江苏省无锡市东林中学教育集团2019-2020学年七年级下学期期中数学试题
江苏省无锡市2020版七年级下学期数学期中考试试卷A卷

江苏省无锡市2020版七年级下学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017七上·闵行期末) 下列运算正确的是()A . 2a+3b=5abB . (3a3)2=6a6C . a6÷a2=a3D . a2•a3=a52. (2分)如图,已知∠1 = 70º,如果CD∥BE,那么∠B的度数为()A . 70ºB . 100ºC . 110ºD . 120º3. (2分)下列长度的各组线段中,不能组成三角形的是()A . 1.5,2.5,3.5B . 2,3,5C . 6,8,10D . 4,3,34. (2分)如果二次三项式x2+px﹣6可以分解为(x+q)(x﹣2),那么(p﹣q)2的值为()A . 2B . 3C . 4D . 95. (2分) (2018七下·紫金月考) 如果a﹣b=2,a﹣c= ,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A .B .C .D . 不能确定6. (2分)一个多边形的每个内角都等于120°,则这个多边形的边数为()A . 4B . 5C . 6D . 77. (2分)下列多项式的乘法中可用平方差公式计算的是().A .B .C .D .8. (2分)(2019·南通) 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为()A .B .C .D .二、填空题 (共10题;共14分)9. (1分)(2016·自贡) 若n边形内角和为900°,则边数n=________.10. (1分) (2016八上·西昌期末) 计算(2a﹣2bc3)2(﹣3ab5c﹣2)2=________.11. (1分)(2017七上·启东期中) 若(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5 ,则32a0+16a1+8a2+4a3+2a4+a5=________.12. (1分) (2017七下·宜城期末) 完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴________(同角的补角相等)①∴________(内错角相等,两直线平行)②∴∠ADE=∠3(________)③∵∠3=∠B(________)④∴________(等量代换)⑤∴DE∥BC(________)⑥∴∠AED=∠C(________)⑦13. (1分) (2015七下·成华期中) 计算:()2015×(﹣)2016=________14. (5分)已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为________ .15. (1分)分解因式:x3﹣6x2+9x= ________.16. (1分)若a、b为有理数,且|a+2|+|b﹣|=0,则(ab)2014= ________17. (1分)计算(﹣2xy3)2=________ ;(﹣)2014×(﹣1.5)2015=________ .18. (1分) (2017七下·兴化期末) 已知a+b=3,ab=2,则(a-b)2=________.三、解答题 (共8题;共55分)19. (10分)计算(1)(2a2)2(2)(a2b)3(3)(﹣3a)3(a2)4(4)(a2)3+5a3•a3﹣(2a2)3(5)0.1255×85(6)0.252007×42009(7) 2(y3)2•y3﹣(3y3)2+(5y)2•y720. (10分) (2020八上·淅川期末)(1)因式分解(2)对于任何实数,规定一种新运算,如 .当时,按照这个运算求的值.21. (5分)画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF 和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.22. (10分) (2019八上·武汉月考) 如图,的三个顶点的坐标分别为,,.(1)先将向下平移2个单位长度,再向右平移3个单位长度,得,画出;(2)直接写出BC边在两次平移过程中扫过的面积;(3)在(1)中求与y轴的交点D的坐标.23. (5分) (2018七上·深圳期中) 先化简,再求值:,其中a=-224. (5分)(2017·南岸模拟) 如图,△ABC与△DBE中,AC∥DE,点B、C、E在同一直线上,AC,BD相交于点F,若∠BDE=85°,∠BAC=55°,∠ABD:∠DBE=3:4,求∠DBE的度数.25. (5分)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.26. (5分) (2019七下·丹东期中) 已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,问CD与AB有什么关系?并说明理由参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共14分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共55分) 19-1、19-2、19-3、19-4、19-5、19-6、19-7、20-1、20-2、21-1、22-1、22-2、22-3、23-1、24-1、25-1、26-1、。
最新2019-2020年江苏省七年级下学期期中数学试卷 ( 解析版)

江苏省七年级(下)期中数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)如图,∠AOD﹣∠AOC=()A.∠ADC B.∠BOC C.∠BOD D.∠COD2.(3分)计算(﹣1)0的结果为()A.1B.﹣1C.0D.无意义3.(3分)若是方程mx+y=3的一组解,则m的值为()A.﹣3B.1C.3D.24.(3分)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.5.(3分)因式分解的结果是(x﹣3)(x﹣4)的多项式是()A.x2﹣7x﹣12B.x2+7x+12C.x2﹣7x+12D.x2+7x﹣12 6.(3分)下面的计算,不正确的是()A.a8÷a4=a2B.10﹣3=0.001C.26×2﹣4=4D.(m2•n)3=m6n37.(3分)某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是()A.B.C.D.8.(3分)如图,能判断AB∥CE的条件是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠BCA D.∠B=∠ACE二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知2x﹣y=1,用含x的式子表示y的形式是.10.(3分)已知3×2x=24,则x=.11.(3分)如图,线段AB=6cm,点C是AB的中点,点D是CB的中点.则CD的长为cm.12.(3分)若a+b=b+c=a+c=5,则a+b+c=.13.(3分)等腰三角形的一边长是3cm,另外一边长是5cm,则它的第三边长是.14.(3分)计算:29×31=.15.(3分)已知a+b=2,ab=3,代数式a2b+ab2+a+b的值为.16.(3分)如图,∠A=12°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED =∠FEG,则∠F=°.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)(2)3m5÷m2(3)(2ab2)318.(6分)一颗人造地球卫星的速度是2.844×107米/时,一辆汽车的速度是100公里/时,试问这颗人造地球卫星的速度是这辆汽车的多少倍?19.(8分)尺规作图:画一个角等于已知角(如图),要求两角不共顶点.20.(8分)如图,在△ABC中,点D在BC上,且∠BAD=∠CAD,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?21.(8分)计算:(1)x2•(2x+1)(2)(2x+1)2(3)(2a+b)(b﹣2a)(4)(a﹣3b)222.(10分)分解因式:(1)y2﹣5y(2)16a2﹣b2(3)x3﹣x(4)8x2﹣8x+223.(10分)已知:如图,∠1=∠2,∠3=∠4,试说明DF∥BC.24.(10分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD =7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.25.(10分)解二元一次方程组:(1)(2)26.(12分)某厂生产甲、乙两种型号的产品,生产一个甲种产品需时间8s,铜8g;生产一个乙种产品需时间6s,铜16g.如果生产甲、乙两种产品共用时1h,共用铜6.4kg,那么甲、乙两种产品各生产多少个?27.(14分)某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册由4张彩色页和6张黑白页组成;B纪念册由6张彩色页和4张黑白页组成(内容均不相同).印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印制册数无关,价格为:彩色页30元/张,黑白页10元/张;印制费与总印制册数的关系见表:(1)印制这批纪念册的制版费为元.(2)若印制A、B两种纪念册各100册,则共需多少费用?(3)如果该校印制了A、B两种纪念册共800册,一共花费了10520元,则该校印制了A、B两种纪念册各多少册?2018-2019学年江苏省盐城市大丰区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)如图,∠AOD﹣∠AOC=()A.∠ADC B.∠BOC C.∠BOD D.∠COD【分析】利用图中角的和差关系计算.【解答】解:结合图形,显然∠AOD﹣∠AOC=∠COD.故选:D.【点评】能够根据图形正确计算两个角的和与差.2.(3分)计算(﹣1)0的结果为()A.1B.﹣1C.0D.无意义【分析】根据零指数幂的运算方法:a0=1(a≠0),求出(﹣1)0的结果为多少即可.【解答】解:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A.【点评】此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.3.(3分)若是方程mx+y=3的一组解,则m的值为()A.﹣3B.1C.3D.2【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程得:2m﹣1=3,解得:m=2,故选:D.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解答】解:过点C作AB边的垂线,正确的是C.故选:C.【点评】本题是一道作图题,考查了三角形的角平分线、高、中线,是基础知识要熟练掌握.5.(3分)因式分解的结果是(x﹣3)(x﹣4)的多项式是()A.x2﹣7x﹣12B.x2+7x+12C.x2﹣7x+12D.x2+7x﹣12【分析】直接将各选项分解因式得出答案.【解答】解:A、x2﹣7x﹣12,无法分解因式,故此选项错误;B、x2+7x+12=(x+3)(x+4),不合题意,故此选项错误;C、x2﹣7x+12=(x﹣3)(x﹣4),正确;D、x2+7x﹣12,无法分解因式,故此选项错误.故选:C.【点评】此题主要考查了十字相乘法分解因式,正确分解因式是解题关键.6.(3分)下面的计算,不正确的是()A.a8÷a4=a2B.10﹣3=0.001C.26×2﹣4=4D.(m2•n)3=m6n3【分析】根据幂的运算法则逐一计算可得.【解答】解:A.a8÷a4=a4,错误;B.10﹣3=0.001,正确;C.26×2﹣4=22=4,正确;D.(m2•n)3=m6n3,正确;故选:A.【点评】本题主要考查单项式乘单项式,解题的关键是掌握幂的运算法则和单项式的运算法则.7.(3分)某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是()A.B.C.D.【分析】关键描述语是:甲、乙两种纯净水共用250元;乙种水的桶数是甲种水桶数的75%.等量关系为:甲种水的桶数×8+乙种水桶数×6=250;乙种水的桶数=甲种水桶数×75%.则设买甲种水x桶,买乙种水y桶.【解答】解:设买甲种水x桶,买乙种水y桶,列方程.故选:A.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.(3分)如图,能判断AB∥CE的条件是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠BCA D.∠B=∠ACE 【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【解答】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知2x﹣y=1,用含x的式子表示y的形式是y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,解得:y=2x﹣1,故答案为:y=2x﹣1【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.(3分)已知3×2x=24,则x=3.【分析】直接利用幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵3×2x=24,∴2x=8=23,解得:x=3.故答案为:3.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.11.(3分)如图,线段AB=6cm,点C是AB的中点,点D是CB的中点.则CD的长为1.5cm.【分析】由点C是AB的中点可得AC=BC=3cm,由点D是BC的中点可得BD=CD=1.5cm.【解答】解:∵点C是AB的中点,∴CB==3cm,又∵点D是BC的中点,∴CD==1.5cm.故答案为:1.5【点评】本题考查了两点间的距离以及线段中点的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(3分)若a+b=b+c=a+c=5,则a+b+c=.【分析】原式即a+b=5,b+c=5,a+c=5,三个式子左右两边分别相加即可求得.【解答】解:根据题意得a+b=5,b+c=5,a+c=5,三个式子左右两边分别相加得2(a+b+c)=15,则a+b+c=.故答案是:.【点评】本题考查了三元一次方程组的解法,理解方程组的特点是关键.13.(3分)等腰三角形的一边长是3cm,另外一边长是5cm,则它的第三边长是3或5.【分析】题中没有指明哪个是底哪个是腰,所以应该分两种情况进行分析.【解答】解:∵题中没有指明哪个是底哪个是腰,根据三角形三边关系,∴这个等腰三角形的第三条边长是3或5cm.故答案为:3或5.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系,已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键,难度适中.14.(3分)计算:29×31=899.【分析】本题可以直接计算,但运用平方差公式更为简便,可化为(30﹣1)(30+1)=302﹣12=899,计算更方便、快捷.【解答】解:29×31=(30﹣1)(30+1)=302﹣12=899故答案为899.【点评】本题是运用平方差公式对有理数的乘法进行简便运算,抓住公式的特征进行计算是解题的关键.15.(3分)已知a+b=2,ab=3,代数式a2b+ab2+a+b的值为8.【分析】将多项式进行因式分解,然后将a+b与ab的值代入即可求出答案.【解答】解:当a+b=2,ab=3时,原式=ab(a+b)+(a+b)=(a+b)(ab+1)=2×4=8,故答案为:8【点评】本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.16.(3分)如图,∠A=12°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED =∠FEG,则∠F=42°.【分析】根据三角形内角和定理求出∠ACB,根据平角的定义、三角形的外角的性质计算即可.【解答】解:∵∠A=12°,∠ABC=90°,∴∠ACB=90°﹣12°=78°,∴∠DCE=∠ACB=78°,∴∠BCD=180°﹣78°﹣78°=24°,∴∠BDC=90°﹣24°=66°,∴∠EDF=∠ADC=66°,∴∠CDE=180°﹣66°﹣66°=48°,∴∠FEG=∠CED=180°﹣78°﹣48°=54°,∴∠F=∠FEG﹣∠A=42°,故答案为:42.【点评】本题考查的是三角形内角和定理、三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)(2)3m5÷m2(3)(2ab2)3【分析】(1)根据有理数的乘方法则和乘法法则计算;(2)根据同底数幂的除法法则计算;(3)根据积的乘方法则计算.【解答】解:(1)=×4=1;(2)3m5÷m2=3m5﹣2=3m3;(3)(2ab2)3=8a3b6.【点评】本题考查的是有理数的乘方、同底数幂的除法、积的乘方,掌握它们的运算法则是解题的关键.18.(6分)一颗人造地球卫星的速度是2.844×107米/时,一辆汽车的速度是100公里/时,试问这颗人造地球卫星的速度是这辆汽车的多少倍?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:人造地球卫星速度:2.844×107米/时=28 440 000米/时﹣汽车速度:100公里/时=100 000米/时这颗人造地球卫星的速度是这辆汽车的284.4倍.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(8分)尺规作图:画一个角等于已知角(如图),要求两角不共顶点.【分析】利用基本作图(作一个角等于已知角)作∠CED=∠AOB.【解答】解:如图,∠CED为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20.(8分)如图,在△ABC中,点D在BC上,且∠BAD=∠CAD,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?【分析】利用角平分线和中线的定义解答即可.【解答】解:AD是△ABC的角平分线,AF是△ABE的角平分线;BE是△ABC的中线,DE是△ADC的中线.【点评】此题考查三角形的角平分线、高和中线,关键是利用角平分线和中线的定义解答.21.(8分)计算:(1)x2•(2x+1)(2)(2x+1)2(3)(2a+b)(b﹣2a)(4)(a﹣3b)2【分析】(1)原式利用单项式乘以多项式法则计算即可求出值;(2)原式利用完全平方公式化简即可求出值;(3)原式利用平方差公式计算即可求出值;(4)原式利用完全平方公式化简即可求出值.【解答】解:(1)x2•(2x+1)=2x3+x2;(2)(2x+1)2=4x2+4x+1;(3)(2a+b)(b﹣2a)=b2﹣4a2;(4)(a﹣3b)2=a2﹣6ab+9b2.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)分解因式:(1)y2﹣5y(2)16a2﹣b2(3)x3﹣x(4)8x2﹣8x+2【分析】(1)原式提取公因式即可;(2)原式利用平方差公式分解即可;(3)原式提取x,再利用平方差公式分解即可;(4)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)y2﹣5y=y(y﹣5);(2)16a2﹣b2=(4a﹣b)(4a+b);(3)x3﹣x=x(x2﹣1)=x(x+1)(x﹣1);(4)8x2﹣8x+2=2(4x2﹣4x+1)=2(2x﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.(10分)已知:如图,∠1=∠2,∠3=∠4,试说明DF∥BC.【分析】由∠3=∠4,根据内错角相等两直线平行,可得:GH∥AB,然后根据两直线平行同位角相等可得:∠2=∠B,然后由∠1=∠2,根据等量代换可得:∠1=∠B,然后由同位角相等两直线平行可得:DF∥BC.【解答】证明:∵∠3=∠4,∴GH∥AB,∴∠2=∠B,∵∠1=∠2,∴∠1=∠B,∴DF∥BC.【点评】此题考查了平行线的判定与性质,解题的关键是:熟记两直线平行⇔同位角相等;两直线平行⇔内错角相等;两直线平行⇔同旁内角互补.24.(10分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD =7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.【分析】(1)首先依据∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°可求得∠AOC、∠AOD的度数,然后可求得∠BOD的度数,依据角平分线的定义可求得∠DOE的度数,最后可求得∠COE的度数;(2)先求得∠FOD的度数,然后依据邻补角的定义求解即可.【解答】解:(1)∵∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°.∴∠BOD=70°.∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣35°=145°.(2)∵∠DOE=35°,OF⊥OE,∴∠FOD=55°,∴∠FOC=180°﹣55°=125°.【点评】本题主要考查的是角平分线的定义、对顶角、邻补角的定义,熟练掌握相关知识是解题的关键.25.(10分)解二元一次方程组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②×3得:7x=14,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),①+②得:9x=18,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.26.(12分)某厂生产甲、乙两种型号的产品,生产一个甲种产品需时间8s,铜8g;生产一个乙种产品需时间6s,铜16g.如果生产甲、乙两种产品共用时1h,共用铜6.4kg,那么甲、乙两种产品各生产多少个?【分析】设甲产品x个、乙产品y个,根据甲产品时间+乙产品时间=3600秒,甲产品铜质量+乙产品铜质量=铜的总质量6400g,列方程组,解方程组可得.【解答】解:设甲产品x个,乙产品y个,根据题意,得:,解得:.答:生产甲产品240个,乙产品280个.【点评】本题主要考查二元一次方程组的实际应用,根据题意抓住相等关系列出方程组是关键.27.(14分)某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册由4张彩色页和6张黑白页组成;B纪念册由6张彩色页和4张黑白页组成(内容均不相同).印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印制册数无关,价格为:彩色页30元/张,黑白页10元/张;印制费与总印制册数的关系见表:(1)印制这批纪念册的制版费为400元.(2)若印制A、B两种纪念册各100册,则共需多少费用?(3)如果该校印制了A、B两种纪念册共800册,一共花费了10520元,则该校印制了A、B两种纪念册各多少册?【分析】(1)根据A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成,彩色页300元∕张,黑白页50元∕张,求其和即可;(2)根据题意可得等量关系:各印一册A,B种纪念册的印刷费用×2000+制版费=总费用,再算出结果即可;(3)根据(2)中计算方法,得出关于A、B两种纪念册6千册,一共花费了75500元的方程组求出即可.【解答】解:(1)印制这批纪念册的制版费为:4×30+6×10+6×30+4×10=400(元).故答案是:400.(2)∵印制A、B两种纪念册各100册,∴共需:100×(4×2.2+6×0.7+6×2.2+4×0.7)+400=3300(元),答:印制A、B两种纪念册各100册,则共需3300元.(3)设A纪念册印制了x册,B纪念册印制了y册,根据题意得出:解得:答:该校印制了A纪念册500册、B纪念册300册.【点评】此题主要考查了二元一次方程组的应用,关键是设出一个未知数为x,另一个未知数用x表示,再找出数量关系等式,找出对应的量,列方程即可.。
2019-2020学年江苏省无锡市经开区七年级下学期期中数学试卷 (解析版)

2019-2020学年江苏省无锡市经开区七年级第二学期期中数学试卷一、选择题1.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a3+a4=a7 2.“碧玉妆成一树高,万条垂下绿丝绦”.每到春天,人们流连于柳绿桃红之间的同时也被漫天飞舞的柳絮所烦扰.据测定,柳絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.1.05×10﹣5 C.﹣1.05×105D.105×10﹣73.下列整式乘法中,能运用平方差公式进行运算的是()A.(2a+b)(2b﹣a)B.(m+b)(m﹣b)C.(a﹣b)(b﹣a)D.(﹣x﹣b)(x+b)4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等5.一个多边形的内角和是900°,这个多边形的边数是()A.10B.9C.8D.76.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为()A.20cm B.22cm C.24cm D.26cm7.如图,将一个含有45°角的直角三角尺放在两条平行线m、n上,已知∠α=120°,则∠β的度数是()A.45°B.60°C.65°D.75°8.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个B.6个C.7个D.8个9.比较255、344、433的大小()A.255<344<433B.433<344<255C.255<433<344D.344<433<25510.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记k=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=3x2+3x+m,则m的值是()A.﹣62B.﹣38C.﹣40D.﹣20二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.若a m=5,a n=3,则a m+n=.12.已知x2+x=2020,则代数式(x+2)(x﹣1)的值为.13.如图,已知AB∥CD,∠1=130°,则∠2=.14.把一副常用的三角尺按如图所示的方式拼在一起,则∠ABC=°.15.若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=.16.若多项式a2﹣(k﹣2)a+4是完全平方式,则k的值为.17.如图,若干全等正五边形排成环状.图中所示的是前3个正五边形,要完成这一圆环还需个正五边形?18.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为4、5、7,四边形DHOG面积为.三、解答题(本大题有8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(16分)计算或化简:(1)(﹣1)2021﹣2﹣1+(π﹣3.14)0;(2)(x+2)2﹣x(x﹣3);(3)a8÷a2﹣(﹣3a2)3;(4)(a﹣b)(a+b)﹣(a﹣2b)2.20.先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.21.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点D的对应点D′.(1)根据特征画出平移后的△A′B′C′;(2)利用网格的特征,画出AC边上的高BE;(3)若连接AA′,CC′,则这两条线段之间的关系是.22.如图,BE是△ABC的角平分线,DE∥BC,交AB于点D,∠A=126°,∠DEB=14°,求∠BEC的度数.23.(1)计算:(x﹣1)(x2+x+1)=;(2x﹣3)(4x2+6x+9)=;(3x﹣4y)(9x2+12xy+16y2)=;归纳:(a﹣b)()=;(2)应用:27m3﹣125n3=()()24.如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若相等,则四边形ABCD的边有何结论?请说明理由.25.(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×ab+(a﹣b)2,所以4×ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.26.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线a与水平线OC的夹角为36°,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=110°,∠DCF=50°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线CD转动一周的时间内,当t=,使得CD与AB平行.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a3+a4=a7【分析】根据合并同类项法则,幂的乘方和积的乘方,同底数幂的乘法分别求出每个式子的值,再判断即可.解:A、结果是3a,故本选项不符合题意;B、结果是a5,故本选项符合题意;C、结果是a8,故本选项不符合题意;D、a3和a4不能合并,故本选项不符合题意;故选:B.2.“碧玉妆成一树高,万条垂下绿丝绦”.每到春天,人们流连于柳绿桃红之间的同时也被漫天飞舞的柳絮所烦扰.据测定,柳絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.1.05×10﹣5 C.﹣1.05×105D.105×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000105m用科学记数法表示为1.05×10﹣5.故选:B.3.下列整式乘法中,能运用平方差公式进行运算的是()A.(2a+b)(2b﹣a)B.(m+b)(m﹣b)C.(a﹣b)(b﹣a)D.(﹣x﹣b)(x+b)【分析】结合平方差公式的概念:两个数的和与这两个数的差相乘,等于这两个数的平方差.进行求解即可.解:A、(2a+b)(2b﹣a),不符合平方差公式,故此选项错误;B、(m+b)(m﹣b),能运用平方差公式进行运算,故此选项正确;C、(a﹣b)(b﹣a)=﹣(a﹣b)(a﹣b),不符合平方差公式,故此选项错误;D、(﹣x﹣b)(x+b)=﹣(x+b)2,不符合平方差公式,故此选项错误;故选:B.4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.5.一个多边形的内角和是900°,这个多边形的边数是()A.10B.9C.8D.7【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.6.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为()A.20cm B.22cm C.24cm D.26cm【分析】先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.解:∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故选:D.7.如图,将一个含有45°角的直角三角尺放在两条平行线m、n上,已知∠α=120°,则∠β的度数是()A.45°B.60°C.65°D.75°【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠2,然后根据对顶角相等解答.解:∵m∥n,∴∠1=∠α=120°,∵∠1=∠2+45°,∴∠2=∠1﹣45°=120°﹣45°=75°,∴∠β=∠2=75°.故选:D.8.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个B.6个C.7个D.8个【分析】根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边进行判断.解:可搭出不同的三角形为:2cm、3cm、4cm;2cm、4cm、5cm;2cm、5cm、6cm;3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm共7个.故选:C.9.比较255、344、433的大小()A.255<344<433B.433<344<255C.255<433<344D.344<433<255【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可.解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.10.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记k=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=3x2+3x+m,则m的值是()A.﹣62B.﹣38C.﹣40D.﹣20【分析】根据二次项的系数为3,可得n=4,然后列出算式进行计算,再根据常数项相等解答即可.解:根据题意可知:∵二次项的系数为3,∴n=4,∴原式=(x+3)(x﹣2)+(x+4)(x﹣3)+(x+5)(x﹣4)=x2+x﹣6+x2+x﹣12+x2+x﹣20=3x2+3x﹣38,又∵原式=3x2+3x+m,∴m=﹣38.故选:B.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.若a m=5,a n=3,则a m+n=15.【分析】根据同底数幂的乘法法则求解.解:a m+n=a m•a n=5×3=15.故答案为:15.12.已知x2+x=2020,则代数式(x+2)(x﹣1)的值为2018.【分析】直接利用多项式乘以多项式计算进而把已知代入得出答案.解:当x2+x=2020时,(x+2)(x﹣1)=x2+x﹣2,=2020﹣2=2018.故答案为:2018.13.如图,已知AB∥CD,∠1=130°,则∠2=50°.【分析】根据邻补角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.解:∵∠1=130°,∴∠3=180°﹣∠1=180°﹣130°=50°,∵AB∥CD,∴∠2=∠3=50°.故答案为:50°.14.把一副常用的三角尺按如图所示的方式拼在一起,则∠ABC=75°.【分析】直接根据三角形的内角和定理即可得出结论.解:∵∠BAC=45°,∠C=60°,∴∠ABC=180°﹣45°﹣60°=75°.故答案为:75.15.若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=﹣6.【分析】根据平方差公式可以求得题目中所求式子的值.解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.16.若多项式a2﹣(k﹣2)a+4是完全平方式,则k的值为6或﹣2.【分析】利用完全平方公式的结构特征求出k的值即可.解:∵多项式a2﹣(k﹣2)a+4是完全平方式,∴k﹣2=±4,解得:k=6或k=﹣2.故答案为:6或﹣2.17.如图,若干全等正五边形排成环状.图中所示的是前3个正五边形,要完成这一圆环还需7个正五边形?【分析】先求出正五边形的内角的多少,求出每个正五边形被圆截的弧对的圆心角,即可得出答案.解:∵多边形是正五边形,∴内角是×(5﹣2)×180°=108°,∴∠O=180°﹣(180°﹣108°)﹣(180°﹣108°)=36°,36°度圆心角所对的弧长为圆周长的,即10个正五边形能围城这一个圆环,所以要完成这一圆环还需7个正五边形故答案为:7.18.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为4、5、7,四边形DHOG面积为6.【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边.形DHOG解:连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=4,S四边形BFOE=5,S四边形CGOF=7,∴4+7=5+S四边形DHOG,解得,S四边形DHOG=6.故答案为:6.三、解答题(本大题有8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(16分)计算或化简:(1)(﹣1)2021﹣2﹣1+(π﹣3.14)0;(2)(x+2)2﹣x(x﹣3);(3)a8÷a2﹣(﹣3a2)3;(4)(a﹣b)(a+b)﹣(a﹣2b)2.【分析】(1)首先利用乘法的意义、负整数指数幂的性质、零次幂的性质计算,再算加减即可;(2)首先利用完全平方公式和单项式乘以多项式法则进行计算,再算加减即可;(3)先利用同底数幂的除法法则、积的乘方进行计算,再合并同类项即可;(4)首先利用平方差和完全平方公式进行计算,再算加减即可.解:(1)原式=﹣1﹣+1=﹣;(2)原式=x2+4x+4﹣x2+3x=7x+4;(3)原式=a6+27a6=28a6;(4)原式=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2.20.先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,再将x的值代入计算可得.解:原式=4(x2﹣2x+1)﹣(4x2﹣9)=4x2﹣8x+4﹣4x2+9=﹣8x+13,当x=﹣1时,原式=8+13=21.21.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点D的对应点D′.(1)根据特征画出平移后的△A′B′C′;(2)利用网格的特征,画出AC边上的高BE;(3)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.【分析】(1)利用点D和D′的位置确定平移的方向与距离,然后利用此平移规律画出A、B、C的对应点A′、B′、C′即可;(2)把AC逆时针旋转90°得到AA′,再把AA′平移使A点与B点重合,平移后的直线与AC的交点即为E点;(3)根据平移的性质进行判断.解:(1)如图,△A′B′C′为所作;(2)如图,BE为所作;(3)AA′和CC′平行且相等.故答案为:平行且相等22.如图,BE是△ABC的角平分线,DE∥BC,交AB于点D,∠A=126°,∠DEB=14°,求∠BEC的度数.【分析】根据平行线性质得出∠CBE=14°,求出∠ABE=14°,根据三角形外角性质得出∠BEC=∠A+∠ABE,代入求出即可.解:∵BE是△ABC的角平分线,∴∠CBE=∠ABE,∵DE∥BC,∠DEB=14°,∴∠DEB=∠CBE=14°,∴∠ABE=14°,∵∠A=126°,∴∠BEC=∠A+∠ABE=126°+14°=140°.23.(1)计算:(x﹣1)(x2+x+1)=x3﹣1;(2x﹣3)(4x2+6x+9)=8x3﹣27;(3x﹣4y)(9x2+12xy+16y2)=27x3﹣64y3;归纳:(a﹣b)(a2+ab+b2)=a3﹣b3;(2)应用:27m3﹣125n3=(3m﹣5n)(9m2+15mn+25n2)【分析】(1)直接利用多项式乘以多项式运算法则进而分别计算得出答案;(2)利用(1)中规律进而得出答案.解:(1)(x﹣1)(x2+x+1)=x3+x2+x﹣x2﹣x﹣1=x3﹣1;(2x﹣3)(4x2+6x+9)=8x3+12x2+18x﹣12x2﹣18x﹣27=8x3﹣27;(3x﹣4y)(9x2+12xy+16y2)=27x3+36x2y+48xy2﹣36x2y﹣48xy2﹣64y3;=27x3﹣64y3;归纳:(a﹣b)(a2+ab+b2)=a3﹣b3;故答案为:x3﹣1;8x3﹣27;27x3﹣64y3;a2+ab+b2;a3﹣b3;(2)27m3﹣125n3=(3m﹣5n)(9m2+15mn+25n2).故答案为:3m﹣5n;9m2+15mn+25n2.24.如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若相等,则四边形ABCD的边有何结论?请说明理由.【分析】(1)根据角平分线的定义得到∠GAB=∠DAB,∠GBA=∠CBA,求得∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE =180°﹣(∠ADC+∠BCD),两式相加即可得到结论;(2)当∠FGE=∠FHE时,求得∠DAB+∠CBA=∠ADC+∠BCD,根据四边形的内角和即可得到结论.解:(1)∠FGE+∠FHE=180°,理由:∵AE平分∠BAD,BF平分∠ABC,∴∠GAB=∠DAB,∠GBA=∠CBA,∴∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),∴∠FGE+∠FHE=360°﹣(∠DAB+∠CBA+∠ADC+∠BCD)=180°;(2)∠FGE与∠FHE可能相等,此时,AD∥BC,∵∠FGE=180°﹣(∠DAB+∠CBA),∠FHE=180°﹣(∠ADC+∠BCD),当∠FGE=∠FHE时,180°﹣(∠DAB+∠CBA)=180°﹣(∠ADC+∠BCD),即∠DAB+∠CBA=∠ADC+∠BCD,∵四边形的内角和=360°,∴∠DAB+∠CBA=∠ADC+∠BCD=180°,∴AD∥BC.25.(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×ab+(a﹣b)2,所以4×ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.【分析】(1)梯形的面积可以由梯形的面积公式求出,也利用三个直角三角形面积求出,两次求出的面积相等列出关系式,化简即可得证;(2)由两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高;(3)已知图形面积的表达式,即可根据表达式得出图形的边长的表达式,即可画出图形.解:(1)梯形ABCD的面积为(a+b)(a+b)=a2+ab+b2,也利用表示为ab+c2+ab,∴a2+ab+b2=ab+c2+ab,即a2+b2=c2;(2)∵直角三角形的两直角边分别为3,4,∴斜边为5,∵设斜边上的高为h,直角三角形的面积为×3×4=×5×h,∴h=,故答案为;(3)∵图形面积为:(a﹣2b)2=a2﹣4ab+4b2,∴边长为a﹣2b,由此可画出的图形为:26.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线a与水平线OC的夹角为36°,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=110°,∠DCF=50°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线CD转动一周的时间内,当t=10秒或100秒,使得CD与AB平行.【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上36°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b;(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为36°,b垂直照射到井底,∴∠1+∠2=180°﹣36°﹣90°=54°,∴×54°=27°,∴MN与水平线的夹角为:27°+36°=63°,即MN与水平线的夹角为63°,可使反射光线b正好垂直照射到井底;(3)存在.如图3①,AB与CD在EF的两侧时,∵∠BAF=110°,∠DCF=50°,∴∠ACD=180°﹣50°﹣3t°=130°﹣3t°,∠BAC=110°﹣t°,要使AB∥CD,则∠ACD=∠BAC,即130﹣3t=110﹣t,解得t=10;此时(180°﹣50°)÷3=,∴0<t<,如图3②,CD旋转到与AB都在EF的右侧时,∵∠BAF=110°,∠DCF=50°,∴∠DCF=360°﹣3t°﹣50°=310°﹣3t°,∠BAC=110°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即310﹣3t=110﹣t,解得t=100,此时(360°﹣50°)÷3=,∴<t<,如图3③,CD旋转到与AB都在EF的左侧时,∵∠BAF=110°,∠DCF=60°,∴∠DCF=3t°﹣(180°﹣50°+180°)=3t°﹣310°,∠BAC=t°﹣110°,要使AB∥CD,则∠DCF=∠BAC,即3t﹣310=t﹣110,解得t=100,此时t>110,∵100<110,∴此情况不存在.综上所述,t为10秒或100秒时,CD与AB平行.故答案为:10秒或100秒.。
江苏省无锡市2020版七年级下学期数学期中考试试卷A卷

江苏省无锡市2020版七年级下学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018八上·南充期中) 如图, AD是的中线,E、F分别是AD和AD延长线上的点,且,连结BF、CE .下列说法:①CE=BF②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2017·桥西模拟) 下列计算正确的是()A . (a2)3=a5B . a﹣2•a2=a﹣4C . 3 ﹣ =3D . =33. (2分) (2019七上·天峨期末) 下列运算中,正确的是()A . 5a-a=5B . 2a2+2a3=4a5C . a2b-ab2=0D . -a2-a2=-2a24. (2分)下列是某同学在一次作业中的计算摘录:①3a+2b=5ab,②4m3n-5mn3=-m3n,③4x3•(-2x2)=-6x5 ,④4a3b÷(-2a2b)=-2a,⑤(a3)2=a5 ,⑥(-a)3÷(-a)=-a2 ,其中正确的个数有()A . 1个B . 2个C . 3个D . 4个5. (2分)如下图,抛物线顶点坐标是P(1,3),则函数y随自变量x的增大而减小的x的取值范围是()A . x>3B . x<3C . x>1D . x<16. (2分)如图.已知直线a,b被直线c所截,且a∥b,∠1=48°,那么∠2的度数为()A . 42°B . 48°C . 52°D . 132°7. (2分)到直线a的距离等于2cm的点有()个.A . 0个B . 1个C . 无数个D . 无法确定8. (2分)利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2 .你根据图乙能得到的数学公式是()A . a2- b2= (a-b)2B . (a+b)2= a2+2ab+b2C . (a-b)2= a2-2ab+b2D . a2- b2=(a+b)(a-b)二、填空题 (共8题;共22分)9. (1分)某种生物孢子的直径为0.00063m,用科学记数法表示为________m.10. (1分) (2020七上·合肥期末) 现定义一种新运算,对于任意有理数a、b、c、d满足=ad﹣bc,若对于含未知数x的式子满足=3,则未知数x=________.11. (1分) (2015八上·番禺期末) 化简: =________.12. (1分) (2018七下·乐清期末) 如图,放置在水平操场上的篮球架的横梁EF始终平行于AB,EF与上拉杆CF形成的∠F=150°,主柱AD垂直于地面,通过调整CF和后拉杆BC的位置来调整篮筐的高度。
2019-2020年初一数学期中考试试题及答案解析.docx

2019-2020 年初一数学期中考试试题及答案解析注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)评卷人得分一、选择题(每题 3 分,共 30 分)1.多项式 3x2- 2xy 3-1y- 1 是 ().2A.三次四项式B.三次三项式C.四次四项式D.四次三项式2.- 3 的绝对值是A . 3B.- 3C.-D.3.若 |x+2|+|y-3|=0,则 x-y 的值为()A. 5B. -5C.1 或-1D.以上都不对4.1)的相反数是(3A.1B.1C. 3D.﹣3 335. 2014 年 5 月 21 日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30 年的合同规定,从2018 年开始供气,每年的天然气供应量为380 亿立方米, 380 亿立方米用科学记数法表示为()A.3.8 ×10103B.38×1093C.380×1083D.3.8 ×10113 m m m m6.计算 (a 2) 3÷ (a 2) 2的结果是 ()A. a B . a2 C . a3 D . a47.下列因式分解中,正确的有()①4a﹣ a3b2=a( 4﹣ a2b2);②x2y﹣ 2xy+xy=xy ( x﹣ 2);③﹣ a+ab﹣ ac=﹣ a( a﹣ b﹣c );④9abc﹣ 6a 2b=3abc ( 3﹣ 2a);⑤ x 2y+ xy 2= xy ( x+y )A.0个B.1个C.2个D.5个8.下列因式分解正确的是()A. x2﹣ xy+x=x ( x﹣ y)3222B. a ﹣ 2a b+ab =a( a﹣ b)22C. x ﹣ 2x+4=( x﹣ 1) +32D. ax ﹣ 9=a(x+3)( x﹣ 3)9.实数 a、 b 在数轴上的位置如图所示,下列式子错误的是()A. a< b C.- a<- b B. |a| > |b| D. b- a> 010.﹣ 的倒数是( )A 、B 、C 、﹣D 、﹣第 II 卷(非选择题)评卷人 得分二、填空题(每题 3 分,共 24 分)12 .用代数式表示“a 的 4 倍与 5 的差”为 .13 .已知2x m 1y 3 和 1 x n y m+n 是同类项,则nm 2012 =▲。
江苏省无锡市七年级下学期数学期中联考试卷

江苏省无锡市七年级下学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、选择题(共10题;共30分) (共10题;共30分)1. (3分) (2019七下·港南期末) 下列是二元一次方程的是()A . x+8y=0B . 2x2=yC . y+ =0D . 3x=102. (3分) (2019七下·龙岗期末) 大肠杆菌的大小为0.0005 0.003毫米,能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其中0.0005毫米用科学记数法表示为()A . 毫米B . 毫米C . 毫米D . 毫米3. (3分)(2017·禹州模拟) 已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A 对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A . (3,0)B . (3,﹣3)C . (3,﹣1)D . (﹣1,3)4. (3分) (2019八上·武威月考) 下列运算正确的是()A .B .C .D .5. (3分)如图,以下条件能判定EG∥HC的是()A . ∠FEB=∠ECDB . ∠AEG=∠DCHC . ∠GEC=∠HCFD . ∠HCF=∠AEG6. (3分) (2015高二上·太和期末) 如图,与∠α构成同旁内角的角有()A . 1个B . 2个C . 5个D . 4个7. (3分)若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A . ﹣4B . ﹣2C . 0D . 48. (3分)学习了“平行线”后,张明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的(如图①~④):从图中可知,张明画平行线的依据有()(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行.A . (1)(2)B . (2)(3)C . (1)(4)D . (3)(4)9. (3分)已知一个四位数的十位数字加1等于它的个位数字,个位数字加1等于它的百位数字,把这个四位数倒序排列所成的数与原数的和等于10769,则该四位数的数字之和为()。
2019-2020年七年级数学下学期期中阶段性测试试题

2019-2020年七年级数学下学期期中阶段性测试试题1.下列各组图形可以通过平移互相得到的是……………………………… ( )A .B .C .D .2.下列运算中与44a a ∙结果相同的是………………………………………………( )A .82a a ∙B .()2a 4C .()44aD .()()242a a ∙43.已知三角形三边长分别为3,x ,14,若x 为正整数,则这样的三角形个数为( )A .2B .3C .5D .134.如图,点E 在CD 延长线上,下列条件中不能判定AB∥CD 的是……………( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B+∠BDC=180°5.多边形剪去一个角后,多边形的外角和将…………………………………………( )A .减少180ºB .不变C .增大180ºD .以上都有可能6.现有若干张卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片张数为………( ) A .1 B .2 C .3 D .47.如图,将一个含有45°角的直角三角尺放在两条平行线m 、n 上,已知∠α=120°,则 ∠β的度数是…………………………………………………………………… …( )A .45°B .60°C .65°D .75°8.已知:a +b =1,ab =-4,计算:(a)A .1B .-1C . 2D .-29.如图,点D 是△ABC 的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,且△ABC 的面积为18cm ²,则△BEF 的面积为……………………………………( )A .4.5B .6C . 8D .910.如图,△ABC 的角平分线 CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②CA 平分∠BCG ;③∠ADC =∠GCD ;④∠DFB =12∠CGE .其中正确的结论是…………………………………………( ) A .只有①③ B .只有②④ C .只有①③④D .①②③④(第4题) (第7题) A B C D E F二.填空题(本大题共8小题,每空2分,共16分,请把结果直接填在题中的横线上.)11.某种细胞的形状可近似地看作球,它的直径约为0.00000156 m ,则这个数用科学记数法表示是 .12.若2m =5,2n =3,则2m +2n = .13.小明计算一个二项整式的完全平方式时,得到正确结果是4x 2+20xy,但一项不慎被污染了,这一项应是 ..14.如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD,使点B 恰好落在AC 边上的点E 处.若∠A=22°,则∠BDC 等于15.如图,在长方形ABCD 中,AB=10cm ,BC=6cm ,若此长方形以2cm/S 的速度沿着A→B 方向移动,则经过 S ,平移后的长方形与原来长方形重叠部分的面积为24 .16. 用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为 度.17.小明和小丽是同班同学,小明家距学校2千米,小丽家距学校5千米,设小明家距小丽家x 千米,则x 的值应满足 .18.定义运算(1)a b a b ⊗=-,下列给出了关于这种运算的几个结论:①2(2)6⊗-=;②a b b a ⊗=⊗;③若0a b +=,则()()2a a b b ab ⊗+⊗=;④若0a b ⊗=,则0a =或1b =,其中正确结论的序号是 .三.解答题(本大题共7小题,共54分. 解答需写出必要的文字说明或演算步骤.)19.(12分)计算:(1)322223()32x y xy ⋅- (2)()1204133-⎪⎭⎫ ⎝⎛--+(3)()()2332x x y x y --- (4)22(23)(23)a b a b -⋅+20.(5分)已知2015x =,求代数式(23)(32)6(3)516x x x x x ++-+++的值”时,马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的,这是为什么?请你说明原因。
2019-2020年七年级下数学期中试卷及答案.docx

2019-2020 年七年级下数学期中试卷及答案题号一二三四五六总分得分二、选择题(请将每小题的答案填在表格内)(每小题 3 分,共 18 分)题号111213141516答案11、下列计算正确的是(★ )A. x2x4x8B. a10a2a5C. m3m2m5D. ( a2)3 a 612、四根长度分别为 3 ㎝、 4 ㎝、 7 ㎝、 10 ㎝的木条,以其中三根的长为边长钉成一个三角形框架,那么这个框架的周长可能是(★ )A.14 ㎝B.17 ㎝C.20㎝D.21 ㎝13、下列各式能用平方差公式计算的是(★ )A.( x 5)( x 5)B.(a 2b)(2a b)C.(1 m)( 1 m)D. ( x1) 214、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=36 °,那么∠ 2 的度数为(★)A. 44°B. 54°C. 60°D. 36°(第 14 题)(第16 题)15、已知x3y 5 0,则代数式 3 2x 6 y 的值为(★)A.7B. 8C. 13D.1016、如图,在△ ABC 中,已知点 D、 E、F 分别是 BC 、 AD 、BE 上的中点,且△ ABC 的面积为 8 ㎝2,则△ BCF 的面积为(★ )A.0.5 ㎝2B.1㎝2C.2㎝2D.4㎝2三、计算(每小题 4 分,共 16 分)17、(2)3 6 ( 1 )1( 3.5)018、a a2a3( 2a3 ) 2a7a219、(x2)2(x 1)( x 2)20、(m2n 3)( m 2n3)四、因式分解(每小题 4 分,共 16 分)21、2x(m n) (n m)22、8x25023、3ax26axy 3ay224、16 y48x2 y2x 4五、画图题(本题 4 分)25、如图,△ ABC 的顶点都在方格纸的格点上,将△ABC 向下平移 3 格,再向右平移 4 格 .(1)请在图中画出平移后的△ A ′B′C′(2)在图中画出△ A ′B′C′的高 C′D′六、解答题(第26~29 题各 5 分,第 30 题 6 分,共 26 分)26、当x1时,求代数式 (3 4x)(3 4 x) (3 4x) 2的值.1227、如图, AB ∥ DC,∠ ABC= ∠ADC ,问:AE 与 FC 平行吗?请说明理由.(第 27 题)28、在△ ABC 中, AD 是高, AE 是角平分 .,∠ B=20 °,∠ C=60 ,求∠ CAD 和∠ DAE 的度数。