基于稳态模型的转差频率控制的交流调速系统的仿真与设计
毕业设计基于MATLABSIMULINK的交流电动机调速系统仿真

1 绪论1.1课题研究背景及目的研究背景直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能;在相当长时期内,高性能的调速系统几乎都是直流调速系统;尽管如此,直流调速系统却解决不了直流电动机本身的换向和在恶劣环境下的不适应问题,同时制造大容量、高转速及高电压直流电动机也十分困难,这就限制了直流拖动系统的进一步发展;交流电动机自1985年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域;20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统;目前,交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四象限运行等优异特性,其稳、动态特性均可以与直流调速系统相媲美;与直流调速系统相比,交流调速系统具有以下特点:(1)容量大;(2)转速高且耐高压;(3)交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小;(4)交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用;(5)高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标;(6)交流调速系统能显著的节能;从各方面看,交流调速系统最终将取代直流调速系统;1.1.1研究目的本课题主要运用MATLAB-SIMULINK软件中的交流电机库对交流电动机调速系统进行仿真,由仿真结果图直接认识交流系统的机械特性;本文重点对三相交流调压调速系统进行仿真研究,认识PID调节器参数的改变对系统性能的影响,认识该系统动态及静态性能的优劣及适用环境;在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度;电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响;因此,调速技术一直是研究的热点12;而交流调速系统凭着其绝对的优势,最终必将取代直流调速系统3;近几年来,科学技术的迅速发展为交流调速技术的发展创造了极为有利的技术条件和物质基础;交流电动机的调速系统不但性能同直流电动机的性能一样,而且成本和维护费用比直流电动机系统更低,可靠性更高4;目前,国外先进的工业国家生产直流传动的装置基本呈下降趋势,交流变频调速装置的生产大幅度上升;在日本,1975年在调速领域,直流占80%,交流占20%;1985年交流占80%,直流占20%5;到目前为止,日本除了个别的地方还继续采用直流电机外,几乎所有的调速系统都采用变频装置67;计算机仿真技术在交流调速系统的应用,使得对交流调速的性能分析和研究变的更为方便;传统的计算机仿真软件包用微分方程和差分方程建模,其直观性、灵活性差,编程量大,操作不便;随着一些大型的高性能的计算机仿真软件的出现,实现交流调速系统的实时仿真可以较容易地实现8;如:matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程;matlab语言非常适合于交流调速领域内的仿真及研究,能够为某些问题的解决带来极大的方便并能显著提高工作效率;随着新型计算机仿真软件的出现,交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步910;交流调速技术发展到今天,相对而言已经比较成熟,在工业中得到了广泛的应用,但是随着一些新的电力电子器件和一些新的控制策略的出现,工业应用对交流调速系统又提了新的要求,现代交流电机调速技术的研究和应用前景十分广阔;20世纪80年代中期研制开发出一种新型交流调速系统——开关磁阻电动机调速系统,它将新型的电机、现代电力电子技术与控制技术融为一体,形成一个典型的机电一体化的调速系统;由于它在效率、调速性能和成本方面都具有一定的优势,已成为当代电力拖动的一个热门课题,将会在调速领域占有一席之地;交流调速的控制策略近年来发展非常迅速,诸如转差矢量控制,自适应控制磁通自适应、断续电流自适应、参数自适应等模型参考自适应控制,状态观测器磁通观测器、力矩观测器等,为补偿速度降以提高精度的前馈控制,以节能、平稳、快速等为目标函数的优化控制,线性二次型积分控制,滑模变结构控制,直接转矩控制及模糊控制等已见诸国内外有关文献及杂志中论文主要工作1.分析各种调速系统在实际运用中的优缺点,分析各种调速方式适用的场合;2.重点分析掌握三相交流调压调速原理,机械特性等,然后对其进行MATLAB的仿真实现,通过修改系统各部分的参数,可以输出稳定的波形;根据示波器输出结果,对系统的性能进行分析;论文章节安排第一章绪论:主要介绍本课题的研究背景和研究内容,以及交流调速系统在国内外的发展和前景展望;介绍了文章的主要工作安排以及论文章节安排;第二章交流调速系统:比较交流调速系统的各种调速方案,重点分析了交流调压调速系统的原理及机械特性,及对交流调压调速电路以及闭环调压调速系统进行了重点的研究分析;第三章交流调压调速系统的MATLAB仿真:运用MATLAB的SIMULINK工具箱分别对异步电动机调压调速系统的主电路与控制电路进行建模和参数设置,最终建立了异步电动机调压调速系统电路的仿真模型,并对其进行了仿真分析和研究,给出仿真结果,通过对仿真结果的分析验证了交流调压电路的工作原理和所建模型的正确性;第四章结论:对全文进行总结,指明异步电动机调压调速系统的发展方向;2 交流调速系统原理与特性交流调速系统交流电机包括异步电动机和同步电动机两大类;对交流异步电动机而言,其转速为:()min /)1(60r ps f n -= 2-1 从转速公式可知改变电动机的极对数p ,改变定子供电功率f 以及改变转率s 都可达到调速的目的;对同步电动机而言,同步电动机转速为:()min /601r pf n = 2-2 由于实际使用中同步电动机的极对数p 是固定的,因此只有采用变压变频VVVF 调速,即通常说的变频调速;运用到实际中的交流调速系统主要有:变级调速系统、串级调速系统、调压调速系统、变频调速系统1;1变极调速系统:调旋转磁场同步速度的最简单办法是变极调速;通过电动机绕组的改接使电机从一种极数变到另一种极数,从而实现异步电动机的有级调速;变极调速系统所需设备简单,价格低廉,工作也比较可靠,但它是有级调速,一般为两种速度,三速以上的变极电机绕组结构复杂,应用较少;变极调速电动机的关键在于绕组设计,以最少的线圈改接和引出头以达到最好的电机技术性能指标;2串级调速系统:绕线转子异步电动机串级调速是将转差功率加以利用的一种经济、高效的调速方法;改变转差率的传统方法是在转子回路中串入不同电阻以获得不同斜率的机械特性,从而实现速度的调节;这种方法简单方便,但调速是有级的,不平滑,并且转差功率消耗在电阻发热上,效率低;自大功率电力电子器件问世后,采用在转子回路中串联晶闸管功率变换器来完成馈送转差功率的任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的晶闸管串级调速系统;转子回路中引入附加电势不但可以改变转子回路的有功功率——转差功率的大小,而且还可以调节转子电流的无功分量,即调节异步电动机的功率因数;3调压调速系统:异步电动机电机转矩与输入电压基波的平方成正比,所以改变电机端电压基波可以改变异步电动机的机械特性以及它和负载特性的交点,来实现调速;异步电动机调压调速是一种比较简单的调速方法;在20世纪50年代以前一般采用串饱和电抗器来进行调速;近年来随着电力电子技术的发展,多采用双向晶闸管来实现交流调压;用双向晶闸管调压的方法有两种:一是相控技术,二是斩波调压;采用斩波控制方法可能调速不够平滑,所以在异步电机的调压控制中多用相控技术;但是采用相控技术在输出电压波形中含有较大的谐波,会引起附加损耗,产生转矩脉动15;4变频调速系统:在各种异步电机调速系统中,效率最高、性能最好的系统是变压变频调速系统;变压变频调速系统在调速时,须同时调节定子电源的电压和频率,在这种情况下,机械特性基本上平行移动,转差功率不变,它是当前交流调速的主要方向16;调压调速系统的优点是线路简单,价格便宜,使用维修方便,本文主要针对交流调压调速系统进行MATLAB仿真;下面对交流调压调速系统的原理及机械特性进行介绍;交流异步电动机调压调速系统三相交流调压电路交流调压调速需要三相交流调压电路,晶闸管三相交流调压电路的接线方式很多,工业上常用的是三相全波星形连接的调压电路;如图所示;这种电路的接法特点是负载输出谐波分量低,适用于低电压大电流的场合11;图三相全波星形连接的调压电路要使得该电路正常工作,必须满足下列条件:1在三相电路中至少有一相的正向晶闸管与另一相得反相晶闸管同时导通;2要求采用脉冲或者窄脉冲触发电路;3为了保证输出电压三相对称并且有一定的调节范围,要求晶闸管的触发信号除了必须与相应的交流电源有一致的相序外,各个触发信号之间还必须严格的保持一定的相位关系;即要求U、V、W三相电路中正向晶闸管即在交流电源为正半周时工作的晶闸管的触发信号相位互差120°,三相电路中的反向晶闸管的触发信号相位互差120°;在同一相中反并联的两个正、反向晶闸管的触发脉冲相位应互差180°;由上面结论,可得三相调压电路中各晶闸管触发的次序为VT 1、VT 2、VT 3、VT 4、VT 5、VT 6、VT 1以此类推;相邻两个晶闸管的触发信号相位差60°;在晶闸管交流调压中,晶闸管可借助于负载电流过零而自行关断,不需要另加换流装置,故线路简单、调试容易、维修方便、成本低廉,从而得到广泛的应用;调压调速原理根据异步电动机的机械特性方程式()()[]2'21212'211'221'22'211//33l l M L L s R R s R pU s R I P P T +++==Ω=ωωω 2-3其中 p ——电动机的极对数1U 、1ω——电动机定子相电压和供电角频率s ——转差率1R 、'2R ——定子每相电阻和折算到定子侧的转子每相电阻11L 、'12L ——定子每漏感和折算到定子侧的转子每相漏感可见,当转差率s 一定时,电磁转矩T 与定子电压1U 的平方成正比;改变定子电压可得到一组不同的人为机械特性,如图所示;在带恒转矩负载L T 时,可以得到不同的稳定转速,如图中的A,B,C 点,其调速范围较小,而带风机泵类负载时,可得到较大的调速范围,如图中的D,E,F 点;S S L m图 异步电动机在不同定子电压时的机械特性所谓调压调速,就是通过改变定子外加电压来改变电磁转矩T ,可得到较大的调速范围,从而在一定的输出转矩下达到改变电动机转速的目的13;为了能在恒转矩负载下扩大调压调速范围,使电机在较低速下稳定运行又不致过热,可采用电动机转子绕组有较高电阻值时的机械特性;在恒转矩负载下的交流力矩电动机的机械特性;图显示此类电动机的调速范围增大了,而且在堵转转矩下工作也不致烧毁电;动机14图交流力矩电机在不同定子电压时的机械特性闭环控制的调压调速系统系统的组成及其静特性异步电动机调压调速时,采用普通电机的调速范围很窄;并且在低速运行时候稳定性很差,在电网电压、负载有扰动时候会引起较大的转速变化;解决这些矛盾的根本方法是采用带转速负反馈的闭环控制,以达到自动调节转速的目的;在调速要求不高的情况下,也可采用定子电压负反馈闭环控制;图a是带转速负反馈的闭环调压调速系统原理图,图b是相应的调速系统静特性;如T在A点稳定运行,当负载增大导致转速下降时,通过转速反馈控制作用提果系统带负载L高定子电压,使得转速恢复,即在新的一条机械特性上找到了工作点A';同理,当负载减小使得转速升高时,也可以得到新的工作点A'';将工作点A''、A、A'连起来就是闭环系统的静特性1;M3a 原理图L e min 1Ub 静特性图 转速负反馈闭环控制的交流调压调速系统在额定电压N U 1下的机械特性和最小电压min 1U 下的机械特性是闭环系统静特性左右两边的极限,当负载变化达到两侧的极限时,闭环系统便失去控制能力,回到开环机械特性上工作14;对图a所示的系统,可画出系统静态结构图,见图所示:ASRL T -图 异步电动机调压调速系统的静态结构图图中:ctS U U K 1=----晶闸管交流调压器VVC 和触发装置GT 的放大系数; ct U ----触发装置的控制电压;n U n /=α----为转速反馈系数;n U ----测速发电机TG 输出的反馈电压;转速调节器ASR 采用PI 调节器;()T U f n ,1=是由式2-3描述的异步电动机械特性方程,它是一个非线性函数;近似的动态结构图异步电动机调压调速的近似动态结构图如下所示:U 图 异步电动机调压调速系统的近似动态结构图图中各环节的传递函数为:1 转速调节器ASR常用PI 调节器消除静差并改善动特性,其传递函数为:()ST S T K S W n n n ASR 1+= 2-4 2 晶闸管交流调压器和触发装置GT-V假定该环节输入输出关系是线性的,在动态中可近似为一阶惯性环节,其近似条件与晶闸管触发与整流装置一样;本环节传递函数可表示为:()1+=-TsS K S W S V GT 2-5 3 测速反馈环节FBS考虑到反馈滤波的作用, 传递函数为:()1+=S T S W on FBS α2-64 异步电动机MA由于描述异步电动机动态过程是一组非线性微分方程,只用一个传递函数来准确的表示异步电动机在整个调速范围内的输入输出关系式不可能的;只有做出一定的假设,并用稳态工作点附近微偏线性化的方法才能得到近似的传递函数;3 交流调压调速系统的MATLAB仿真系统的建模和模型参数设置主电路的建模和参数设置主电路主要由三相对称交流电压源、晶闸管、晶闸管三相交流调压器、交流异步电动机、电机信号分配器等部分组成;下面分别讨论三相交流电源、三相交流调压器、同步脉冲触发器、交流异步电动机、电机测试信号分配器的建模和参数设置问题16;三相交流电源的建模和参数设置首先从图中的电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并把模块名称分别修改成A相、B相、C相;然后从图中的链接器模块组中选取“ground”元件也复制成三份,按图所示连接即可图Simulink中的电源模块图Simulink中的连接模块图三相交流电源的模型为了得到三相对称交流电压源,对其参数设置:双击A相交流电压源图标打开参数设置对话框,A相得参数设置分别是:幅值peak amplitude取220V、初相位Phase设置成 0、频率Frequency设置为50HZ,其他为默认值;B、C的参数设置方法与A相相同,除了将初相位设置成互差120以外,其它参数都与A相相同;由此可得到三相对称交流电源4;3.1.1.2晶闸管三相交流调压器的建模与参数设置晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管元件采用“相位控制”方式,利用电网自然换流;图中所示为晶闸管三相交流调压器的仿真模型;图晶闸管三相交流调压器仿真模型子系统触发脉冲的顺序为V1-V2-V3-V4-V5-V6,其中V1-V3-V5之间和V4-V6-V2之间互差120度,V1-V4之间、V3-V6之间、V5-V2之间互差180度;双击晶闸管对话框得到晶闸管参数设置图,根据图中要求及系统要求对其进行参数设置如下:电阻Resistance Ron:40 Ω;电感Inductance Lon:0H;正向电压Forward voltage Vf:;初始电流Initial current Ic:0A;缓冲器电阻Subber resistance Rs:1200Ω;μ;缓冲器电容Subber capacitance Cs:250 F上图是用单个晶闸管元件按三相交流调压器的接线要求搭建成仿真模型的,单个晶闸管的参数设置仍然遵循晶闸管整流桥的参数设置原则,具体如下:如果针对某个具体的变流装置进行参数设置,对话框中的参数应取默认值进行仿真,若仿真结果理想,就可认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数;这一参数设置原则对其它环节的参数设置也是适用的18;在使用Simulink进行系统仿真分析时,首先需要进行模块参数设置,因此需要对系统中所有模块进行正确的参数设置;如果逐一的对各个系统进行参数设置时很繁琐的,因为子系统一般均为具有一定功能的模块组的集合,在系统中相当于一个单独的模块,具有特定的输入和输出关系;对于已经设计好的子系统而言,能够像Simulink模块库中的模块一样进行参数设置,则会给用户带来很大的方便,这时用户只需要对子系统参数选项中的参数进行设置,无需关心子系统的内部模块的实现;具体封装步骤如下:选择需要封装的子系统Subsystem,然后单击鼠标右键,在弹出的菜单中选择Mask Subsystem项,或者单击Edit-Mask Subsystem项19;这时将出现图中所示的封装编辑器;使用封装编辑器子系统中的图标、参数初始化设置对话框以及帮助文档,从而可使使用户设计出非常友好的模块界面,以充分发挥Simulink的强大功能;打开Mask editor:Subsystem对话框,如图所示;使用此编辑器可以对封装后的子系统进行各种编辑;在默认情况下,封装子系统不使用图标;但友好的子系统图标可使子系统的功能一目了然;为了增强封装子系统的界面友好性,用户可以自定义子系统模块的图标;只需在途中编辑对话框中的“图标和端口”选项卡中“绘制命令”栏中使用MATLAB 中相应便可以绘制模块图标,并可设置不同的参数控制图标界面的显示20;图 子系统封装编辑器下图为晶闸管三相交流调压器子系统封装图如下所示:aU bU cU a bcP图 三相交流调压器子系统封装图图中,Ua,Ub,Uc 分别连接三相交流电源的三相,P 连接从脉冲触发器出来的触发脉冲,输出a,b,c 分别连接交流电动机的A,B,C 输入4;同步脉冲触发器的建模和参数设置通常,工程上将触发器和晶闸管整流桥作为一个整体来研究,所以,在此处讨论同步脉冲触发器;同步脉冲触发器包括同步电源和6脉冲触发器两部分;6脉冲触发器可以从图所示的附加模块Extras Control Blocks 子模块组获得;图附加模块Extras Control Blocks子模块6脉冲触发器需要三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压;同步电源与6脉冲触发器符号图如下所示4:图同步脉冲触发器子系统同步脉冲触发器封装后子系统符合如下:UaUbUcOutIn2Uct图同步脉冲触发器封装后子系统符号然后根据主电路的连接关系,建立起主电路的仿真模型;图中ln2为脉冲器开关信号,当脉冲器开关信号为“0”时,开放触发器;为“1”时,封锁触发器4;交流异步电动机的建模和参数设置在Power System 工具箱中有一个电机模块库,它包含了直流电机、异步电机、同步电机以及其他各种电机模块;其中,模块库中有两个异步电动机模型,一个是标幺值单位制PI unit 下的异步电动机模型,另一个是国际单位制SI unit 下的异步电动机模型,本设计中采用后者;国际单位制下的异步电动机模型符号如图所示2:图 异步电动机模块其电气连接和功能分别为:A,B,C :交流电机的定子电压输入端子;m T :电机负载输入端子,一般是加到电机轴上的机械负载;a,b,c:绕线式转子输出电压端子,一般短接,而在鼠笼式电机为此输出端子;m:电机信号输出端子,一般接电机测试信号分配器观测电机内部信号,或引出反馈信号2;异步电动机模型参数设置如下;双击异步电动机的模型,即了得到参数设置对话框;分别对其进行参数设置如下所示6:1绕组类型Rotor type: 转子类型列表框,分别可以将电机设置为绕线式Wound 和鼠笼式Squirrel -cage 两种类型;在本文中用鼠笼式Squirrel -cage 异步电动机;2参考坐标系Reference Frame :参考坐标列表框,可以选择转子坐标系Rotor 、静止坐标系Stationary 、同步旋转坐标系Synchronous;在本文中选择同步旋转坐标系Synchronous ; 3额定参数: 额定功率n P KW 取30KW,线电压n V V 为380V ,频率f 赫兹为50HZ ; 4定子电阻s R Statorohm 取Ω和漏感ls L H 取为;5转子电阻r R Rotorohm 为Ω和漏感lr L H 取为;其它设置为默认值电动机测试信号分配器的建模和参数设置电动机测试信号分配器模块的模型图如下所示:图Machines Measurement Demux电动机测试信号分配器模块双击电动机测试信号分配模块得图电机测试信号分配器参数设置图;图电动机测试信号分配器参数设置对话框及参数选择图中:ir_abc:转子电流ira,irb,irc;ir_qd:同步d-q坐标下的q轴下的转子电流ir_q和d轴下的转子电流ir_d;phir_qd:同步d-q坐标下的q轴下的转子磁通phir_q和d轴下的转子磁通phir_d;vr_qd:同步d-q坐标下的q轴下的转子电压vr_q和d轴下的转子电压vr_d;is_abc:定子电流isa,isb,isc;is_qd:同步d-q坐标下的q轴下的定子电流is_q和d轴下的定子电流is_d;phir_qd:同步d-q坐标下的q轴下的定子磁通phis_q和d轴下的定子磁通phis_d;vs_qd:同步d-q坐标下的q轴下的定子电压vs_q和d轴下的定子电压vs_d;wm :电机的转速wm ;Te :电机的机械转矩Te ;Thetam :电机转子角位移Thetam 1;控制电路的建模和参数设置交流调压系统的控制电路包括:给定环节、速度调节器、限幅器、速度反馈环节等;控制电路的有关参数设置如下:速度反馈系数设为20;调节器的参数设置分别是:ASR :30=pn K ;300=n τ;上下限幅为400-0;其它没做说明的为系统默认参数;给定环节的建模与参数设置在调压调速的仿真模型中有几个给定环节,它可以从图中的输入源模块组中选取“constant ”模块,模块路径为Simulink/Commonly Used Blocks 14;图 输入源模块组然后双击该模块的图标,打开参数设置对话框,在该系统中用到两个给定模块,分别将给定值Constent value 设置为-20以及0两个;其它设置为默认值;实际调速时,给定信号是在一定的范围内变化的,我们可以通过仿真实践,确定给定信号允许的变化范围4;速度调节器的建模和参数设置速度调节器通常采用PI 控制,比例和积分参数的设置要根据系统的仿真结果不断地变化改动,以得到最稳定的输出特性以及动态特性;限幅器、速度反馈环节也一样;具体方法是分别设置这些参数的一个较大和较小的值进行仿真,弄清它们对系统性能影响的趋。
基于MATLABSIMULINK的交流电机调速系统建模仿真

控制系统仿真姓名:班级:学号:成绩:2012年11月02日越优势被应用于各个行业。
设统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统。
计内目前交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可容。
随着电力电和要子变流技术和交流电机控制理论的发展,出现了许多新型变流装置和交流电机的调速控求制方法。
众所周知,异步电动机是一个高阶、非线性、强耦合的多变量系统,再加上在变流装置的非正弦供电条件下运行,使经典的交流电机理论和传统的控制系统分析方法不能完全适用于现代交流调速系统。
采用计算机仿真的方法来分析研究交流电机及其调速是解决这类工程问题的一种有效工具。
要求:利用目前国际上最流行的仿真软件之一MATIAB/SIMULINK,建立一个通用的仿真模型。
然后用到直接转矩控制系统中去,对该系统进行仿真研究。
第一章引言1.1研究背景直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能。
在相当长时期内报告主要展。
交流电动机自1985年出现后章节领域。
20世纪70年代后步取代大部分直流调速系统。
目前、动态特性均可以与直流调速系统相媲美。
与直流调速系统相比容量大1.4交流电动机环境使用性强5 高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标6交流调速系统能显著的节能从各方面看系统。
MATLAB/SIMULINK软件的优势:1.2计算机仿真技术在交流调速系统的应用系统的实时仿真可以较容易地实现[1]。
如matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程。
matlab语言非常适合于交流调速领域内的仿真及研究能够为某些问题的解决带来极大的方便并能显著提高工作效率。
随着新型计算机仿真软件的出现交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步[2][3]。
第二章交流调速系统:2.1交流调速系统原理与特性交流电机包括异步电动机和同步电动机两大类。
交流调速系统的Matlab仿真

主电路模型的建立与仿真参数设置。
主电路主要由电动机本体模块、电机测量单元模块、逆变器和电源组成。电机测量模块参数根据仿真需要进行设置,本次仿真是为了观测定子磁链波形,故只选择了定子磁链物理量。电源模块参数设置为780V,电机本体参数设置有一些特点。在第六章对于电压空间矢量控制分析中已经指出,当忽略定子电阻时,定子三相绕组合成电压方向就与磁链方向正交。为了说明电压空间矢量调速系统的意义,故把交流异步电动机定子绕组的电阻取为零,其它参数如图8-17所示。逆变器也是选用Universal bridge ,在参数设置的对话框中桥臂数Number of bridge arms取3,电力电子器件取理想开关器件Ideal Switches。其它为参数默认值;交流电动机的负载取1。
电流跟踪滞环调速系统仿真模型
主电路模型建立与参数设置
主电路模型是由异步电动机本体模块、电机测量模块、逆变器模块、直流电源等组成。电动机模块和负载模块与上节相同。直流电源参数改为780V。在电机测量单元模块定子电流输出上,采用Demux模块把三相定子合成信号分解,目的是为了检测一相电流波形。然后再用Mux模块把三个定子电流信号合成输入到电流滞环控制器;逆变器是选用Universal bridge ,在参数设置的对话框中桥臂数Number of bridge arms取3,电力电子器件取IGBT/Diodes。其它为参数默认值;负载转矩取5。
交流电机参数对话框
控制电路模型的建立与仿真参数设置
控制电路中由Clock模块、Matlab Fcn模块组成。Clock路径为:Simulink/Sources/Clock。参数设置Decimation为100。此模块表示输出时间。在控制电路中,本次仿真采用Matlab Fcn模块,其路径为Simulink/User-Defined Functions/Matlab Fcn。此模块参数设置如图8-18所示,即在Matlab function编辑框中写入一个函数名chenzhong37。
第五章 基于稳态模型的异步电动机调速系统(电力拖动自动控制系统)

2.异步电动机三相原始模型的非独立性
图6-2 二极直流电动机的物理模型 F—励磁绕组 A—电枢绕组 C—补偿绕组
2.异步电动机三相原始模型的非独立性
图6-3 三相坐标系和两相坐标系物理模型
2.异步电动机三相原始模型的非独立性
图6-4 静止两相正交坐标系和旋转正交坐标系的物理模型
2.异步电动机三相原始模型的非独立性
2.计算转子磁链的电压模型
图6-32 磁电动机的仿真
图6-18 按转子磁链定向的异步电动机动态结构图
2.三相异步电动机的仿真
图6-19 异步电动机矢量变换及等效直流电动机模型
2.三相异步电动机的仿真
图6-20 矢量控制系统原理结构图
2.三相异步电动机的仿真
图6-21
简化后的等效直流调速系统
2.三相异步电动机的仿真
图6-22 电流闭环控制后的系统结构图
(2)在mt坐标系上计算转子磁链的电流模型
图6-30 在mt坐标系上计算转子磁链的电流模型
2.计算转子磁链的电压模型
1)用定子电流转矩分量i*和转子磁链ψ*计算转差频率给定信号ω*,
即 2)定子电流励磁分量给定信号i*和转子磁链给定信号ψ*之间的关 系是靠
2.计算转子磁链的电压模型
图6-31 计算转子磁链的电压模型
第五章
第一节
1.系统结构 2.起动过程 3.加载过程 第二节1.磁链方程 2.电压方程 3.转矩方程
4.运动方程
第三节1.异步电动机三相原始模型的非线性强耦合性 2.异步电动机三相原始模型的非独立性
图5-42 按恒值控 制的=f()特性
图5-43 定子电压补偿恒/ 控制的电压-频率特性
1. dq坐标系中的状态方程
大学_运动控制系统(阮毅著)课后答案下载_1

运动控制系统(阮毅著)课后答案下载运动控制系统(阮毅著)课后答案下载本书内容主要包括直流调速、交流调速和随动系统三部分。
直流调速部分主要介绍单闭环、双闭环直流调速系统和以全控型功率器件为主的直流脉宽调速系统等内容;交流调速部分主要包括基于异步电动机稳态模型的调速系统、基于异步电动机动态模型的高性能调速系统以及串级调速系统;随动系统部分介绍直、交流随动系统的性能分析与动态校正等内容。
此外,书中还介绍了近几年发展起来的多电平逆变技术和数字控制技术等内容。
本书全面系统、深入浅出地介绍了交直流调速系统的基础知识、系统结构、控制方式、系统性能及系统设计方法。
书中还提供了大量的实例及仿真,对广大读者有很好的指导作用。
本书语言通俗,具有较强的实用性,适于高等院校自动化、电气工程及其自动化等相关专业本科“运动控制系统”或“电力拖动自动控制系统”或“交直流调速系统”课程教学使用,还可供从事运动控制的工程技术人员参考。
运动控制系统(阮毅著):内容简介点击此处下载运动控制系统(阮毅著)课后答案运动控制系统(阮毅著):作品目录第1篇直流调速自动控制系统第1章单闭环直流调速自动控制系统21.1直流调速的预备知识21.1.1直流调速的可控电枢电源21.1.2直流调速自动控制系统的机械特性51.1.3直流调速自动控制系统的调速要求及性能指标61.2比例(P)调节的单闭环直流调速自动控制系统81.2.1开环控制系统及其存在的问题81.2.2P调节的单闭环直流调速自动控制系统结构及机械特性9 1.2.3P调节的单闭环直流调速自动控制系统稳态参数设计10 1.2.4P调节的单闭环直流调速自动控制系统动态性能分析14 1.3PI(比例积分)调节的单闭环直流调速自动控制系统201.3.1PI调节器的性能201.3.2PI调节器与P调节器的对比221.3.3PI调节的单闭环直流调速自动控制系统231.4单闭环直流调速自动控制系统的限流保护271.4.1问题的提出271.4.2限流保护电路的实现281.4.3带限流保护的单闭环直流调速自动控制系统28习题31第2章双闭环直流调速自动控制系统与调节器的工程设计33 2.1双闭环调速自动控制系统的组成332.2双闭环直流调速自动控制系统的静特性和稳态参数计算35 2.3双闭环直流调速自动控制系统的动态特性372.3.1双闭环直流调速自动控制系统的动态数学模型372.3.2双闭环直流调速自动控制系统的启动特性382.3.3双闭环直流调速自动控制系统的抗扰性能分析392.4直流调速自动控制系统的工程设计方法402.4.1工程设计方法与步骤402.4.2典型系统412.4.3非典型系统的典型化532.5双闭环直流调速自动控制系统的工程设计方法56习题66第3章可逆直流调速自动控制系统683.1V-M可逆直流调速自动控制系统683.1.1V-M系统的可逆线路683.1.2V-M可逆直流调速自动控制系统的主回路及环流703.1.3不同控制方式下的V-M直流可逆调速自动控制系统75 3.2直流PWM可逆调速自动控制系统803.2.1直流可逆PWM变换器803.2.2微机控制的PWM可逆直流调速自动控制系统813.2.3直流PWM功率变换器的能量回馈82习题83第2篇交流调速自动控制系统第4章基于稳态模型的交流异步电机调速自动控制系统874.1异步电机稳态数学模型及机械特性874.2异步电机的调压调速894.3异步电机的变频调速924.3.1变频调速的基本控制方式924.3.2变频调速时的.机械特性934.4电力电子变压变频器974.4.1变频器概述974.4.2变频器的主要类型984.4.3变频器的脉宽调制技术1034.5基于稳态模型的变压变频调速自动控制系统1134.5.1转速开环变压变频调速自动控制系统1134.5.2转速闭环转差频率控制的变压变频调速自动控制系统114习题117第5章基于动态模型的异步电机调速自动控制系统——矢量控制系统118 5.1异步电机动态数学模型的性质1185.2异步电机的三相数学模型1195.3坐标变换1225.3.1坐标变换的基本思路1225.3.2三相-两相变换(3/2变换)1245.3.3静止两相-旋转正交变换(2s/2r变换)1265.4异步电机在正交坐标系上的动态数学模型1265.4.1静止两相正交坐标系中的动态数学模型1265.4.2旋转两相正交坐标系中的动态数学模型1285.5异步电机在正交坐标系上的状态方程1295.5.1状态变量的选取1295.5.2以-is-r为状态变量的状态方程1305.5.3以-is-s为状态变量的状态方程1325.6矢量控制的变频调速自动控制系统1355.6.1按转子磁链定向的同步旋转正交坐标系状态方程136 5.6.2间接矢量控制系统1395.6.3直接矢量控制系统141习题143第3篇数字控制的调速自动控制系统第6章数字(计算机)控制的调速自动控制系统1466.1数字控制的特点1466.1.1离散和采样1466.1.2连续变量的量化1476.1.3数字式速度检测及量化1486.1.4电压、电流等模拟量的量化1526.1.5数字调节器1556.1.6开环前馈补偿(预控)1566.2数字控制系统的组成及其数字控制器1576.2.1数字控制器(计算机系统)的硬件系统1586.2.2数字控制器的软件系统1616.3数字调速自动控制系统及其数字化设计1616.3.1变量的相对值1616.3.2直流双闭环调速自动控制系统全数字化设计163 6.3.3异步电机矢量控制系统全数字化设计173习题178第4篇交直流调速自动控制系统的应用第7章调速自动控制系统的应用1807.1无刷直流电机控制在电动车中的应用1807.1.1无刷直流电机的结构1807.1.2无刷直流电机的位置传感器1817.1.3无刷直流电机运转原理1827.1.4换向时序1827.1.5系统总体控制方案1827.1.6系统硬件电路1827.1.7系统的控制算法实现1877.1.8系统的软件设计1887.2交流运动控制在风机节能中的应用1907.2.1风机的风量-压力特性1917.2.2应用变频调速的要点1927.2.3风机变频调速举例1947.3交流运动控制在生产线传送带上的应用195 7.3.1概述1957.3.2传送带对变频器提出的要求1957.3.3变频器的选用原则1967.3.4变频调速应用实例198。
%e5%ae%9e%e9%aa%8c%e4%b8%89%ef%bc%8d%e5%8f%8c%e9%97%ad%e7%8e%af%e7%b3%bb%e7%bb%9f%e4%bb%bf%e7%9c%9f1

3.1.2 稳态结构图与参数计算
~
TA
I Un* Un n n
TG
Ui* ASR
Ui ACR Uc UPE Ud
Id
M
图3-2 转速、电流反馈控制直流调速系统原理图 ASR——转速调节器 ACR——电流调节器 TG——测速发电机
1. 稳态结构图和静特性
转速调节器ASR的输出限幅电压决定了电流给定 的最大值,电流调节器ACR的输出限幅电压限制 了电力电子变换器的最大输出电压, 当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出,除非有反向的输入信号使调节 器退出饱和; 当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。 对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。
(1)抗负载扰动
IdL Un* Un Ui*
WASR(s) WACR(s )
Uc
Ks Tss+1
Ud0
1/R Tls&
1 Ce
n
Ui β
α
图3-7 直流调速系统的动态抗扰作用
负载扰动作用在电流环之后,只能靠转速调节器 ASR来产生抗负载扰动的作用。 在设计ASR时,要求有较好的抗扰性能指标。
1. 转速调节器的作用
转速调节器是调速系统的主导调节器,它 使转速很快地跟随给定电压变化, 如果采 用PI调节器,则可实现无静差。 对负载变化起抗扰作用。 其输出限幅值决定电动机允许的最大电流。
2. 电流调节器的作用
在转速外环的调节过程中,使电流紧紧跟随 其给定电压(即外环调节器的输出量)变化。 对电网电压的波动起及时抗扰的作用。 在转速动态过程中,保证获得电机允许的最 大电流。 当电动机过载甚至堵转时,限制电枢电流的 最大值,起快速的自动保护作用。一旦故障 消失,系统立即自动恢复正常。
基于交流电动机动态模型的直接转矩控制系统的仿真与设计

运动控制课程设计班级:电气三班学号:姓名:基于交流电动机动态模型的直接转矩控制系统的仿真与设计设计目的应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
1直接转矩控制的基本原理及规律直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
1.1直接转矩控制系统原理与特点如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*T,T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得在*转速和磁链系统实现解耦。
因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。
图1-1直接转矩控制系统图的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链s保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。
在直接转矩控制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。
从以上介绍我们可以了解到DTC系统在具体控制方法上的一些特点:⑴转矩和磁链的控制采用双位式控制器,并在PWM的逆变器中直接用这两个控制信号产生电压的SVPWM波形,从而避开了将定子电流分解成转矩和磁链分量,省去了旋转变换和电流控制,简化了控制器的姐结构。
基于交流电动机动态模型的直接矢量控制系统的仿真与设计

基于交流电动机动态模型的直接矢量控制系统的仿真与设计姓名:班级:电气三班学号:专业:电气工程及其自动化1.引言异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。
需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设计,但要完成这一任务并非易事。
经过人们的多年的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是矢量控制系统。
直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。
本文研究了交流电动机动态模型的直接矢量控制系统的设计方法。
并用MATLAB 最终得到出仿真结果。
2. 矢量控制系统结构异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。
由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统(VectorControlSystem),简称VC 系统。
VC 系统的原理结构如图1所示。
图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号*m i 和电枢电流的给定信号*t i ,经过反旋转变换1-VR 一得到*αi 和*βi ,再经过2/3变换得到*A i 、*B i 和*C i 。
把这三个电流控制信号和由控制器得到的频率信号1ω加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。
图1 矢量控制系统原理结构图在设计VC 系统时,如果忽略变频器可能产生的滞后,并认为在控制器后面的反旋转变换器1-VR 与电机内部的旋转变换环节VR 相抵消,2/3变换器与电机内部的3/2变换环节相抵消,则图1中虚线框内的部分可以删去,剩下的就是直流调速系统了。
可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动控制系统课程设计题目:基于稳态模型的转差频率控制的交流调速系统的仿真与设计信息与电气工程学院08级电气三班一设计目的:应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础二设计参数:额定输出功率17KW;定子绕组额定线电压380V;定子绕组额定相电流25A;定子绕组每相电阻0.1欧姆;定子绕组接线形式Y;转子额定转速1430rpm;转子形式:鼠笼式;转子每相折算电阻:1欧姆;转子折算后额定电流50A;额定功率因数:0.75;电机机电时间常数1S;电枢允许过载系数1.5;环境条件:电网额定电压:380/220V; 电网电压波动10%;环境温度:-40~+40摄氏度; 环境相对湿度:10~90%.控制系统性能指标: 转差率:3%; 调速范围:D =20;电流超调量小于等于5%;空载起动到额定转速时的转速超调量小于等于30%; 稳速精度:0.03. 三 设计原理:1 转差频率控制的基本概念本文主要介绍异步电动机的转差频率控制方式,在该基础上进一步介绍转差频率间接矢量控制方式。
由电力拖动的基本方程式:e L p J d T T n dtω-=(1-1)根据基本运动方程式,控制电磁转矩e T 就能控制d dtω。
因此,归根结底,控制调速系统的动态性能就是控制转矩的能力。
图1.1异步电动机稳态等效电路和感应电动势电磁转矩关系式:s R I m P T s s e e ''Ω=Ω=2221 (1-2)由图1.1异步电动机稳态等效电路图可知:21212rr gr L s R E I ω+⎪⎪⎭⎫⎝⎛'='(1-3)将(1-3)代入(1-2)中得:2121221112112121212133'+''⎪⎪⎭⎫ ⎝⎛='+⎪⎪⎭⎫⎝⎛'=r r rg p rr r gp e L s R R s E n s R L s R E n T ωωωωωω(1-4) 将电机气隙电动势mNs m Ns s g k N k N f E Φ=Φ=1112144.4ω代入式(1-4)得2121221112223r rrm ns s p e L s R R s k N n T ωω+'Φ=(1-5)令1s s ωω=并定义为转差频率,其中2232m p s Ns K n N k =为电机的结构常数,则式(1-5)可化为 ()2112211re m m r s r s R T K R L ωω=Φ''+ (1-6)当电机稳定运行时,s 值很小,可以认为1s r r L R ω''<<,则转矩可近似表示为'Φ≈r smm e R K T ω2(1-7)上式表明,在s 很小的稳定运行范围内,如果能够保持气隙磁通m Φ不变,则有e s T ω∝,从而控制了转差频率就相当于控制了转矩。
2 基于异步电动机稳态模型控制的转差频率控制规律当s ω较大时,采用式(1-4)的精确转矩公式,其转矩特性()e s T f ω=如图1.2所示,当s ω较小时处于稳定运行段,转矩与转差频率s ω成正比,当e T 达到最大值max e T 时,s ω达到max s ω。
图1.2 按恒m Φ值控制的()e s T f ω=特性对于式(1-4),取0esdT d ω=,可得, rr rr s L R L R 11max ='=ω (1-8)'Φ=rmm e L K T 122 (1-9)1.在转差频率控制系统中,只要给定s ω限幅,使其限幅值为rr s s L R 1max =<ωω (1-10)则可保持e T 与s ω的正比关系,从而可以用转差频率控制来代替转矩控制。
2.保持m Φ恒定的条件: 由异步电机等效电路图1.1,可知⎪⎪⎪⎭⎫⎝⎛++=++=⋅⋅⋅⋅11111)()(ωωωgs s s g s s s s E L j R I E L j R I U (1-11) 可见该控制需要在实现恒1gE ω控制的基础上再提高电压S U 以补偿定子电压降。
如果忽略电流相量相位变化的影响,不同定子电流时恒1gE ω控制所需的电压-频率特性1(,)s s U f I ω= 如图1.3所示。
图1.3 不同定子电流时恒压频比控制所需的电压-频率特性上述关系表明,只要s U 和1ω及s I 的关系符合上图所示特性,就能保持1gE ω恒定,也就是保持m Φ恒定。
这是转差频率控制的基本规律之二。
总结起来,转差频率控制的规律是:(1)在s sm ωω≤的范围内,转矩e T 基本上与s ω成正比,条件是气隙磁通不变。
(2)在不同的定子电流值时,按上图的函数关系1(,)s s U f I ω=控制定子电压和频率,就能保持气隙磁通m Φ恒定。
由以上工作情况可以看出,转差频率控制系统的突出优点在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加得到的。
这样,在转速变化过程中,定子频率随着实际转速同步上升或下降。
与转速开环系统中按电压成正比地直接产生频率给定信号相比,加、减速更为平滑,且容易使系统稳定。
稳态工作时可以实现无差调节,在急剧的动态过程中,可维持电机转矩接近于最大值。
在一定程度上类似于直流双闭环系统,因此属于高性能的控制系统。
系统原理图如下:动态结构框图如下:四 设计数据确定 1 参数计算:取U U i **=ω=8V取整流内阻R rec =0.5Ω R=0.2整流电压变化三相桥式电路的平均失控时间:取3380U ==220v n p =3R R TK n U NTp X 21212)210(--=φ=4.5X X X 21'21===2.25 mH fXL L 621'21===π89.14)34.14*3/(220*95.0==XmmH fXL mm 482==πmH Ld2742.19*05.0380*693.0==Ω==1.02.19220*01.0Rds R L T l 043.0)32.0(*25.0*)6*4274(103=+++==-A I K INTdm85.2878.015*5.178.0*1===0.78β=A A V IU dmi2773.0/85.288*==取电流滤波时间常数:sT oi 003.0=转差滤波时间常数:sT o 007.0=ω转速反馈系数 :026.0980*3*260*86028*====ππαωωn n U sp nM N T e ⋅==5.9798010*975*8.9A M N IT K de /07.51578.0*5.972⋅===s V U K AB ⋅==23.11ωs RL L Tm 018.03*)648(103'2'22=+=+=-取s sn sA 11187.4350*2*04.0*04.0-====πωωω 02.015187.4**018.034.1422==K GF1=Tms3.电流调节器的计算:取s Tli 043.0==τs T i0047.0=∑%5≤σis T KiI11061*2-=∑=2.278.0**==βτK KK s iIiR近似校验:s K I ci 1106-==ω忽略反电动势变化对电流环:ωci lmTT ≤==46.1482.4*313电流环小时间常数近似处理条件:ωci oiss TT ≥=-16.147131满足近似条件计算调节器电阻和电容 取Ω===k RK R oii8840*2.2uF RC ii i 5.088043.0===τuF R T C o i oi 3.0*40==4.转差调节器计算:7%30=∴≤h i σs h h T T Tow i n n 1148.00164.0*7)(2==+∑=∑=τ s T h K n N h 12225.303*49*217210164.0-=+=∑+= 3265)78.0(1==R K T K K K GF m n N n αβτ近似校验:s K n N cn 184.34-==τω电流环传递函数简化条件: ωcn iI T K ≥=∑0047.01063131 转差环小时间常数:ωωcn o I T K ≥==41007.01063131满足近似条件取Ω==k R K R n n n 130600*uF R C n n n 5.81306001148.0≈==τ uF R T C oon on 7040007.0*44===六.结语在分析转差频率系统方法原理的基础上,构建了转差频率的异步电机调速系统仿真模型,并对这种模型进行了仿真研究与分析。
在仿真实验过程中,为了获得较好的仿真波形,作者进行了大量的参数优化设计。
实验中发现;系统中PI调节器的比例系数K1、积分系数K2,当偏差较大时,调节K1,以快速减少偏差;当偏差达到要求后,调节K2,以消除稳态误差。
通过转差、电流双闭环调节,可以实现对交流电机的控制,但总体上还是没有直流电机控制的性能好。
通过此次课程设计使我对protel和matlab两个软件有了进一步的了解,对matlab的强大功能有了更深的了解,让我对如何查找资料以及如何选着方案有了一定的掌握,增加我对运动控制这门学科的学习兴趣。