励磁系统原理

合集下载

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。

励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。

一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。

由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。

二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。

励磁电源提供直流电源,用于激励发电机的磁场。

而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。

三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。

一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。

4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。

在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。

一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。

手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。

五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。

稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。

六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。

它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。

总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。

通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。

良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。

励磁系统工作原理

励磁系统工作原理

励磁系统工作原理
励磁系统是指通过外加电流或磁场来产生磁场的一种系统。

它主要由励磁电源、励磁绕组和磁心组成。

励磁电源提供所需的电流或电压,励磁绕组通过通入电流或电压,在磁心中产生磁场。

磁心根据应用的不同可以选择不同的材料,如铁、铁氧体等。

励磁系统的工作原理为:首先,当励磁电源通入电流时,电流经由励磁绕组流过磁心,形成环绕磁心的磁场。

这个磁场在磁心中产生一定的磁感应强度,并扩展到周围空间。

其次,产生的磁感应强度与电流的大小和方向有关。

对于直流电流而言,磁感应强度与电流呈线性关系,即磁感应强度随电流的增大而增大。

而对于交流电流而言,磁感应强度则随电流方向的改变而变化。

最后,磁感应强度的大小和分布对于应用来说非常重要。

励磁系统通过控制励磁电流或磁场的强度和方向,可以达到调控磁场大小和分布的目的。

这对于一些需要特定磁场条件的应用来说,如电机、发电机、变压器等,具有重要意义。

需要注意的是,励磁系统必须根据具体应用的需求来设计和选择。

它的工作原理和效果直接关系到系统的性能和稳定性。

因此,在设计和应用过程中需要进行详细的分析和测试,以确保励磁系统能够按照预期工作。

电动机励磁系统的原理

电动机励磁系统的原理

电动机励磁系统的原理
电动机励磁系统是指为了产生和维持电动机所需的磁场而采取的一系列措施和装置。

电动机励磁系统的原理可以简单概括为以下几点:
1. 磁场产生原理:电动机的励磁系统通过电流在导体中产生磁场,使之形成电动机工作所需的磁极。

一般来说,直流电动机的励磁系统通常使用直流电流来产生磁场,而交流电动机的励磁系统则使用电磁铁或旋转的磁体来产生交变磁场。

2. 励磁电源:励磁电源为电动机提供所需的电流,以产生磁场。

直流电动机一般采用直流电源,如电池、整流器等;交流电动机一般采用交流电源,如发电机或变压器等。

3. 电枢线圈和励磁线圈:电动机的励磁系统中包括电枢线圈和励磁线圈。

电枢线圈连接到电源,通过在线圈内产生电流来产生磁场。

励磁线圈则用于产生或调节电动机磁场的大小和方向。

4. 磁场控制:电动机励磁系统一般具有磁场控制功能,可以通过改变电流大小、方向或电磁材料的位置和状态来调整磁场的强度和方向。

通过磁场控制可以实现电动机的启动、运行和调速等功能。

总之,电动机励磁系统通过在导体中产生磁场,为电动机提供工作所需的磁极,
使其能够正常运行。

励磁系统的设计和控制可以影响电动机的性能和效率,是电动机运行的重要组成部分。

励磁的工作原理

励磁的工作原理

励磁的工作原理
励磁是指在电力系统中对发电机进行电磁激励以使其产生电能的过程。

励磁系统的工作原理如下:
1. 动态励磁:在励磁机上通过电源施加直流电流,这些电流通过励磁机的线圈,在励磁机中产生磁场。

这个磁场产生的磁通量通过气隙和转子,进入发电机的定子线圈。

定子线圈中的磁通量和转子上的感应电动势相互作用,产生电流。

这个电流在电力系统中循环,推动电机发电。

2. 静态励磁:使用静止的励磁变压器和整流器来完成励磁。

交流电源输入励磁变压器,变压器将高电压降低并提供给整流器,整流器将交流电转换为直流电。

直流电流通过励磁变压器的次级线圈和发电机的励磁线圈,产生磁场。

励磁线圈中的磁通量和转子上的感应电动势相互作用,使发电机产生电流。

通过控制励磁电流的大小和方向,可以调节发电机产生的电能的性质,例如电压和频率等。

这样就能满足电力系统中对电能的不同需求。

励磁系统的作用及工作原理

励磁系统的作用及工作原理

励磁系统的作用及工作原理励磁系统是指一种用来激发发电机、电动机、变压器等电力设备的系统,它能够提供必要的电能,将这些设备变成发电或运转时所需要的电磁设备。

励磁系统的作用是通过在电力设备中激发电流来产生磁场,从而实现电能的转换和传输。

本文将从励磁系统的作用和工作原理两个方面来详细阐述。

一、励磁系统的作用1. 产生磁场:励磁系统的主要作用是产生磁场,这个磁场能够影响发电机、电动机和变压器等设备的性能。

在发电机中,励磁系统能够生成必要的磁场,从而引起转子产生旋转运动;在电动机中,通过励磁系统产生的磁场,可以驱动机械装置实现动力传递;在变压器中,励磁系统可以调节磁场大小,实现电压的升降。

励磁系统通过产生磁场来实现电能的转换和传输。

2. 维持稳定运行:励磁系统还能够维持电力设备的稳定运行。

在发电机中,通过调节励磁系统中的激励电流,可以保持发电机输出电压的稳定性,避免电压的波动对电网造成影响;在电动机中,励磁系统能够控制电动机的起动和工作过程,确保电动机在正常运行范围内。

3. 调节功率特性:励磁系统还可以调节电力设备的功率特性,使其在不同负载下能够有不同的输出表现。

这样可以适应不同的工作环境和负载要求,提高设备的工作效率和稳定性。

二、励磁系统的工作原理1. 电磁感应原理:励磁系统的工作原理是基于电磁感应原理的。

当通过励磁系统的线圈中通入激励电流时,就会在线圈周围产生磁场。

这个磁场会对设备中的铁芯或导体产生感应,从而产生感应电动势。

通过调节激励电流的大小和方向,可以控制磁场的强弱和方向,从而实现对设备的控制。

2. 动态反馈控制:励磁系统中通常采用动态反馈控制技术,通过检测设备的运行状态和输出电压等参数,再将这些信息反馈给励磁系统,实现对激励电流的实时调节。

这样可以使电力设备在不同运行状态下始终保持稳定的输出性能。

3. 控制器与调节器:励磁系统中还包括控制器和调节器等设备,用来对激励电流进行调节和控制。

通过这些设备,可以实现对励磁系统的自动化控制和调节,使其能够适应不同的工况和负载要求。

发电机励磁系统工作原理

发电机励磁系统工作原理

发电机励磁系统工作原理
发电机励磁系统工作原理是通过在发电机的励磁线圈中通电产生电磁场,从而激发转子磁极上的磁场,进而导致转子磁极和定子磁极之间的磁场相互作用,产生电磁感应,最终实现电能的转换和发电。

具体过程如下:
1. 发电机的励磁线圈通电:励磁线圈被连接到直流电源上,通电后产生电流,从而在励磁线圈内形成电磁场。

2. 电磁场激发转子磁极:产生的电磁场经过磁路作用,激发转子磁极上的磁场。

3. 转子磁场与定子磁场交互作用:转子磁场和定子磁场之间相互作用,引发电磁感应现象。

4. 电磁感应产生交流电:由于转子磁场和定子磁场的相互作用,导致定子线圈中产生交流电流。

5. 交流电输出:产生的交流电经过定子线圈的接触器或整流器等装置,进行调整和控制后输出为电能。

总之,发电机励磁系统工作原理是通过励磁线圈通电产生电磁场,激发转子磁极上的磁场,并与定子磁场相互作用产生电磁感应,从而实现电能的转换和发电。

励磁系统工作原理

励磁系统工作原理

励磁系统工作原理一、引言励磁系统是电力系统中的重要组成部分,它用于为发电机和变压器等设备提供励磁电流,确保设备正常运行。

本文将重点介绍励磁系统的工作原理。

二、励磁系统的作用和组成励磁系统的作用是为发电机和变压器等设备提供所需的励磁电流,使其产生磁场。

这个磁场可以用来产生感应电动势,从而实现能量转换和电能传输。

励磁系统一般由励磁电源、励磁变压器、励磁调节器和励磁控制装置等组成。

励磁电源是供给励磁系统电能的来源,可以是直流电源或交流电源。

励磁变压器用于将励磁电源的电压调整到适合设备要求的电压。

励磁调节器用于调节励磁电流的大小。

励磁控制装置则负责监测和控制整个励磁系统的运行。

三、励磁系统的工作原理1. 励磁电源的作用是为励磁系统提供电能,其工作原理与普通电源类似。

励磁电源可以是直流电源或交流电源,根据设备的要求进行选择。

直流电源一般采用直流发电机、直流电池或整流装置等。

交流电源则需要通过整流装置将交流电转换为直流电。

2. 励磁变压器的作用是将励磁电源的电压调整到适合设备要求的电压。

励磁变压器一般采用自耦变压器结构,通过改变励磁绕组的接线方式来改变输出电压。

当励磁电源的电压高于设备要求时,可以采用降压方式;当励磁电源的电压低于设备要求时,可以采用升压方式。

3. 励磁调节器的作用是调节励磁电流的大小。

励磁调节器一般采用可控硅器件,通过改变控制信号的宽度和频率来改变电流的大小。

当需要增大励磁电流时,增加控制信号的宽度和频率;当需要减小励磁电流时,减小控制信号的宽度和频率。

4. 励磁控制装置的作用是监测和控制整个励磁系统的运行。

励磁控制装置一般由微机控制系统和传感器等组成。

微机控制系统负责监测励磁系统的各种参数,并根据设定值进行调节。

传感器用于实时监测励磁电流、电压等参数,并将其反馈给微机控制系统。

四、励磁系统的工作过程励磁系统的工作过程可以简单概括为以下几个步骤:1. 励磁电源将电能供给励磁系统,根据设备要求选择合适的电源类型(直流电源或交流电源)。

发电机励磁系统工作原理

发电机励磁系统工作原理

发电机励磁系统工作原理
发电机励磁系统的工作原理如下:
1. 励磁电源:发电机励磁系统通常由励磁电源提供直流电能。

励磁电源可以是直流电源、电池或者其他的电源装置。

2. 励磁线圈:发电机中有一个称为励磁线圈的线圈,它通常由铜导线绕成,固定在发电机的定子上。

励磁线圈连接到励磁电源。

3. 励磁电流:当励磁电源接通时,电流将开始流经励磁线圈。

这会在发电机中产生一个磁场。

4. 磁场:励磁线圈产生的磁场通过铁芯传导到转子和定子之间的空间。

转子是发电机中旋转的部分,定子是固定的部分。

5. 感应电压:当发电机的转子旋转时,磁场也随之旋转。

由于电磁感应的原理,转子中的导线将产生感应电压。

这个感应电压会驱动绕在定子上的线圈产生电流。

6. 电流输出:通过定子上的线圈产生的电流输出到外部负载上,为外部负载提供电能供应。

总结起来,发电机励磁系统的工作原理就是通过励磁电源提供直流电能,产生磁场,使得转子中的线圈通过电磁感应产生电流,从而输出电能供应外部负载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步发电机励磁系统一. 概述1-1 励磁系统的作用励磁系统是同步发电机的重要组成部分,是给发电机提供转子直流励磁电流的一种自动装置,在发电机系统中它主要有两个作用:1)电压控制及无功负荷分配。

在发电机正常运行情况下,自动励磁调节器应能够调节和维持发电机的机端电压(或升压变压器高压侧的母线电压)在给定水平,根据发电机的实际能力,在并网的发电机之间合理分配无功负荷。

2)提高同步发电机并列运行的稳定性;提高电力系统静态稳定和动态稳定极限。

电力系统在运行中随时可能受到各种各样的干扰,引起电力系统的波动,甚至破坏系统的稳定。

自动励磁调节器应能够在电力系统受到干扰时提供合适的励磁调节,使电力系统建立新的平衡和稳定状态,使电力系统的静态及动态稳定极限得到提高。

1-2 励磁系统的构成励磁系统主要由以下部分构成:1)功率部分:它由功率电源(励磁机或静止整流变压器提供)、功率整流装置(采用直流励磁机的励磁系统无整流装置)组成,是励磁系统向发电机转子提供励磁电流的主要部分。

功率部分的性质决定着励磁系统主接线的型式及使用的主要设备的类型。

如:采用直流励磁机的励磁系统不可能使用静止功率整流装置。

又如:采用静止它励型式的励磁系统不可能还有直流励磁机。

还如:使用静止励磁变压器的励磁系统必然采用静止整流功率装置。

2)自动励磁调节器:自动励磁调节器是励磁系统中的智能装置。

励磁装置对发电机电压及无功功率的控制、调节是自动励磁调节器的基本功能。

自动励磁调节器性能的好坏,决定着整个励磁系统性能的优劣。

但它只能通过控制功率部分才能发挥其作用。

1-3励磁系统的分类励磁系统的分类有两种分类方式。

其一是按照有无旋转励磁机来分,其二是按照功率电源的取向来分。

按照有无旋转励磁机的分类方式有如下类型:有刷励磁旋转励磁方式无刷励磁混合式励磁方式二极管整流励磁方式静止励磁方式可控硅整流励磁方式混合式整流励磁方式按照功率电源的取向分类时有如下类型:自并励交流侧串联自复励自励方式交流侧并联自复励直流流侧串联自复励自复励直流流侧串联自复励励磁机供电方式(包括直流励磁机和交流励磁机)他励方式二极管整流方式厂用交流电源供电方式可控硅整流方式其他供电方式在上述众多的分类中,有许多方式已经被淘汰,有些尽管还在使用,但终究会被淘汰。

如交流侧并联自复励方式。

还有交流侧串联自复励方式现在已经很少使用。

由于葛洲坝电厂的全部机组都采用了自励静止可控硅整流励磁方式,下面简单介绍他的主要接线方式。

FMKL F LHZB PTSCR自动励磁调节器(AVR)图1-1(a)静止可控硅整流自并励励磁系统接线图在图1-1(a)的接线中,整流功率柜的阳极电源是经过励磁变压器ZB直接从发电机机端取得的。

所谓自励系统就是由发电机直接提供励磁电源。

由于励磁变压器是单独并联在发电机机端,并且采用了静止可控硅整流,故图1-1(a)称为静止可控硅整流自并励方式。

由图1-1(a)可以看出,此种方式的接线非常简单,使用的设备也较少,受到用户普遍欢迎,是世界上用的最多的一种方式。

当然,此种方式也存在一定问题,这将在后面的内容种论述。

FMKCBL F LHZB PTGZ自动励磁调节器(AVR)KZ图1-1(b)静止可控硅整流直流并联自复励励磁系统接线图FMKCBL F LHZB PTGZ KZ自动励磁调节器(AVR)图1-1(c)静止可控硅整流直流串联自复励励磁系统接线图FMKCBL F LHZB PTKZ自动励磁调节器(AVR) 图1-1(d)静止可控硅整流交流侧串联自复励励磁系统接线图图1-1(e)静止硅整流交流侧并联自复励励磁系统接线图我们可以比较一下上面5种接线方式的励磁系统,其中接线最简单,使用设备最少的是静止可控硅自并励系统,其他几种接线都需要增加一台功率变流器(或称为励磁变流器)CB,显然增加了接线的复杂性和设备的投资。

而在直流侧无论是并联还是串联都需要另外增加一套整流装置,这个投资显然是最大的。

交流侧并联自复励方式由于不能控制整流功率装置,其调节效果显见不会很理想,因此,许多设计干脆取消对电抗器的控制,或者采用发电机的谐波绕组进行自励恒压。

上述5种励磁接线方式中,a类适合于所有的同步发电机,b、c类适合于中小型同步发电机,d类适合于大型同步发电机,e类只适合于小型同步发电机。

1-4 自并励与自复励系统性能比较现代同步发电机的励磁系统大量地使用了静止可控硅自并励和自复励方式,在静态情况下无论是自并励还是自复励都有较好的调节、控制特性。

所以出现两种不同的方式,主要的问题是他们在发电机近端短路时的性能有一定差异。

自并励系统中,接线简单,设备投资少是他最大的优势,但人们担心自并励系统在发生发电机近端短路时的强励能力,这也确实是自并励系统最大的毛病。

当发电机近端短路时,机端电压衰减的非常严重,强励装置动作时可能因为阳极电压太低而达不到所要求的强励顶值,以致延误事故处理的时机,引起发电机的损坏。

自复励系统中,尽管接线较复杂,投资也较大,但由于有功率变流器的作用,当发生发电机近端短路时,可以利用发电机的短路电流提供强励电压,保持较高的强励顶值倍数,确保继电保护装置迅速切除故障,保证发电机的安全。

此外,交流侧串联型自复励系统还有一个最大的优点是这种接线具有无功功率相位自动补偿作用,使发电机的运行更加稳定。

但是,自复励尤其是交流侧串联型自复励系统的阳极电源系统较复杂,功率变流器的二次电抗使得阳极回路的电抗值相对自并励来说要大的多,引起的副作用较强烈。

由于现代继电保护技术的发展,已经能够在几十个毫秒内将发电机的故障切除,因此,自并励系统因强励顶值倍数不足的问题已经不会严重地影响继电保护装置工作,所以近十几年来,自并励系统得到越来越广泛的应用。

相反,自复励系统存在的问题却没有得到很好的解决,受到的制约也越来越严重,世界上几乎已经没有再生产交流侧串联型自复励系统。

1-5 自动励磁调节器的发展与进步早期的自动励磁调节器无论在设备的体积还是在技术含量上都不能与现代自动励磁调节器相提并论。

自动励磁调节器从机电型到电磁型再到电子型直至现代的微机型,其间的技术发展可以说是翻天覆地的。

最早的自动励磁调节器只能对串联于发电机转子的磁场变阻器进行控制,其调节速度是非常缓慢的,充其量是个能够代替人工调节发电机电压的机械手。

电磁型自动励磁调节器在励磁系统的发展过程中占有很重要的位置,统治励磁系统时间最长。

它主要是利用电磁元件组成励磁调节器的各个环节和单元,而电磁型调节器在很大程度上是依赖于整流器件的发展而发展起来的,因此早期的电磁型调节器的输出功率是非常有限的,这是因为那时的整流元件本身功率也很小,所以那时的励磁调节器只能叫作电压校正器,励磁系统的主要功率部分只能是直流励磁机。

电压校正器利用调节直流励磁机的输出来间接调节发电机电压。

这个时代最典型的调节器是带有无功功率自动补偿的相复励调节器。

世界进入电子时代以后,大功率整流器件和半导体元件的发展促进了自动励磁调节器的发展,励磁系统发展成为静止整流型,自动励磁调节器发展成为半导体器件型,在半导体器件型中还经历了分立器件和集成电路两个阶段。

在这个时代,励磁控制技术同时也得到了飞速的发展,用半导体模拟电路实现的许多功能已经非常完善,励磁控制理论的许多成果都得到了应用。

如PI调节,PID调节,PID加PSS控制等。

但模拟电路本身存在的问题以及调节时间较慢仍然制约着模拟电路励磁调节器的发展。

由于模拟电路自动励磁调节器目前仍然在许多发电机系统中得到应用,今后能够发展到什么程度现在预言为时过早。

世界进入电脑时代以后,自动励磁调节器的发展可以说进入了最好的发展时期,新装置层出不穷。

硬件上从单片机到单板机,从8位机到16位机,现在已经用到32位机,档次愈来愈高。

软件上从单功能到多功能,从单一调节到复合控制,世界上最先进的励磁控制理论现在全部可以在微机型自动励磁调节器上得到实现,甚至许多过去非常传统的硬件配置都用软件功能来实现,从而大大减少了硬件设备,也使装置的故障率大大降低。

微机型自动励磁调节器的应用,不仅解决了发电机系统本身的一些问题,同时也使发电厂无功功率成组调节成为可能和特别方便,也使发电机工况的监视更加方便和直观。

二.功率整流装置功率整流装置是励磁系统中主要的设备和环节。

旧式直流励磁机励磁方式的功率整流是励磁机的整流子(换向器),现代励磁系统的整流功率装置是静止(或旋转)整流二极管或静止可控硅整流管。

功率整流装置可以使用单相整流电路,也可以使用三相整流电路,甚至也有使用六相整流电路的。

熟练掌握各种整流电路是从事励磁工作的前提条件。

2-1 单相整流电路单相整流电路是最常用的整流电路,也是其他整流电路的基础。

a.单相半波整流电路接线图(见图2-1)B U didAC R U dωt (a)图2-1 单相半波整流电路原理图b.电路工作原理如图2-1所示,单相半波整流电路仅使用了一只整流二极管。

由于二极管具有单向导电性,当e2加在二极管两端时,只有正半波能够通过GZ,在负载电阻R上获得如图2-1(b)所示的波形。

由于只有半个周期的e2电压加在R上,因此:整流输出电压平均值:U d=0.45E2——(2-1)整流输出电流平均值:I d= 0.45E2/R——(2-2)如果将二极管换成可控硅元件,则:整流输出电压平均值:U d=U d0[(1+COSα)/2]——(2-3)整流输出电流平均值:I d= 0.45E2/R =(√2 E2/2πR)·(1+COSα)——(2-4)式中:U d0——α=00时,R上获得的最大平均电压。

当负载为感性元件时,输出端由于电感产生自感电势,负载两端会出现负值电压,为了克服这一点,应当在负载端并联续流二极管(如图中虚线所示二极管),以防止过高的反电势击穿整流二极管。

b.单相全波桥式整流电路接线图(见图2-2)B U dAC R U dωt(a)(b)图2-2 单相全波桥式整流电路原理图全波整流电路由于将e2的负半波也利用了,故输出电压的平均值较半波整流要大一倍,所以:U d=0.9E2——(2-5)I d= 0.9E2/R——(2-6)2-2 三相桥式整流电路A.三相桥式不可控整流电路(见图2-3)R (a)ωt0 1 2 3 4 5 6Udωt图2-3 三相桥式不可控整流电路在ωt0~ωt1期间,由于a相电位最高,而b相电位最低,因此D1与D6元件处于正向偏置状态,构成a→D1→R→D6→b→0→a的电流通路,输出端获得U d=U ab的电压波形。

如图2-3中所示。

在ωt1~ωt2期间,a相电位由最大值开始下降,但仍然较其他相高,而此时c相电位却是最低的,因此构成了a→D1→R→D2→c→0→a的电流通路,输出端获得U d=U ac的电压波形。

相关文档
最新文档