压电效应及其原理报告.doc
电磁学小论文压电效应

姓名 唐诚 学号 PB09206058压电效应相信大家都熟悉我们身边的打火机以及燃气灶吧,为何只需我们轻轻一按,或者旋动开关便有火焰产生,这些都离不开压电效应。
压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的与形变方向垂直的表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种没有外电场存在时,仅有形变而引起计划的现象称为正压电效应。
当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。
FF F -++-F Q逆压电效应:与压电效应相对应的是逆压电效应当在晶体两面上加电场时,晶体会发生机械性变,即伸长或缩短。
其原理主要是由于:因电场作用时电偶极矩会被拉长,压电材料为抵正压电效应逆压电效应抗变化,会沿电场方向伸长。
背景:压电效应是材料中一种机械能与电能互换的现象,此现象最早是1880年由皮埃尔·居里(Pierre Curie)和雅克·居里(Jacques Curie)兄弟发现。
1880年前在杰克斯的实验室发现了压电性。
起先,皮尔致力于焦电现象(pyroelectriceffect,注二)与晶体对称性关系的研究,后来兄弟俩却发现,在某一类晶体中施以压力会有电性产生。
他们又系统的研究了施压方向与电场强度间的关系,及预测某类晶体具有压电效应。
经他们实验而发现,具有压电性的材料有:闪锌矿(zincblende)、钠氯酸盐(sodiumchlorate)、电气石(tourmaline)、石英(quartz)、酒石酸(tartaricacid)、蔗糖(canesuger)、方硼石(boracite)、异极矿(calamine)、黄晶(topaz)及若歇尔盐(Rochellesalt)。
这些晶体都具有非晶方性(anisotropic)结构,晶方性(isotropic)材料是不会产生压电性的。
而压电现象理论最早是李普曼(Lippmann)在研究热力学原理时就已发现,后来在同一年,居里兄弟做实验证明了这个理论,且建立了压电性与晶体结构的关系。
什么是压电热效应的原理

什么是压电热效应的原理
压电热效应是指在压电材料中利用电场的作用造成材料发热的现象。
其基本原理如下:
1. 压电效应
某些晶体材料在受到外加压力时,会产生电荷分离,形成电势,这就是压电效应。
2. 反压电效应
反过来,如果在这种材料上加上电场,会引起其形变,产生应变,这就是反压电效应。
3. 高频交变电场
当施加高频交变电场时,压电材料会进行高速机械震荡。
4. 分子摩擦热效应
高频震荡会使材料内部产生剧烈的相对运动,分子之间的摩擦会将电能转化为热量。
5. 热量传导释放
材料内部的热量会向四周释放,使材料温度升高,从而达到发热的效果。
6. 热量大小可控
通过控制加在材料上的电压amplitude和频率,可以精确控制材料的发热量。
7. 应用范围广泛
压电热效应可广泛应用于各种加热器、传感器等设备。
8. 转换效率高
压电热效应的电能转热效率可以达到90%以上,转换效率很高。
9. 响应迅速
压电加热快速响应电场变化,可实现对温度的精确控制。
10. 寿命长
压电陶瓷材料可以承受长期的机械和电气疲劳。
综上所述,压电热效应可高效将电能转换为thermal能,在各类加热设备中有重要应用。
超声波压电效应

超声波压电效应:原理与应用一、引言超声波压电效应是物理学中的一个重要现象,它揭示了超声波与物质之间相互作用的一种特殊方式。
这种效应源于某些材料在超声波作用下的机械振动会产生电场,从而实现电能与机械能的相互转换。
这一现象在许多领域都有广泛的应用,如医学诊断、环境监测、无损检测以及振动控制等。
本文将详细介绍超声波压电效应的原理、应用以及研究进展。
二、超声波压电效应的原理超声波压电效应,也称为压电性,是指某些晶体或复合材料在受到机械应力作用时,其内部会产生电场,从而产生电能的现象。
这一现象是由法国物理学家Curie兄弟于1880年首次发现的。
当超声波作用于压电材料时,材料的晶体结构会产生机械振动,这种振动会导致材料内部正负电荷的相对位移,从而产生电场。
反过来,这个电场又能产生振动波,这就是超声波的传播。
压电材料的主要类型包括单晶压电材料、多晶压电材料和复合压电材料。
其中,单晶压电材料具有较高的压电系数,但多晶压电材料和复合压电材料在工程应用中更为广泛。
三、超声波压电效应的应用1.医学诊断:利用超声波压电效应可以制造出超声换能器,用于医学诊断。
例如,超声成像技术利用高频超声波穿透人体组织,根据组织密度和性质的差异,接收反射或散射的超声波,从而形成图像。
这有助于医生对疾病进行准确的诊断。
2.环境监测:超声波压电效应还可以用于环境监测,如气体和液体中的污染物检测。
通过在压电材料上施加交变电场,可以激发出超声波,这些超声波遇到障碍物会反射回来,通过分析反射回来的超声波,可以确定障碍物的位置和性质。
3.无损检测:超声波压电效应在无损检测领域也有广泛应用。
例如,在桥梁、建筑等结构的安全检测中,可以通过在结构表面施加交变电场激发出超声波,再接收反射回来的超声波,从而判断结构内部是否存在缺陷。
4.振动控制:利用超声波压电效应可以实现对物体振动的精确控制。
例如,在航空航天领域,通过在飞机或火箭的结构上施加交变电场,可以激发出超声波并控制其传播方向和振幅,从而实现结构的精确振动控制。
正压电效应的应用及工作原理

正压电效应的应用及工作原理引言正压电效应是一种特殊的电效应,可以将机械应力转化为电场强度。
正压电效应具有广泛的应用,涵盖了多个领域。
本文将介绍正压电效应的原理以及其在实际应用中的一些案例。
工作原理正压电效应是由于特定材料的晶格结构而产生的。
当施加机械应力或压力到这些材料上时,会导致材料中的正压电晶体转化为电荷分布不均匀的状态。
这些电荷分布不均匀产生了电场,形成正压电效应。
正压电应用案例正压电效应在许多领域中都有重要的应用。
下面将介绍一些常见的应用案例。
1. 传感器正压电材料的正压电效应使其在传感器领域具有广泛应用。
例如,在压力传感器中,正压电材料可以将作用在传感器上的压力转化为电荷,从而实现对压力的测量。
正压电材料的高灵敏度和快速响应时间使其成为理想的传感器材料。
2. 能量收集正压电材料的正压电效应还可以用于能量的收集。
通过将正压电材料置于机械振动环境中,例如汽车行驶时的车辆震动,可以将机械能转化为电能,并用于供电或储存。
这在一些无线传感器网络中具有潜在的应用,可以为这些传感器提供持续的电力来源。
3. 超声波器件由于正压电效应的特殊性质,正压电材料可以用于制造超声波器件,例如超声波发生器和传感器。
正压电材料的快速响应时间和高信噪比使其在医学、测量和工业领域中得到广泛应用。
例如,超声波传感器可以用于无损检测、测距以及材料表征等方面。
4. 机械臂和机器人正压电效应的工作原理使其成为机械臂和机器人领域的重要应用技术。
正压电材料作为人工肌肉可以被用来实现机械臂和机器人的柔性运动。
通过施加电场,可以控制正压电材料的收缩和伸展,从而实现精确的动作控制。
5. 音频设备由于正压电效应的特殊性质,正压电材料在音频设备中有广泛应用。
例如,正压电传感器可以用作麦克风,将声音转化为电信号。
正压电材料的高灵敏度和线性响应使其在音频设备中具有很高的性能。
结论正压电效应是一种重要的电效应,具有广泛的应用。
传感器、能量收集、超声波器件、机器人和音频设备是正压电效应在实际应用中的典型案例。
压电效应原理及在陶瓷方面的应用

压电效应原理及在陶瓷方面的应用粉体一班郭开旋1103011026内容摘要:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。
当作用力的方向改变时,电荷的极性也随之改变。
相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。
压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷,是信息时代的新型材料压电陶瓷是功能陶瓷中的一种。
关键词:压电效应、正压电效应、逆压电效应、原理、应用、陶瓷材料、压电陶瓷、铁电陶瓷、功能陶瓷、新型材料、电极化一、压电效应的原理:压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。
如果压力是一种高频震动,则产生的就是高频电流。
而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。
也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。
压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。
例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。
1.压电效应的发现1880年皮埃尔·居里和雅克·居里兄弟发现电气石具有压电效应。
1881年,他们通过实验验证了逆压电效应,并得出了正逆压电常数。
1984年,德国物理学家沃德马·沃伊特(德语:Woldemar V oigt),推论出只有无对称中心的20中点群的晶体才可能具有压电效应。
2.压电材料压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。
压电效应原理

压电效应原理压电效应是指某些晶体在受到外力作用时会产生电荷分离的现象,这一现象被称为压电效应。
压电效应的原理可以追溯到19世纪,当时法国物理学家夏尔·库里发现了某些晶体在受到机械应力时会产生电荷。
这一发现引发了人们对压电效应的深入研究,随着科学技术的不断进步,压电效应的应用也变得越来越广泛。
压电效应的原理可以通过晶体的微观结构来解释。
晶体的结构是由正负电荷的排列组成的,当受到外力作用时,晶体内部的正负电荷会发生相对位移,从而产生了电荷分离的现象。
这种电荷分离会导致晶体的两个相对表面上出现电势差,从而产生了电压。
这就是压电效应的基本原理。
压电效应在实际应用中具有重要的意义。
首先,压电效应被广泛应用于传感器领域。
由于压电材料在受到外力时会产生电荷,因此可以将其用于制造压力传感器、加速度传感器等。
其次,压电效应还可以应用于声波设备中,如压电陶瓷换能器、压电陶瓷滤波器等。
此外,压电效应还可以用于制造压电陶瓷马达、压电陶瓷换能器等电子器件。
除了上述应用外,压电效应还在医学领域、材料科学领域、能源领域等方面有着广泛的应用。
例如,在医学领域,压电效应被应用于超声波成像设备中,可以用于检测人体内部的病变情况。
在材料科学领域,压电效应可以用于研究材料的电学性能。
在能源领域,压电效应可以用于制造压电发电机,将机械能转化为电能。
总的来说,压电效应是一种重要的物理现象,其原理简单清晰,应用范围广泛。
随着科学技术的不断发展,压电效应的应用前景将会更加广阔。
相信通过对压电效应原理的深入研究和应用,将会为人类社会带来更多的科学技术进步和社会福祉。
压电效应实验报告

压电效应实验报告
1. 实验目的
通过实验了解和验证压电效应的基本原理,掌握压电效应的产生条
件以及应用领域。
2. 实验原理
压电效应是指在某些晶体、陶瓷材料中,当受到外力作用时,会产
生电荷分离的现象,即产生电压差。
这种现象即为压电效应。
压电效
应的原理是晶格结构的不对称性,当外力作用于晶体时,导致晶体内
部阳离子和阴离子位移而产生电荷分离,从而产生电势差。
3. 实验步骤
(1)将压电陶瓷片固定在夹具上;
(2)连接电源,使陶瓷片两端加上一定的电压;
(3)在陶瓷片上施加外力,观察电压变化;
(4)记录电压值随外力变化的曲线。
4. 实验结果
实验中,我们观察到在陶瓷片受到外力作用时,电压值呈现出明显
的变化。
当外力增加时,电压值逐渐增大;当外力减小或取消时,电
压值也相应减小或消失。
这说明压电效应是一种具有线性关系的现象。
5. 结论
通过本次实验,我们验证了压电效应的存在,并了解了其产生的原理。
压电效应在声波传感、压力传感、振动传感等领域具有重要的应用价值,可以提高传感器的灵敏度和稳定性,有着广阔的应用前景。
6. 实验感想
本次实验让我们更深入地了解了压电效应这一现象,并对实际中的应用有了更清晰的认识。
压电效应作为一种重要的物理效应,在现代科技领域有着广泛的应用,希望通过不断的实践和学习,能够更好地掌握其原理和应用,为科学技术的发展做出自己的贡献。
7. 参考资料
无。
压电效应

英文名称Piezoelectric effect压电效应分类压电效应可分为正压电效应和逆压电效应。
正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。
压电式传感器大多是利用正压电效应制成的。
逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象。
用逆压电效应制造的变送器可用于电声和超声工程。
压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型5种基本形式。
压电晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。
例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。
依据电介质压电效应研制的一类传感器称为为压电传感器。
这里再介绍一下电致伸缩效应。
电致伸缩效应,即电介质在电场的作用下,由于感应极化作用而产生应变,应变大小与电场平方成正比,与电场方向无关。
压电效应仅存在于无对称中心的晶体中。
而电致伸缩效应对所有的电介质均存在,不论是非晶体物质,还是晶体物质,不论是中心对称性的晶体,还是极性晶体。
压电效应历史与应用06年是居里兄弟皮尔(P·Curie)与杰克斯(J·Curie)发现压电效应(piezo electric effect,注一)的一百二十六周年。
1880年前在杰克斯的实验室发现了压电性。
起先,皮尔致力于焦电现象(pyroelectriceffect,注二)与晶体对称性关系的研究,后来兄弟俩却发现,在某一类晶体中施以压力会有电性产生。
他们又系统的研究了施压方向与电场强度间的关系,及预测某类晶体具有压电效应。
经他们实验而发现,具有压电性的材料有:闪锌矿(zincblende)、钠氯酸盐(sodiumchlorate)、电气石(tourmaline)、石英(quartz)、酒石酸(tartaricacid)、蔗糖(canesuger)、方硼石(boracite)、异极矿(calamine)、黄晶(topaz)及若歇尔盐(Rochellesalt)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电效应及其原理
压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。
当作用力的方向改变时,电荷的极性也随之改变。
相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。
依据电介质压电效应研制的一类传感器称为为压电传感器。
压电效应可分为正压电效应和逆压电效应。
正压电效应
是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。
压电式传感器大多是利用正压电效应制成的。
逆压电效应
是指对晶体施加交变电场引起晶体机械变形的现象。
用逆压电效应制造的变送器可用于电声和超声工程。
压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型5种基本形式。
压电晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。
例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。
两种压电效应的关系
可以证明,正压电效应和逆压电效应中的系数是相等的,且具有正压电效的材料必然具有逆压电效应。
依据电介质压电效应研制的一类传感器称为为压电传感器。
这里再介绍一下电致伸缩效应。
电致伸缩效应,即电介质在电场的作用下,由于感应极化作用而产生应变,应变大小与电场平方成正比,与电场方向无关。
压电效应仅存在于无对称中心的晶体中。
而电致伸缩效应对所有的电介质均存在,不论是非晶体物质,还是晶体物质,不论是中心对称性的晶体,还是极性晶体。
原理
压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。
如果压力是一种高频震动,则产生的就是高频电流。
而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。
也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。
压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。
例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。