2,解得:x=50,答:油槽的半径OA为50cm,(2)设油面下降的高度为y,根据勾股定理可得:502=302+(80﹣50﹣y)2,解得:y=70或y=﹣10(舍去),答:油面下降的高度为70cm.【点评】此题考查了垂径定理的应用.此题难度不大,解题的关键是注意数形结合思想的应用.5.已知:如图⊙O中,弦AB⊥CD,垂足为H,OG⊥BC,垂足为G,求证:弦AD=2OG.【分析】作直径CM,连接BM,DM,AM,根据垂径定理求出CG=BG,根据三角形中位线的性质求出BM=2OG,求出AB∥DM,求出∠BAM=∠AMD即可.【解答】证明:作直径CM,连接BM,DM,AM,∵OG⊥BC,OG过O,∴CG=BG,∵CO=OM,∴BM=2OG,∵CM为⊙O直径,∴∠CDM=90°,∵AB⊥CD,∴∠CHB=90°,∴∠CHB=∠CDM,∴AB∥DM,∴∠BAM=∠AMD,∴AD=BM,∴AD=2OG.【点评】本题考查了圆周角定理,垂径定理,三角形的中位线的性质,平行线的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.6.如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.【分析】(1)作OH⊥AB于H,连接OB、OA.在Rt△BOH中,解直角三角形即可解决问题;(2)作OM⊥EC于M,连接OC.在Rt△OMC中,解直角三角形即可;【解答】解:(1)作OH⊥AB于H,连接OB、OA.∵的度数为120°,AO=BO,∴∠BOH=×120°=60°,∴AH=BH=,在Rt△BOH中,sin∠BOH=,∴OB=2,即圆洞门⊙O的半径为2;(2)作OM⊥EC于M,连接OC.∵Rt△BOH中,OH=1,∵EH=,易证四边形OMEH是矩形,∴OM=EH=,ME=OH=1,在Rt△OMC中,CM==,∴CE=ME+CM=1+=,∴立柱CE的长度为.【点评】本题考查垂径定理的应用、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.7.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.【分析】(1)连接OA,根据AB=8cm,CD=2cm,C为AB的中点,设半径为r,由勾股定理列式即可求出r,进而求出面积.(2)在Rt△ACE中,已知AC、EC的长度,可求得AE的长,根据垂径定理可知:OF ⊥AE,FE=F A,利用勾股定理求出OF的长.【解答】解:(1)连接OA,如图1所示∵C为AB的中点,AB=8cm,∴AC=4cm又∵CD=2cm设⊙O的半径为r,则(r﹣2)2+42=r2解得:r=5∴S=πr2=π×25=25π(2)OC=OD﹣CD=5﹣2=3EC=EO+OC=5+3=8∴EA===4∴EF===2∴OF===【点评】本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.8.如图,⊙O的半径为5,弦AB⊥CD于E,AB=CD=8.(1)求证:AC=BD;(2)若OF⊥CD于F,OG⊥AB于G,试说明四边形OFEG是正方形.【分析】(1)根据圆心角、弧、弦的关系先由AB=CD判断=,再得到=,从而判断AC=BD;(2)先证明四边形OFEG为矩形,连结OA、OD,如图,再根据垂径定理得到CF=DF,AG=BG,则利用CD=AB得到AG=DF,然后根据正方形的判定方法可判断四边形OFEG 是正方形;【解答】(1)证明:∵AB=CD,∴=,∴﹣=﹣,即=,∴AC=BD(2)四边形OFEG是正方形理由如下:如图,连接OA、OD.∵AB⊥CD,OF⊥CD,OG⊥AB,∴∠GEF=∠OFE=∠OGE=90°∴四边形OFEG是矩形,,.∵AB=CD,∴DF=AG.∵OD=OA,∴在Rt△OFD与Rt△OGA中,∴Rt△OFD≌Rt△OGA(HL),∴OF=OG.∴矩形OFEG是正方形.【点评】本题考查了圆的综合题:熟练掌握垂径定理和圆心角、弧、弦的关系;掌握正方形的判定方法.9.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.【分析】过点O作OM⊥CD于点M,联结OD,根据垂径定理解答即可.【解答】解:过点O作OM⊥CD于点M,联结OD,∵∠CEA=30°,∴∠OEM=∠CEA=30°,在Rt△OEM中,∵OE=4,∴,,∵,∴,∵OM过圆心,OM⊥CD,∴CD=2DM,∴,∵,∴在Rt△DOM中,,∴弦CD的长为,⊙O的半径长为.【点评】此题考查了垂径定理和直角三角形.有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法.10.如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,P A=6.求:(1)⊙O的半径;(2)求弦CD的长.【分析】(1)设OC=x,证明△CEO∽△PCO,得,代入x可得结论;(2)由勾股定理得CE的长,根据垂径定理可得CD的长.【解答】解:(1)设OC=x,∵弦CD垂直平分半径AO,∴OE=OA=x,∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=90°,∴∠P+∠COP=90°,∠ECO+∠COP=90°,∴∠P=∠ECO,∴△CEO∽△PCO,∴,∴=,x=6则⊙O的半径为6;(2)由(1)得:OC=6,OE=3,由勾股定理得:CE==3,∵CD⊥OA,∴CD=2CE=6.【点评】本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.11.如图所示,射线AM交一圆于点B,C,射线AN交该圆于点D,F,且BC=DE,求证:AC=AE.【分析】作OP⊥AC于P,OQ⊥AE于Q,连接OB、OD、OA,根据垂径定理得出PB =DQ,PC=QE,根据HL证得RT△OPB≌RT△OQD,RT△OP A≌RT△OQA,得出AP =AQ,进而即可证得结论.【解答】证明:作OP⊥AC于P,OQ⊥AE于Q,连接OB、OD、OA,则PB=BC,DQ=DE,∵BC=DE,∴PB=DQ,PC=QE,在RT△OPB和RT△OQD中,,∴RT△OPB≌RT△OQD(HL),∴OP=OQ,在RT△OP A和RT△OQA中,,∴RT△OP A≌RT△OQA(HL),∴AP=AQ,∴AP+PC=AQ+QE,即AC=AE.【点评】本题考查了垂径定理和三角形全等的判定和性质,作出辅助线构建直角三角形是解题的关键.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到=,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴=,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r2=(r﹣8)2+122,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.13.如图,AB为圆O的直径,CD为弦,AM⊥CD于M,BN⊥CD于N.(1)求证:CM=DN.(2)若AB=10,CD=8,求BN﹣AM的值.【分析】(1)过O作OF⊥CD于F,根据平行线分线段成比例定理得到MF=NF,根据垂径定理得到CF=FD,结合图形计算即可;(2)连结OD,根据勾股定理求出OF,设OE=x,根据相似三角形的性质列式计算即可.【解答】(1)证明:过O作OF⊥CD于F,∵AM⊥CD于M,BN⊥CD于N,∴AM∥FO∥NB,∵OA=OB,∴MF=NF,∵OF⊥CD,O为圆心,∴CF=FD,∴CF﹣MF=FD﹣FN,即MC=ND;(2)解:连结OD,∵AB=10,CD=8,∴OD=5,FD=4,∴OF=3,设OE=x,则EB=x+5,AE=5﹣x,∵NB∥FO,∴△EBN∽△EOF,∴=,即BN:3=(5+x):x,∴BN=,①∵MA∥FO,∴△AME∽△OFE,∴AM:3=(5﹣x):x,∴AM=②两式相减即可得到,BN﹣AM=6.【点评】本题考查的是垂径定理、勾股定理、相似三角形的判定和性质,掌握垂径定理是解题的关键.14.如图,在半径为5的四分之一圆中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)连接AB,求DE的长.【分析】(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD的长;(2)如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC 和AC的中点,根据三角形中位线定理就可得到DE=AB,可得DE的长.【解答】解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==4,即线段OD的长为4.(2)如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=.【点评】本题考查了垂径定理、三角形中位线定理、等腰三角形的性质、三角函数、勾股定理等知识,运用垂径定理及三角形中位线定理是解决第(2)小题的关键.15.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,求BD的长.【分析】连接DC,过点C作CE⊥BD交BD于点E,根据三角形内角和定理求出∠B,根据直角三角形的性质求出CE,根据勾股定理求出BE,根据垂径定理计算.【解答】解:连接DC,过点C作CE⊥BD交BD于点E,则DE=EB,∠B=180°﹣∠ACB﹣∠BAC=180°﹣130°﹣20°=30°,∴CE=BC=1,由勾股定理得,BE==,∴BD=2BE=2.【点评】本题考查的是垂径定理,勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.16.如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,AE=BF,请找出线段OE 与OF的数量关系,并给予证明.【分析】过点O作OH⊥AB于点H,根据垂径定理得到OE=OF即可.【解答】解:OE=OF理由如下:过点O作OH⊥AB于点H,∵OH过圆心,OH⊥AB∴AH=BH,又∵AE=BF∴AH﹣AE=BH﹣BE即EH=FH,∵EH=FH,OH⊥EF∴OH垂直平分EF,∴OE=OF.【点评】本题主要考查了垂径定理,关键是根据圆的性质,垂径定理等知识的综合应用及推理论证能力.17.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.【分析】先根据等腰三角形的性质由OA=OB得到∠A=∠B,再利用“SAS”证明△OAC ≌△OBD,然后根据全等三角形的性质得到结论.【解答】证明:∵OA=OB,∴∠A=∠B,在△OAC和△OBD中,,∴△OAC≌△OBD(SAS),∴∠AOC=∠DOB【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了全等三角形的判定与性质.18.已知:如图,OA=OB,AB交⊙O于C、D两点,求证:AC=BD.【分析】过点O作OE⊥AB,由等腰三角形的性质可知AE=BE,再由垂径定理可知CE =DE,故可得出结论.【解答】证明:过点O作OE⊥AB,∵OA=OB,∴AE=BE,又∵在⊙O中,∴CE=DE,∴AC=BD.【点评】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键.19.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.【解答】(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AE=,ON=1,求⊙O的半径.【分析】(1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE =∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;(2)先根据AE的长,设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1,连结AO,则AO=OD=2x﹣1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论;【解答】(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,,∴△ANE≌△ADE,∴AD=AN;(2)∵AE=2,AE⊥CD,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3;【点评】本题考查的是垂径定理,勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.如图,AB为⊙O上,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【分析】(1)根据全等三角形的判定和性质以及垂径定理证明即可;(2)根据平行四边形的判定和勾股定理解答即可.【解答】证明:(1)在⊙O中,OD⊥BC于E,∴CE=BE,∵CD∥AB,∴∠DCE=∠B,在△DCE与△OBE中,∴△DCE≌△OBE(ASA),∴DE=OE,∴E是OD的中点;(2)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD⊥BC,∴∠CED═90°=∠ACB,∴AC∥OD,∵CD∥AB,∴四边形CAOD是平行四边形,∵E是OD的中点,CE⊥OD,∴OC=CD,∵OC=OD,∴OC=OD=CD,∴△OCD是等边三角形,∴∠D=60°,∴∠DCE=90°﹣∠D=30°,∴在Rt△CDE中,CD=2DE,∵BC=6,∴CE=BE=3,∵CE2+DE2=CD2=4DE2,∴DE=,CD=2,∴OD=CD=2,∴四边形CAOD的面积=OD•CE=6.【点评】本题考查了垂径定理,关键是根据全等三角形的判定和性质以及垂径定理解答.22.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O 交△ABC于D、E、F、G.(1)求证:CD=EF;(2)若⊙O的半径为4,AE=2,求AB的长.【分析】(1)作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,根据角的平分线的性质得出OE=OD=OC,进而根据HL证得RT△OME≌RT△OND得出ME =ND,然后根据垂径定理即可证得结论;(2)根据角平分线的性质,得出OM=ON=OH,进一步证得四边形ONCH是正方形,证得OM=ON=OH=CD=EF=CG,进而证得OH=CD=2,EF=CD=CG=4,AC=6,设BM=BH=x,则BC=x+2,AB=x+4,然后根据勾股定理列出方程,求得即可.【解答】(1)证明:作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,∵点O为△ABC的角平分线交点,∴OM=ON,∵OE=OD=OC,∴RT△OME≌RT△OND(HL),∴ME=ND,∵EF=2ME,CD=2ND,∴CD=EF;(2)解:由(1)可知CD=EF=CG,∵点O为△ABC的角平分线交点,∴OM=ON=OH,∵∠ACB=90°,∴四边形ONCH是正方形,∴OM=ON=OH=CD=EF=CG,∵OC=4,∴OH=OC=4,∴EF=CD=CG=8,易证得AM=AN=6,BM=BH,∴AC=10,设BM=BH=x,则BC=x+4,AB=x+6,∵∠ACB=90°,∴AB2=AC2+BC2,即(6+x)2=102+(4+x)2,解得x=20,∴BM=20,∴AB=AM+BM=20+6=26.【点评】本题考查了角平分线的性质和垂径定理,熟练掌握垂径定理和角平分线的性质是解题的关键.23.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?为什么?②若AD=EC,求的值.【分析】(1)根据三角形内角和定理求出∠B,根据等腰三角形的性质求出∠BCD,计算即可;(2)①根据勾股定理求出AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【解答】解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB=,∴,解方程x2+2ax﹣b2=0得,x=,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=,整理得,.【点评】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.24.如图,⊙O的两条弦AB∥CD(AB不是直径),点E为AB中点,连结EC,ED (1)直线EO与AB垂直吗?请说明理由;(2)求证:EC=ED.【分析】(1)连接EO,根据垂径定理得出即可;(2)根据垂径定理求出CF=DF,根据线段垂直平分线性质得出即可.))【解答】(1)解:直线EO与AB垂直,理由是:连接OE,并延长交CD于F,∵EO过O,E为AB的中点,∴EO⊥AB;(2)证明:∵EO⊥AB,AB∥CD,∴EF⊥CD,∵EF过O,∴CF=DF,∴EC=ED.【点评】本题考查了垂径定理和线段垂直平分线的性质,能灵活运用定理进行推理是解此题的关键.25.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE.(1)求证:AP=AO;(2)若弦AB=24,求OP的长.【分析】(1)由PG平分∠EPF可得∠CPO=∠APO,由AO∥PD可得∠CPO=∠AOP,从而有∠APO=∠AOP,则有AP=AO.(2)过点O作OH⊥AB于H,如图.根据垂径定理可得AH=BH=12,从而可求出PH,在Rt△AHO中,运用勾股定理可求出OH的长,从而进一步可得OP的长.【解答】(1)证明:如图,∵PG平分∠EPF,∴∠CPO=∠APO.∵AO∥PE,∴∠CPO=∠AOP,∴∠APO=∠AOP,∴AP=AO.(2)解:过点O作OH⊥AB于H,如图.根据垂径定理可得AH=BH=AB=12,∴PH=P A+AH=AO+AH=13+12=25.在Rt△AHO中,OH===5,由勾股定理得:OP====5.则OP的长为5.【点评】本题考查了垂径定理、等腰三角形的判定与性质、勾股定理、平行线的性质、角平分线的定义等知识,综合性比较强.26.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.【分析】(1)想办法证明∠A=∠G即可解决问题.(2)设⊙O的半径为r.则AG=OA+OG=r+10,在Rt△OEC中,利用勾股定理构建方程即可解决问题.【解答】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG.(2)解:设⊙O的半径为r.则AG=OA+OG=r+10,∵CA=CG,CD⊥AB,∴AE=EG=,EC=ED=4,∴OE=AE﹣OA=,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=()2+42,解得r=或(舍弃),∴⊙O的半径为.【点评】本题考查垂径定理,勾股定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.27.如图,某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道,污水水面宽度为30cm,污水深度为50cm,则修理人员应准备的新管道内径为多大?【分析】连接OC,OA,根据C为AB中点可知OC⊥AB,AC=AB,设圆形管道的半径为r,则OC=50﹣r,再根据勾股定理求出r的值即可.【解答】解:连接OC,OA,∵污水面宽AB=30m,C为AB中点,∴OC⊥AB,AC=AB=15cm.∵C点距管道底部的距离为50cm,∴OC=50﹣r,在Rt△OAC中,∵AC2+OC2=OA2,即152+(50﹣r)2=r2,解得r=27.25(cm),∴圆形管道的直径=2r=54.5cm.答:圆形管道的直径为54.5cm.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.28.如图,矩形ABCD的四个顶点在⊙O上,过O作OE⊥AD于F,交⊙O于E点,连AE、DE(1)求证:AE=DE;(2)若AB=AE=2,求⊙O的半径.【分析】(1)根据垂径定理即可证得;(2)延长EO交⊙O于H,连接BH,从而证得四边形ABHE是等腰梯形,根据直径所对的圆周角是直角证得∠EAH=90°,然后通过等腰三角形和平行线的性质即可证得∠AHE=30°,根据30°所对的直角边等于斜边的一半即可求得直径,于是得到结论.【解答】(1)证明:∵OE是⊙O的半径,OE⊥AD,∴OE平分AD,∴AE=DE;(2)解:如图,延长EO交⊙O于H,连接BH∵AB⊥AD,OE⊥AD,∴AB∥EH,∴BH=AE,∠BAH=∠AHE,∵AB=AE=2,∴AB=AE=BH=2,∴四边形ABHE是等腰梯形,∴∠AEH=∠BHE,连接AH,∵EH是直径,∴∠EAH=90°,∵AB=BH,∴∠BAH=∠AHE,∴∠BHA=∠AHE,设∠BHA=∠AHE=∠BAH=x,∴∠AEH=2x,∵∠EAB+∠AEH=180°,∴x+90°+2x=180°,解得x=30°,∴∠AHE=30°,∴EH=2AE=2×2=4,∴⊙O的半径=2.【点评】本题考查了垂径定理、直径所对的圆周角的性质,等腰梯形的判定和性质,平行线的性质以及30°所对的直角边等于斜边的一半的性质等,作出辅助线构建等腰梯形以及直角三角形是关键.29.已知⊙O中ABC为等边三角形,点O在AB上,点A在弦CD上;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx学校xx学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型
选择题填空题简答题xx题xx题xx题总分
得分
一、xx题
(每空xx 分,共xx分)
试题1:
下列说法正确的是( )
A.直径是弦,弦是直径
B.半圆是弧
C.无论过圆内哪一点,只能作一条直径
D.长度相等两条弧是等弧
试题2:
下列说法错误的有( )
①经过点P的圆有无数个;②以点P为圆心的圆有无数个;③半径为3 cm且经过点P的圆有无数个;④以点P为圆心,以3 cm为半径的圆有无数个.
A.1个 B.2个 C.3个 D.4个
试题3:
如图2418,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( )
A.2 cm B. cm C.2 cm D.2 cm
试题4:
评卷人得分
如图2419,在⊙O中,弦AB垂直于直径CD于点E,则下列结论:①AE=BE;②=;③=;④EO=ED.其中正确的有( )
A.①②③④ B.①②③
C.②③④ D.①④
试题5:
如图24110,在⊙O中,半径为5,∠AOB=60°,则弦长AB=________.
试题6:
如图24111,是两个同心圆,其中两条直径互相垂直,其大圆的半径是2,则其阴影部分的面积之和________(结果保留
π).
试题7:
如图24112,AB是⊙O的直径,BC是弦,OD⊥BC于点E,交于点D.
(1)请写出五个不同类型的正确结论;
(2)若BC=8,ED=2,求⊙O的半径.
试题8:
平面内的点P到⊙O上点的最近距离是3,最远距离是7,则⊙O的面积为__________.
试题9:
如图24113,已知在⊙O中,AB,CD两弦互相垂直于点E,AB被分成4 cm和10 cm两段.
(1)求圆心O到CD的距离;
(2)若⊙O半径为8 cm,求CD的长是多少?
试题10:
如图24114,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于点E,已知AB=2DE.
(1)若∠E=20°,求∠AOC的度数;
(2)若∠E=α,求∠AOC的度数.
试题1答案:
B
试题2答案:
A 解析:①②③正确;③虽然已知半径,但点P不是圆心,能作无数个圆;④满足两个条件,只能作一个圆,故④错误.试题3答案:
C
试题4答案:
B
试题5答案:
5
试题6答案:

试题7答案:
解:(1)不同类型的正确结论有:
①BE=CE;②=;③∠BED=90°;④∠BOD=∠A;⑤AC∥OD;⑥AC⊥BC;⑦OE2+BE2=OB2;⑧S△ABC=BC·OE;
⑨△BOD是等腰三角形等.
(2)∵OD⊥BC,∴BE=CE=BC=4.
设⊙O的半径为R,则OE=OD-DE=R-2.
在Rt△OEB中,
由勾股定理,得OE2+BE2=OB2,即(R-2)2+42=R2.解得R=5.
∴⊙O的半径为5.
试题8答案:
4π或25π解析:当点P在⊙O的外部时,⊙O的半径r=×(7-3)=2,∴S⊙O=πr2=4π.当点P在⊙O的内部时,⊙O的半径r=×(7+3)=5,∴S⊙O=πr2=25π.
试题9答案:
解:(1)如图30,作OG⊥CD于点G,OF⊥AB于点F.
图30
∵∠OGE=∠GEF=∠OFE=90°,
∴四边形OGEF是矩形.∴OG=EF.
∵OF⊥AB,∴AF=AB=×(4+10)=7(cm).∴OG=EF=AF-AE=3(cm).
∴点O到CD的距离为3 cm.
(2)连接OD,在Rt△ODG中,
OD=8 cm,OG=3 cm,
由勾股定理,得
GD== (cm).
∵OG⊥CD,∴CD=2GD=2 cm.
试题10答案:
解:(1)∵AB=2DE,
又OA=OB=OC=OD,
∴OD=OC=DE.
∴∠DOE=∠E=20°.
∴∠CDO=∠DOE+∠E=40°=∠C.
∴∠AOC=∠C+∠E=60°.
(2)由(1)可知:∠DOE=∠E=α,
∠C=∠ODC=2∠E,
∴∠AOC=∠C+∠E=3α.。

相关文档
最新文档