第14章 一次函数全章水平测试(含答案)

合集下载

新人教版八年级数学下册《一次函数》章节测试题及答案

新人教版八年级数学下册《一次函数》章节测试题及答案

新人教版八年级数学下册《一次函数》章节测试题及答案新人教版八年级数学下册《一次函数》章节测试题及答案一、选择题1.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是().A.(3,1)B.(-3,8)C.(8,14)D.(-1,4)2.变量x,y有如下关系:①x+y=10 ②y=-5x ③y=|x-3|④y^2=8x。

其中y是x的函数的是A.①B.①②C.①②③D.①②③④3.下列各曲线中不能表示y是x的函数是().A. B. C. D.4.已知一次函数y=2x+a与y=-x+b的图象都经过A(-2,1),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A。

k>5 B。

k<5 C。

k>-5 D。

k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B.二象限C.四象限D.不能确定7.如果通过平移直线y=x/(x+5)得到y=-x/(x+5)的图象,那么直线y=5必须().A.向上平移5个单位 B.向下平移5个单位 C.向上平移3个单位 D.向下平移3个单位8.经过一、二、四象限的函数是A。

y=7 B。

y=-2x C。

y=7-2x D。

y=-2x-79.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为A.2B.0C.-2D.±211.根据如图的程序,计算当输入x=3时,输出的结果y=.输入y=-x+5(x>1)y=x+5(x≤1)输出12.已知直线y=2x与直线y=-2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2④直线y=2x与直线y=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A.①③④B.②③C.①②③④D.①②③二、填空题13.已知y=(m-2)x^n-1+3是关于x的一次函数,则m,n分别为:m=2,n=2.14.当直线y=2x+b与直线y=kx-1平行时,k=2,b=-1.15.汽车行驶前,油箱中有油55升,已知每百千米汽车耗油10升,油箱中的余油量Q(升)与它行驶的距离s(百千米)之间的函数关系式为Q=55-10s;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶450千米。

八年级数学第十四章一次函数单元测试题(含答案)

八年级数学第十四章一次函数单元测试题(含答案)

第十四章 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?。

初二 第14章 一次函数 单元测试含答案

初二 第14章 一次函数 单元测试含答案

八年级数学一次函数单元测试题(总分:100.0 考试时间:65分钟)班级_______________ 准考证号________________ 姓名___________ 得分_____ 一、判断题:本大题共3小题,从第1小题到第2小题每题3.0分小计6.0分;第3小题为4.0分;共计10.0分。

1、函数y=(m+6)x+(m-2), 当m=-6时是一次函数( )2、( )3、函数y=-(x+6)与y轴的交点是(0 , 6).( )二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。

4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。

人教版八年级下册数学《一次函数》单元测试卷合集(含答案)

人教版八年级下册数学《一次函数》单元测试卷合集(含答案)

人教版八年级下册数学《一次函数》单元测试卷(一)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.函数y =的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<2.下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =(0x >) D.y(x <3.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示小红爷爷离家的时间与外出的距离之间的关系是 ( )A B C D4.甲、乙两个工程队完成某项工程,首先是甲队单独做10天,然后是乙队加入合作,完成剩下的全部工程,设工程总量是1,工程进度满足如图所示的函数图象,那么实际完成这项工程比甲单独完成这项工程的时间少( ) A.12天 B.13天 C.14天 D.15天分)分)分)分)5.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s (km )与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是( )6.如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A.4B.4-C.14D.14-7.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是( )A B C D8.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )9.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,10.如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D→→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )二 、填空题(本大题共5小题,每小题3分,共15分)11.函数2113y x =+的自变量x 的取值范围是 .12.已知一次函数的图象过点与,则这个一次函数随的增大而 .13.函数1x y x-=的自变量x 的取值范围是 .14.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <()0,3()2,1y x D C P BAO31 1 3 Sx A .O1 1 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2BAOA .B .C .D .S t S tS tStOOOO15.已知直线123141535y x y x y x ==+=+,,的图象如图所示,若无论x 取何值,y 总取12y y ,,3y ,中的最小值,则y 的最大值为 .三 、解答题(本大题共7小题,共55分)16.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.17.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.18.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点. ②a 为何值时,一次函数的图象与y 轴交于点()0,9.19.右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.20.判断下列式子中y是否是x的函数.⑴22(35)y x=-⑵y=⑶12y x=-⑷8y x=-21.等腰三角形的周长为30,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?22.甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由人教版八年级下册数学《一次函数》单元测试卷答案解析一、选择题1.A2.A3.D4.A5.C6.B;由题意得:16(4)y k x-=+,将y kx=带入等式,即16(4)kx k x-=+,所以解出4k=-7.B8.C9.B10.B;【解析】了解P点的运动路线,根据已知矩形的长和宽求出当点P运动到C点时的S值为1,即当x为1时的S值为1,之后面积保持不变.二、填空题11.x为任意实数12.减小13.0x>14.16;【解析】分别将点()8m,代入两个一次函数解析式,得8m a=-+和8m b=+,联立方程得88m a m b+=-+++,所以16a b+=15.3717;【解析】如图,分别求出123y y y,,交点的坐标3322A⎛⎫⎪⎝⎭,;252599B⎛⎫⎪⎝⎭,;60371717C ⎛⎫ ⎪⎝⎭, 当32x <,1y y =;当232529x y y =,;当2560917x <,2y y = 当36017x y y =,.看图象可得到C 点最高, ∴6017x =,16037=+1=31717y ⨯最大.三 、解答题16.⑴102y x =-;⑵2.55x <<;⑶05y <<【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x << ⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.17.①2a =-;②a =18.①2a =-;②a =19.⑴4/min 3km ;⑵7分钟;⑶()3022016t S t =-≤≤. 20.⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”.21.⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 22.设在甲超市所付的购物费用为y 甲元,在乙超市所付的购物费用为y 乙元,由题意可得,y 甲=300+0.8(x-300)=60+0.8x ,y 乙=20090%200)0.920(300)x x x +⨯-=+>(当y 甲=y 乙时0.9200.860x x +=+,解得400x =; 当y 甲<y 乙,时0.9200.860x x +<+,解得400x >;当y甲>y乙,时0.9200.860x x+>+,解得400x<.所以当购买多于300元而少于400元的商品时,选择乙超市比较优惠,当购买400元的商品时,两个超市费用相同,选择哪个都可以,当购买商品大于400元时,选择甲超市比较优惠.人教版八年级下册数学《一次函数》单元测试卷(二)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

(完整版)初中数学一次函数练习题及答案

(完整版)初中数学一次函数练习题及答案

一次函数测试题(考试时间为 90 分钟,满分 100 分)一、选择题(每题 3 分,共 30 分)1.直线y = 9 - 3x 与x 轴交点的坐标是,与y 轴交点的坐标是.1 12.把直线y =x -1向上平移个单位,可得到函数.2 23.若点P1(–1,3)和P2(1,b)关于y 轴对称,则b= .4.若一次函数y=mx-(m-2)过点(0,3),则m= .5.函数y =的自变量x 的取值范围是.6.如果直线y =ax +b 经过一、二、三象限,那么ab 0 (“<”、“>”或“=”).7.若直线y = 2x -1和直线y =m -x 的交点在第三象限,则m 的取值范围是.8.函数y= -x+2 的图象与x 轴,y 轴围成的三角形面积为.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10 立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为立方米.10.有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是 2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式.二、选择题(每题 3 分,共 18 分)x - 211.函数 y=x + 2的自变量x 的取值范围是()A.x≥-2 B.x>-2 C.x≤-2 D.x<-212.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg 就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12 (0≤x≤10)C.y=1.5x+10 (0≤x)D.y=1.5(x-12) (0≤x≤10)13.无论m 为何实数,直线y =x + 2m 与y =-x + 4 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是()hx-55 31A. B. C. D.115. 已知函数 y = - 2x + 2 ,当-1<x≤1 时,y 的取值范围是( )A. - < y ≤ 2 2B. 3 < y < 5 2 2C. 3 < y ≤ 5 2 2D. 3 ≤ y < 5 2 2 16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟D.33 分钟三、解答题(第 17—20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图,先填空,然后回答问题: (1) 由上而下第 n 行,白球有 个;黑球有 个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y,并指出其中 n 的取值范围.18. 已知,直线 y=2x+3 与直线 y=-2x-1. (1) 求两直线与 y 轴交点 A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3) 求△ABC 的面积.19. 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费 y (元)可以 x (千克)的一次函数为 y = x - 5 .画出这个函数的图象,并求 y(克 克 )6看成他们携带的行李质量旅客最多可以免费携带多少千克的行李? 62yA CBx- 2 - t(克克 )120. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量 y 与时间t 之间近似满足如图所示曲线:(1) 分别求出t ≤1和t ≥2 1时,y 与 t 之间的函数关系式;2(2) 据测定:每毫升血液中含药量不少于 4 微克时治疗疾病有效,假如某病人一天中第一次服药为 7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为 Q 1 吨,加油飞机的加油油箱的余油量为 Q 2 吨,加油时间为 t 分钟,Q 1、Q 2 与 t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量 Q 1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需 10 小时到达目的地,油料是否够用?请通过计算说明理由.参考答案1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 2 9. 13 10. s = n 211. B12. B13. C14. A15. D16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=(3)+1⨯1⨯ 1=2 219.(1)y=12x (0≤ t ≤ 1 2 1);y=-0.8x+6.4 ( t ≥ 1)2(2) 若 y≥4 时, 则 3≤ x ≤ 3 ,所以 7:00 服药后,7:20 到 10:00 有效20. 函数 y = x - 5 (x≥30)的图象如右图所示.6当 y =0 时,x =30.所以旅客最多可以免费携带 30 千克的行李.21.(1) 30 吨油,需 10 分钟(2) 设 Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3)根据图象可知运输飞机的耗油量为每分钟 0.1 吨,因此 10 小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用。

一次函数经典提高题(含答案)

一次函数经典提高题(含答案)

n dg s14一次函数经典练习题过关测试一、选择题:1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6(C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限(B )二象限(C )三象限(D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2(C )y 1<y 2(D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内, 则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )(A )y 随x 的增大而增大 (B )y 随x 的增大而减小(C )图像经过原点 (D )图像不经过第二象限8.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.要得到y=-x-4的图像,可把直线y=-x ( ).3232(A )向左平移4个单位(B )向右平移4个单位(C )向上平移4个单位(D )向下平移4个单位10.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-(B )m>5 (C )m=- (D )m=5141411.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<(B )<k<1 (C )k>1(D )k>1或k<13131312.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5, 这样的直线可以作( )(A )4条(B )3条 (C )2条 (D )1条 13.已知abc≠0,而且=p ,那么直线y=px+p 一定通过( )a b b c c ac a b+++==(A )第一、二象限 (B )第二、三象限(C )第三、四象限 (D )第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a≠0 (D )-4<a<215.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个(B )2个 (C )3个 (D )4个16.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p ,0),交y 轴于( 0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A )0 (B )1 (C )2 (D )无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个(B )4个 (C )6个 (D )8个19.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,12时间为t (分),离开点A 的路程为S (米), 那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A 的路程S (米) 之间的函数关系的是( )20.若k 、b 是一元二次方程x 2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b 中,y 随x 的增大而减小,则一次函数的图像一定经过( )(A )第1、2、4象限 (B )第1、2、3象限(C )第2、3、4象限 (D )第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P 到x 轴的距离等于3, 则点P 的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=x 与y=-2x+3的图像的交点在第_________象限.238.某公司规定一个退休职工每年可获得一份退休金, 金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b≠a),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、 q )表示______元.9.若一次函数y=kx+b ,当-3≤x≤1时,对应的y 值为1≤y≤9, 则一次函数的解析式为________.三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的. 小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x (cm ) 37.040.042.045.0桌高y (cm )70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式;(不要求写出x 的取值范围);(2)小明回家后, 测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3) 求小明出发多长时间距家12千米?5.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B 在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位, 求正比例函数和一次函数的解析式.he i r8.在直角坐标系x0y 中,一次函数的图象与x 轴,y 轴,分别交于A 、B 两点, 点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD,求图象经过B 、D 两点的一次函数的解析式.9.已知:如图一次函数y=x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线12交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30 台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A 地 1800元/台 1600元/台B 地1600元/台1200元/台(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元, 说明有多少种分派方案,并将各种方案写出.15.A 市、B 市和C 市有某种机器10台、10台、8台, 现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.答案:1.B 2.B 3.A 4.A 5.B 提示:由方程组 的解知两直线的交点为(1,a+b ),y bx ay ax b =+⎧⎨=+⎩而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2≠1,故图C 不对;图D 中交点纵坐标是大于a ,小于b 的数,不等于a+b ,故图D 不对;故选B .6.B 提示:∵直线y=kx+b 经过一、二、四象限,∴ 对于直线y=bx+k ,0,k b <⎧⎨>⎩∵ ∴图像不经过第二象限,故应选B .0,0k b <⎧⎨>⎩7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y 随x 的增大而减小,故B 正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C 错误.∵k<0,b= 2>0,∴其图像经过第二象限,故D 错误.8.C 9.D 提示:根据y=kx+b 的图像之间的关系可知,将y=-x 的图像向下平移4个单位就可得到y=-x-4的图像.323210.C 提示:∵函数y=(m-5)x+(4m+1)x 中的y 与x 成正比例,∴ ∴m=-,故应选C .5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即1411.B 12.C 13.B 提示:∵=p ,a b b c c ac a b+++==∴①若a+b+c≠0,则p==2;()()()a b b c c a a b c+++++++②若a+b+c=0,则p==-1,a b cc c+-=∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q│>0, k·b<0,||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭A A 一次函数y=kx+b 中,y 随x 的增大而减小一次函数的图像一定经过一、二、四000k k b <⎫⇒<⇒⇒⎬>⎭象限,选A .二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全.5.(,3)或(,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-31353当y=3时,x=;当y=-3时,x=;∴点P 的坐标为(,3)或(,-3).13531353提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b .∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b.将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组 92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩即∴两函数的交点坐标为(,),在第一象限.98348.. 9.y=2x+7或y=-2x+3 10.222()aq bp bp aq --10042009三、1.(1)由题意得: 20244a b a b b +==-⎧⎧⎨⎨==⎩⎩即即∴这个一镒函数的解析式为:y=-2x+4( 函数图象略). (2)∵y=-2x+4,-4≤y≤4, ∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k≠0)为常数,则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx ,得 解得k=-2,p=5,2131k p k p +=⎧⎨+=-⎩∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米. (2)设直线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E 、F 两点的直线解析式为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x≤6)过A 、B 两点的直线解析式为y=k 3x ,∵B(1,15),∴y=15x.(0≤x≤1),分别令y=12,得x=(小时),x=(小时).26545答:小明出发小时或小时距家12千米.265455.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6,∴AO·│y B │=6,12∴y B =-2,把点B (-2,-2)代入正比例函数y=kx , 得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得 1062223a ba ab b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩即即∴y=x,y=-x-3即所求.128.∵点A 、B 分别是直线与x 轴和y 轴交点,∴A(-3,0),B (0),∵点C 坐标(1,0)由勾股定理得,设点D 的坐标为(x ,0).(1)当点D 在C 点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴①BC CD AB BD ==∴,∴8x 2-22x+5=0,22321112x x x -+=+∴x 1=,x 2=,经检验:x 1=,x 2=,都是方程①的根,52145214∵x=,不合题意,∴舍去,∴x=,∴D 点坐标为(,0).145252dAl l t he rb 设图象过B 、D 两点的一次函数解析式为y=kx+b ,502b k k b b ⎧⎧==⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为.(2)若点D 在点C 左侧则x<1,可证△ABC∽△ADB,∴ ②AD BD AB CB == ∴8x 2-18x-5=0,∴x 1=-,x 2=,经检验x 1=,x 2=,都是方程②的根.14521452∵x 2=不合题意舍去,∴x 1=-,∴D 点坐标为(-,0),521414∴图象过B 、D (-,0)两点的一次函数解析式为,14综上所述,满足题意的一次函数为或.9.直线y=x-3与x 轴交于点A (6,0),与y 轴交于点B (0,-3),12∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即,OD OAOC OB=∴OD==8.∴点D 的坐标为(0,8),463OC OA OB ⨯=A 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由 2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩即即∴点E 的坐标为(,-).2254511.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.15.(1)由题设知,A 市、B 市、C 市发往D 市的机器台数分x ,x ,18-2x ,发往E 市的机器台数分别为10-x ,10-x ,2x-10.于是W=200x+300x+400(18-2x )+800(10-x )+700(10-x )+500(2x-10)=-800x+17200.又 010,010,01828,59,x x x x ≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x 是整数).由上式可知,W 是随着x 的增加而减少的,所以当x=9时,W 取到最小值10000元; 当x=5时,W 取到最大值13200元.(2)由题设知,A 市、B 市、C 市发往D 市的机器台数分别为x ,y ,18-x-y ,发往E 市的机器台数分别是10-x ,10-y ,x+y-10,于是W=200x+800(10-x )+300y+700(10-y )+ 400(19-x-y )+500(x+y-10)=-500x-300y-17200.又010,010,010,010,0188,1018,x x y y x y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且(x ,y 为整数).010,010,018.x y x y ≤≤⎧⎪≤≤⎨⎪≤+≤⎩W=-200x-300(x+y )+17200≥-200×10-300×18+17200=9800.当x= 10,y=8时,W=9800.所以,W 的最小值为9800.又W=-200x-300(x+y )+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W 的最大值为14200.。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

第14章 平面直角坐标系数学七年级上册-单元测试卷-人教五四学制版(含答案)

第14章 平面直角坐标系数学七年级上册-单元测试卷-人教五四学制版(含答案)

第14章平面直角坐标系数学七年级上册-单元测试卷-人教五四学制版(含答案)一、单选题(共15题,共计45分)1、在平面直角坐标系内,把点p(-3,1)向右平移一个单位,则得到的对应点p'的坐标是()A.(-3,2);B.(-3,0);C.(-4,1);D.(-2,1).2、如图,菱形ABCD的顶点A在x轴的正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于点M,双曲线y= 过点B且与AC交于点N,如果AN=3CN,S△NBC= ,那么k的值为()A.8B.9C.10D.123、在平面直角坐标系中,点关于y轴的对称点的坐标是()A. B. C. D.4、在平面直角坐标系中,点P(﹣5,﹣4)位于()A.第一象限B.第二象限C.第三象限D.第四象限5、将点(-3,4)向右平移3个单位、向下平移2个单位后的坐标为( )A.(-6,0)B.(6,0)C.(0,-2)D.(0,2)6、若a+b<0,ab<0,则下列判断正确的是( )A.a、b都是正数B.a、b都是负数C.a、b异号且负数的绝对值大 D.a、b异号且正数的绝对值大7、下列命题:①(a≥0)表示a的平方根;②立方根等于本身的数是0;③若ab=0,则P(a,b)在坐标原点;④在平面直角坐标系中,若点A的坐标为(﹣1,﹣2),且AB平行于x轴,AB=5,则点B 的坐标为(4,﹣2),其中真命题的个数为()A.0B.1C.2D.38、一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)9、如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D. (m-2)10、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是().A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)11、如果点M(m+3,2m+4)在x轴上,那么点M的坐标是( )A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)12、如图,半径为1的半圆的圆心在原点,直径AB在x轴上,过原点的任意一条半径与半圆交于点P,过P作PN垂直于x轴,N为垂足,则∠OPN的平分线过定点()A.(0,﹣1)B.(0,﹣)C.(0,﹣)D.(0,﹣)13、如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)14、在平面直角坐标系中,直线经过点A(-3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将⊙P沿轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个15、已知点P(3﹣m,m﹣1)在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则点B’的坐标是________17、在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为________.18、如图,点A的坐标为(8,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF、等腰Rt△ABE,连接EF交y轴于P点,当点B 在y轴上移动时,PB的长度为________.19、如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第 200 个点的横坐标为________.20、若点N(x,y)在第二象限,且到x轴距离为2,到y轴距离为3,则点N的坐标是________.21、在电影票上如果将“8排4号”记作(8,4),那么(1,5)表示________.22、如图,在平面直角坐标系中,点A在第一象限,⊙A与轴相切于B,与轴交于C (0,1)、D(0,4)两点,则点A的坐标是________.23、如图,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x轴平行,它们的顶点依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12…表示,那么顶点A62的坐标是________24、如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为________.25、已知,若B(﹣2,0),A为象限内一点,且点A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标________(写出一个即可),此时△ABO的面积为________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14章《一次函数》全章水平测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x的函数是( )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( )3.函数x y x y x y 21,3,2-=-==的共同特点是( ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m .2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是 .3.直线13+=x y 与x y 51-=的交点坐标为 .4.直线42+-=x y 与x 轴交点的坐标是 ,方程222-=+-x 的解是 .5.当m 满足 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为 .7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m .8.将x y 21=的图象向右平移2个单位后,得到的图象解析式是 . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.5.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如图(1),图(2)中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B到海岸的距离与追赶时间之间的关系?⑵A,B哪个速度快?⑶15分内B能否追上A?⑷如果一直追下去,那么B能否追上A?⑸当A 逃到海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.y(元)x(吨)84.864O7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图10中的折线分别表示S1、S2与t之间的函数关系.⑴甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.参考答案一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x 的函数是( D )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( B )3.函数x y x y x y 21,3,2-=-==的共同特点是( D ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( A )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( C )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( A )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( D )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( B )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m =-5.2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是3+-=x y .(答案不唯一)3.直线13+=x y 与x y 51-=的交点坐标为 (0,1) .4.直线42+-=x y 与x 轴交点的坐标是(2,0),方程222-=+-x 的解是 x =2 .5.当m 满足 m >3 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为35.135.1+=+-=x y x y 或.7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m 1 .8.将x y 5.0=的图象向右平移2个单位后,得到的图象解析式是15.0-=x y . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.解略:⑴12-=x y ,⑵23=a2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.解略:⑴当m >-2、n 为任意数时,y 随x 的增大而增大;⑵当m ≠-2、n >3时,函数图象与y 轴的交点在x 轴下方;⑶当m ≠-2、n =3为何值时,函数图象经过原点; ⑷当m >-2、n <3时,图象经过第一、二、三象限.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.解:图略⑴方程062=+x 的解为3-=x; ⑵不等式62+x >0的解为3->x ;⑶当14-≤≤-x 时-1≤y ≤3.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:⑴62+-=x y ,图略⑵△ABC 的面积S 关于t 的函数表达式为tS 2133-=5.我国边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶,如图(1),图(2)中1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B 到海岸的距离与追赶时间之间的关系?⑵A ,B 哪个速度快?⑶15分内B 能否追上A ?⑷如果一直追下去,那么B 能否追上A ?⑸当A 逃到海岸12海里的公海时,B 将无法对其进行检查,照此速度,B 能否在A 逃入公海前将其拦截?解略:⑴射线1l 表示B 到海岸的距离与追赶时间之间的关系;⑵快艇B 的速度快;⑶15分内B 不能否追上A ;⑷如果一直追下去,那么B 能追上A ;⑸照此速度,B 能在A 逃入公海前将其拦截.6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y (元)是用水量x (吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.解略:⑴⎩⎨⎧>-≤=)4(6.16.1)4(2.1x x x xy⑵4吨以内(包括4吨),每吨1.2元 4吨以上,每吨1.6元⑶若某用户该月交水费12.8元,则他用了9吨水.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),图10中的折线分别表示S 1、S 2与t 之间的函数关系.⑴甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; ⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.解略:⑵第二组由甲地出发首次到达乙地及由乙地到 达丙地所用的时间分别是0.8h 和0.2h ; ⑶)18.0(8102<<-=t t S可以编辑的试卷(可以删除)。

相关文档
最新文档