分段函数应用题

合集下载

分段函数应用题

分段函数应用题

分段函数应用题1,我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x(只)时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?2,某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20-0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.3,某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x 1 2 3 4 5 6 7 8 9价格y1(元/件)560 580 600 620 640 660 680 700 720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)4、由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金。

分段函数练习题

分段函数练习题

分段函数练习题一、选择题1. 若分段函数f(x)定义如下:f(x) = { x^2, 当x > 1;x, 当x ≤ 1;则f(2)的值为:A) 2B) 4C) 1D) 02. 函数g(x) = { 2x+1, 当x < 0;x^2-1, 当x ≥ 0;若g(-1) = 1,则g(1)的值为:A) 0B) 1C) 2D) 33. 已知分段函数h(x) = { 3x+2, 当x < 2; x^2, 当x ≥ 2;求h(-1)+h(3)的值为:A) 6B) 7C) 8D) 94. 若分段函数p(x)定义为:p(x) = { x+1, 当x < 3;x^2, 当x ≥ 3;则p(4) - p(2)的值为______。

5. 函数q(x) = { √x, 当x ≥ 0;-x, 当x < 0;当q(x) = 4时,x的值为______。

三、解答题6. 已知分段函数r(x) = { x-1, 当x < 0;1-x, 当0 ≤ x < 1;x+1, 当x ≥ 1;求r(-2)、r(0)和r(2)的值,并计算r(-2)+r(0)+r(2)的和。

7. 函数s(x) = { 2x, 当x < 1;x+3, 当1 ≤ x < 2;3x-1, 当x ≥ 2;若s(x) = 5,求x的值,并计算在x的取值范围内s(x)的最大值和最小值。

四、证明题8. 证明:若分段函数t(x)定义为:t(x) = { x^2-1, 当x < 0;x^2+1, 当x ≥ 0;则对于任意实数x,t(x) ≥ 0。

9. 某公司根据员工的工龄x(以年为单位)发放奖金,规则如下:奖金函数f(x) = { 1000, 当x < 1;2000+500x, 当1 ≤ x < 5;3000+300x, 当x ≥ 5;若某员工工龄为3年,求其应得的奖金总额。

10. 某商店根据顾客购买的商品数量n(以件为单位)提供折扣,规则如下:折扣函数d(n) = { 0, 当n < 10;0.1n, 当10 ≤ n < 20;0.2n, 当n ≥ 20;若顾客购买了15件商品,求其应享受的折扣金额。

应用题分段函数

应用题分段函数

应用题一、分段函数(天津2014年) “黄金1号”玉米种子的价格为5元/kg.如果一次购买2kg以上的种子,超过2kg的部分的种子的价格打8折.购买种子数量/kg 1.52 3.54…付款金额/元7.516…(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.2、根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从201年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)一户居民一个月用电量的范围电费单价(元/kw.h)不超过150 kw.h a超过150 kw.h但不超过300 kw.h的部分b超过300 kw.h的部分a+0.32015年5月份,该市居民甲用电100 kw.h,缴费60元,某居民乙用电200 kw.h,交电费122.5元。

设该市居民在2015年5月以后,某月用电x kw.h,当月交费y元。

(1)求上表中a= ;b= ;(2)请写出y与x之间的函数关系式;(3)某居民某月交电费277.5元,求该居民用多少度电?3、从A地向B地打长途电话,通话时间不超过3mn收费2.4元,超过3min后每分加收1元.(Ⅰ)根据题意,填写下表:通话时间min236…通话费用/元 2.4…(Ⅱ)设通话时间为xmin,通话费用y元,求y与x的函授解析式;并画出图形(Ⅲ)若小红有10元钱,求她打一次电话最多可以通话的时间(本题中通话时间取整数,不足1min 的通话时间按1min计费)4、我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元水费,超过的部分每吨按b元(b>a)收费.设一户居民月用水y元,y与x之间的函数关系如图所示.(1)求a的值,若某户居民上月用水8吨,应收水费多少元?(2)求b的值,并写出当x大于10时,y与x之间的函数关系;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?。

分段函数的应用题

分段函数的应用题

分段函数的应用题8. 某人驱车以52千米/时的速度从A 地驶往260千米远处的B 地,到达B 地并停留1.5小时后,再以65千米/时的速度返回A 地,试将此人驱车走过的路程s (千米)表示为时间t 的函数.解答:s =⎩⎪⎨⎪⎧ 52t ,260,260+(t -6.5)65,0<t ≤5,5<t <6.5,6.5≤t ≤10.5.4.(苏、锡、常、镇四市高三教学情况调查(一))某市出租车收费标准如下:起步价为8 元,起步里程为3 k m(不超过3 k m 按起步价付费);超过3 k m 但不超过8 k m 时,超过 部分按每千米2.15元收费;超过8 k m 时,超过部分按每千米2.85元收费,另每次乘 坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了 ________ k m.解析:设乘客每次乘坐需付费用为f (x )元,由题意可得:令f (x )=22.6,解得x =9.,答案:99.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎨⎧5a 1=205a 1+15(a 1-a 2)=35,得⎩⎨⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *).(2)f (x )=⎩⎪⎨⎪⎧20003x(0<x ≤86,x ∈N *).1000216-x(87≤x <216,x ∈N *).(3)分别为86、130或87、129.10.在边长为4的正方形ABCD 的边上有一动点P ,从B 点开始,沿折线BCDA 向A 点运动(如图),设P 点移动的距离为x ,△ABP 的面积为y ,求函数y =f (x )及其定义域.解:如题图,当点P 在线段BC 上,即0≤x ≤4时,y =12×4×x =2x ;当P 点在线段CD 上,即4<x ≤8时,y =12×4×4=8;当P 点在线段DA 上,即8<x ≤12时,y =12×4×(12-x )=24-2x .∴y =f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12,且f (x )的定义域是[0,12].11.如图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动.设P 点移动的路程为x ,△ABP 的面积为y =f (x ). (1)求△ABP 的面积与P 移动的路程的函数关系式; (2)作出函数的图象,并根据图象求f (x )的最大值.解:(1)函数的定义域为(0,12). 当0<x ≤4时,S =f (x )=12×4×x =2x ;当4<x ≤8时,S =f (x )=12×4×4=8;当8<x <12时,S =f (x )=12×4×(12-x )=24-2x .∴函数解析式为f (x )=⎩⎪⎨⎪⎧2x ,x ∈(0,4],8,x ∈(4,8],24-2x ,x ∈(8,12).(2)图象如图所示.从图象可以看出f (x )max =8.12.设A ={1,2,3,m },B ={4,7,n 4,n 2+3n },对应关系f :x →y =px +q ,已知m ,n ∈N *,1对应的元素是4,2对应的元素是7,试求p ,q ,m ,n 的值.解:因为1对应的元素为4,2对应的元素为7,列方程组⎩⎪⎨⎪⎧ p +q =4,2p +q =7,解得⎩⎪⎨⎪⎧p =3,q =1.故对应关系为f :x →y =3x +1.由此判断A 中元素3对应的元素要么是n 4,要么是 n 2+3n .若n 4=10,则n ∈N *不成立,所以n 2+3n =10,解得n =-5(舍去)或n =2.因为集合A 中的元素m 对应的元素只能是n 4,等于16, 所以3m +1=16, 所以m =5.故p =3,q =1,m =5,n =2.11.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10 000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=则总利润最大时店面经营天数是 .解析:设总利润为L(x),则L(x)=则L(x)=当0≤x<300时,L(x)max=10 000,当x≥300时,L(x)max=5 000,所以总利润最大时店面经营天数是200.答案:20013.某村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?(3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?解:(1)当0≤x≤30时,L(x)=2+0.5x,当x>30时,L(x)=2+30×0.5+(x-30)×0.6=0.6x-1,所以L(x)=(注:x也可不取0)(2)当0≤x≤30时,由L(x)=2+0.5x=35得x=66,舍去.当x>30时,由L(x)=0.6x-1=35得x=60.所以老王家该月用电60度.(3)设按方案二收费为F(x)元,则F(x)=0.58x.当0≤x≤30时,由L(x)<F(x),得2+0.5x<0.58x,所以x>25,所以25<x≤30.当x>30时,由L(x)<F(x),得0.6x-1<0.58x, 所以x<50,所以30<x<50. 综上,25<x<50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.3.如图所示,动点P 从边长为1的正方形ABCD 的顶点A 出发,顺次经过顶点B ,C ,D 再回到A .设x 表示P 点的路程,y 表示PA 的长度,求y 关于x 的函数关系式.解:当P 点从A 运动到B 时,PA =x ; 当P 点从B 运动到C 时, PA =AB 2+BP 2=12+(x -1)2=x 2-2x +2;当P 点从C 运动到D 时, PA =AD 2+DP 2=12+(3-x )2=x 2-6x +10;当P 点从D 运动到A 时,PA =4-x .故y =⎩⎪⎨⎪⎧x , 0≤x ≤1,x 2-2x +2,1<x ≤2,x 2-6x +10,2<x ≤3,4-x , 3<x ≤4.甲、乙两车同时沿某公路从A 地驶往300km 外的B 地,甲车先以75km/h 的速度行驶,在到达AB中点C 处停留2h 后,再以100km/h 的速度驶往B 地,乙车始终以速度v 行驶.(1)请将甲车离A 地路程x(km)表示为离开A 地时间t(h)的函数,并画出这个函数图象; (2)若两车在途中恰好相遇两次(不包括A 、B 两地),试确定乙车行驶速度v 的取值范围.解析:(1)x=⎪⎩⎪⎨⎧≤<⨯-+≤≤<≤.5.54,100)4(150,42,150,20,75t t t t t它的图象如图所示.(2)由已知,乙车离开A 地的路程x(km)表示为离开A 地的时间t(h)的函数为x=vt(0≤t≤v300),其图象是一条线段. 由图象知,当此线段经过(4,150)时,v=275(km/h); 当此线段经过点(5.5,300)时,v=11600(km/h). ∴当275<v<11600时,两车在途中相遇两次.梳理 1.分段函数的定义在函数的定义域内,对于自变量x 的________________,有着______的对应法则,这样的函数通常叫做分段函数. 2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的________;各段函数的定义域的交集是________.3.作分段函数图象时,应分别作出每一段的图象.。

分段函数应用题完整版

分段函数应用题完整版

分段函数应用题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】分段函数应用题1.(四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2. (广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x的正比例函数; x≥15时,y是x的一次函数.3. (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元若该用户某月缴费105元时,则该用户该月用了多少度电4. 某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?5. 一名考生步行前往考场, 10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了多少分钟?6. 某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?7. 为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?8.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算如果她的月通话时间超过100分钟,又将如何选择9. 如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()10. 星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。

分段函数初二数学练习题

分段函数初二数学练习题

分段函数初二数学练习题题目一:已知分段函数f(x)如下:f(x) = 3x + 1, x ≤ 1f(x) = 2x - 2, x > 1问题一:求f(-2)的值。

解答一:根据给定的分段函数,当x ≤ 1时,f(x) = 3x + 1。

因此,在问题一中,由于-2 ≤ 1,我们需要计算f(-2)的值。

代入x = -2到第一个分段函数中,得到f(-2) = 3(-2) + 1 = -6 + 1 = -5。

因此,f(-2)的值为-5。

问题二:求f(2)的值。

解答二:根据给定的分段函数,当x > 1时,f(x) = 2x - 2。

因此,在问题二中,由于2 > 1,我们需要计算f(2)的值。

代入x = 2到第二个分段函数中,得到f(2) = 2(2) - 2 = 4 - 2 = 2。

因此,f(2)的值为2。

题目二:已知分段函数g(x)如下:g(x) = x^2, x < 2g(x) = 2x + 1, x ≥ 2问题一:求g(0)的值。

解答一:根据给定的分段函数,当x < 2时,g(x) = x^2。

因此,在问题一中,由于0 < 2,我们需要计算g(0)的值。

代入x = 0到第一个分段函数中,得到g(0) = 0^2 = 0。

因此,g(0)的值为0。

问题二:求g(3)的值。

解答二:根据给定的分段函数,当x ≥ 2时,g(x) = 2x + 1。

因此,在问题二中,由于3 ≥ 2,我们需要计算g(3)的值。

代入x = 3到第二个分段函数中,得到g(3) = 2(3) + 1 = 6 + 1 = 7。

因此,g(3)的值为7。

总结起来,通过以上两个问题的解答可以看出,在计算分段函数的值时,我们需要根据给定的条件来选择合适的分段函数进行代入计算。

只要根据给定的条件,正确选择对应的分段函数进行计算,就可以得到分段函数在给定点的值。

这样的练习题有助于我们熟悉和掌握分段函数的概念和计算方法。

微专题20 分段函数问题(原卷版)

微专题20 分段函数问题(原卷版)

微专题20分段函数问题【题型归纳目录】题型一:函数三要素的应用题型二:函数性质与零点的应用题型三:分段函数的复合题型四:特殊分段函数的表示与应用【典型例题】题型一:函数三要素的应用例1.已知函数223,0()2,0x x x f x x x x ⎧+=⎨-<⎩ ,若f (a )()2f a f -- (1),则a 的取值范围是()A .[0,8]B .[8,)+∞C .(-∞,8]D .[8-,8]例2.已知函数22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩,若()f a f -+(a )2f (1),则a 的取值范围是()A .(-∞,1][1,)+∞B .[0,1]C .[1-,0]D .[1-,1]例3.设函数22,0,(),0.x x x f x x x ⎧+<=⎨-⎩若(f f (a ))2 ,则实数a 的取值范围是()A .[2-,)+∞B .(-∞,2]-C .(-∞D.,)+∞变式1.当函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值时,(x =)AB.C6-D.6-变式2.已知函数()1f x x =-+,0x <,()1f x x =-0x ,则不等式(1)(1)1x x f x +++ 的解集()A.{|1}x x B.{|1x x + C.{|1x x <+D.{|1x x >+变式3.已知23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则((1))f g -=.变式4.若函数3,0()(3),0log x x f x f x x >⎧=⎨+⎩ ,2()g x x =,则f (9)=,[g f (3)]=,1[()]9f f =.变式5.已知函数10()1x x f x x x -+<⎧=⎨-⎩ ,则不等式(1)(1)1x x f x +++ 的解集是.变式6.设2,||1(),||1x x f x x x ⎧=⎨<⎩,()g x 是二次函数,若[()]f g x 的值域是[0,)+∞,则()g x 的值域是.题型二:函数性质与零点的应用例4.已知函数7(13)10,7(),7x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是()A .11(,)32B .1(3,6]11C .12[,23D .16(,]211例5.已知函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是()A .15(,38B .15(,38C .1(,1)3D .16(,]311例6.函数21,0()(1),0axax x f x a e x ⎧+=⎨-<⎩在R 上单调,则a 的取值范围为()A .(1,)+∞B .(1,2]C .(,2)-∞D .(,0)-∞变式7.已知221,0()(1),0x x x f x f x x ⎧--+<=⎨-⎩ ,则()y f x x =-的零点有()A .1个B .2个C .3个D .4个变式8.已知定义在R +上的函数33103()13949log x x f x log x x x ⎧-<⎪=-<⎨⎪>⎩ ,设a ,b ,c 为三个互不相同的实数,满足,f (a )f =(b )f =(c ),则abc 的取值范围为.变式9.已知函数3||,03()13log x x f x x <⎧⎪=⎨+>⎪⎩ ,设a ,b ,c 是三个互不相同的实数,满足f (a )f =(b )f =(c ),则abc 的取值范围为.变式10.已知()f x 在R 上是奇函数,且当0x <时,2()f x x x =+,求函数()f x 的解析式.变式11.已知函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,若()h t h >(2),求实数t 的取值范围.题型三:分段函数的复合例7.设函数,0(),0x e x f x lnx x ⎧=⎨>⎩,若对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,则正实数m 的最小值是()A .12B .1C .32D .2例8.已知函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩ ,2()2g x x x =-,若关于x 的方程[()]f g x k =有四个不相等的实根,则实数(k ∈)A .1(2,1)B .1(4,1)C .(0,1)D .(1,1)-例9.已知函数1|(1)|,1()21,1x ln x x f x x -->⎧=⎨+⎩ ,则方程3(())2[()]04f f x f x -+=的实根个数为()A .3B .4C .5D .6变式12.(多选题)已知函数21,0()log ,0kx x f x x x +⎧=⎨>⎩ 下列是关于函数[()]1y f f x =+的零点的判断,其中正确的是()A .在(1,0)-内一定有零点B .在(0,1)内一定有零点C .当0k >时,有4个零点D .当0k <时,有1个零点变式13.(多选题)设函数||,0()(1),0x lnx x f x e x x >⎧=⎨+⎩,若函数()()g x f x b =-有三个零点,则实数b 可取的值可能是()A .0B .13C .12D .1变式14.(多选题)已知定义域为R 的奇函数()f x 满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩ ,下列叙述正确的是()A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,但有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =-E .对任意实数k ,方程()2f x kx -=都有解变式15.(多选题)已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩ ,下列叙述正确的是()A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =-变式16.已知函数2,0,()1,0,x k x f x x x -+<⎧=⎨-⎩其中0k .①若2k =,则()f x 的最小值为;②关于x 的函数(())y f f x =有两个不同零点,则实数k 的取值范围是.题型四:特殊分段函数的表示与应用例10.对a ,b R ∈,记{max a ,()}()a ab b b a b ⎧=⎨<⎩ ,则函数(){|1|f x max x =+,2}()x x R ∈的最小值是()A.32-B.32C.12+D.12例11.已知符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,()()()g x f kx f x =-,其中1k >,则下列结果正确的是()A .(())()sgn g x sgn x =B .(())()sgn g x sgn x =-C .(())(())sgn g x sgn f x =D .(())(())sgn g x sgn f x =-例12.定义全集U 的子集A 的特征函数1,()0,A x Af x x A ∈⎧=⎨∉⎩对于任意的集合A 、B U ⊂,下列说法错误的是()A .若AB ⊆,则()()A B f x f x ,对于任意的x U ∈成立B .()()()A B A Bf x f x f x =+,对于任意的x U ∈成立C .()()()A B ABf x f x f x =,对于任意的x U ∈成立D .若U A B =ð,则()()1A B f x f x +=,对于任意的x U ∈成立变式17.定义全集U 的子集A 的特征函数为1,()0,A U x Af x x C A ∈⎧=⎨∈⎩,这里U A ð表示集合A 在全集U 中的补集,已A U ⊆,B U ⊆,给出以下结论中不正确的是()A .若AB ⊆,则对于任意x U ∈,都有()()A B f x f x B .对于任意x U ∈,都有()1()UC A A f x f x =-C .对于任意x U ∈,都有()()()A B A Bf x f x f x =D .对于任意x U ∈,都有()()()A B ABf x f x f x =变式18.对a ,b R ∈,记,(,),a a bmax a b b a b ⎧=⎨<⎩,函数()(|1|f x max x =+,|2|)()x x R -∈的最小值是.变式19.对a ,b R ∈,记{max a ,,},a a bb b a b ⎧=⎨<⎩,函数(){|1|f x max x =+,||}()x m x R -∈的最小值是32,则实数m 的值是.变式20.设函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩ ,其中[]x 表示不超过x 的最大整数,如[ 1.2]2-=-,[1.2]1=,[1]1=,若直线10(0)x ky k -+=>与函数()y f x =的图象恰好有两个不同的交点,则k 的取值范围是.【过关测试】一、单选题1.(2022·辽宁·铁岭市清河高级中学高一阶段练习)若函数()22,14,1x t x f x tx x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则t 的最大值为()A .32B .53C .74D .952.(2022·云南师大附中高一期中)已知函数()()e e,1ln 21,1x x f x x x ⎧-<⎪=⎨-≥⎪⎩,若关于x 的不等式()()21f ax f ax <+的解集为R ,则实数a 的取值范围为()A .()()2,11,4--⋃-B .()()1,22,4-UC .[)1,2-D .[)0,43.(2022·山东省青岛第五十八中学高一期中)已知函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减,则实数a 的取值范围为().A .()0,3B .1,32⎡⎫⎪⎢⎣⎭C .2,33⎡⎫⎪⎢⎣⎭D .2,33⎛⎫ ⎪⎝⎭4.(2022·山东省青岛第五十八中学高一期中)已知数学符号{}max ,a b 表示取a 和b 中最大的数,若对任意R x ∈,函数()231max 3,,4322f x x x x x ⎧⎫=-++-+⎨⎬⎩⎭,则()f x 的最小值为()A .5B .4C .3D .25.(2022·山西太原·高一阶段练习)设()()2,0=1+++4,>0x a x f x x a x x-≤⎧⎪⎨⎪⎩,若()0f 是()f x 的最小值,则a 的取值范围为()A .[]0,3B .()0,3C .(]0,3D .[)0,36.(2022·福建·厦门双十中学高一阶段练习)已知函数()()22,f x x g x x =-+=,令()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩,则不等式()74h x >的解集是()A .1<2x x -⎧⎨⎩或17<<24x ⎫⎬⎭B .{<1x x -或71<<4x ⎫⎬⎭C .11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭D .{1<<1x x -或7>4x ⎫⎬⎭7.(2022·浙江·高一阶段练习)设函数1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,则方程2(1)4x f x -=-的解为()A .2x =-B .3x =-C .=2x D .=3x 8.(2022·湖北黄石·高一期中)已知函数()f x x x =,若对任意[,1]x t t ∈+,不等式()24()f x t f x +≤恒成立,则实数t 的取值范围是()A.B .15[0,2-C.D .15[,1]2-9.(2022·江西·于都县新长征中学高一阶段练习)已知函数()21,=,2x cf x x x x c x ⎧-<⎪⎨⎪-≤≤⎩,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是()A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞二、多选题10.(2022·浙江省永嘉县碧莲中学高一期中)我们用符号min 示两个数中较小的数,若x ∈R ,(){}2min 2,f x x x =-,则()f x ()A .最大值为1B .无最大值C .最小值为1-D .无最小值11.(2022·黑龙江·哈尔滨三中高一期中)定义{},min ,,a a ba b b a b≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎣⎦,则区间[,]m n 长度可以是()A .74B .72C .114D .112.(2022·四川省宣汉中学高一阶段练习)设函数()y f x =的定义域为R ,对于任意给定的正数m ,定义函数(),()(),()m f x f x m f x m f x m≥⎧=⎨<⎩,若函数()2211f x x x =-++,则下列结论正确的是()A .()338f =B .()3f x 的值域为[]3,12C .()3f x 的单调递增区间为[]2,1-D .()31f x +的图像关于原点对称13.(2022·福建·厦门双十中学高一阶段练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(LEJBrouwer ),简单的讲就是对于满足一定条件的图象不间断的函数()f x ,存在一个点0x ,使()00=f x x ,那么我们称该函数为“不动点”函数,0x 为函数的不动点,则下列说法正确的()A .()1f x x x-=为“不动点”函数B .()3f x x -=+的不动点为2±C .()221,1=2,>1x x f x x x ≤⎧-⎪⎨-⎪⎩为“不动点”函数D .若定义在R 上有且仅有一个不动点的函数()f x 满足()()()22f f x x x f x x x --+=+,则()2+1f x x x -=三、填空题14.(2022·广东·高一期中)已知函数(2),1(),1a a x x f x x x -<⎧=⎨≥⎩是定义在R 上的增函数,则a 的取值范围是________.15.(2022·山西·晋城市第一中学校高一阶段练习)若函数222,0(),0x ax x f x bx x x ⎧+≥=⎨+<⎩为奇函数,则a b +=__________.16.(2022·安徽淮南·高一阶段练习)若函数()()2,113,1ax x x f x a x a x ⎧-<⎪=⎨--≥⎪⎩满足对1x ∀,2x ∈R ,且12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.17.(2022·广东·深圳市高级中学高一期中)已知()22f x x x =-,()1g x x =+,令()()(){}max ,M x f x g x =,则()M x 的最小值是___________.四、解答题18.(2022·四川·宁南中学高一阶段练习)已知函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩.(1)求12f f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭;(2)若()2f a =,求a 的值;19.(2022·浙江·玉环市玉城中学高一阶段练习)(1)已知函数()f x 是一次函数,且满足()()3+121=2+17f x f x x --,求()f x 的解析式;(2)已知函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩①求()2f ,()()1f f -②若()3f a =,求a 的值20.(2022·辽宁·高一阶段练习)已知函数()22122f x x x a a =+++,()22122g x x x a a =-+-,R a ∈.设函数()()()()()()(),,f x f x g x M x g x g x f x ⎧≥⎪=⎨>⎪⎩.(1)若1a =,求()M x 的最小值;(2)若()M x 的最小值小于52,求a 的取值范围.21.(2022·全国·高一课时练习)定义域为R 的函数f (x )满足2(f x f x k k ∈Z)()=(+)及f (-x )=-f (x ),且当()0,1x ∈时2()41xx f x =+.(1)求()f x 在[1,1]-上的解析式;(2)求()f x 在[]21)1,2(k k k Z -+∈上的解析式;(3)求证:()f x 在区间()0,1上单调递减.。

微专题28 以分段函数为载体的应用题

微专题28 以分段函数为载体的应用题
(1)试将生产这种仪器的元件每天的盈利额 T(万元)表示为日产量 x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?
答案:(1)9x6--2xx2,1≤x≤c, 0,x>c.
(2)若 3≤c<6,则当日产量为 3 万件时,可获得最大利润;若 1≤c <3,则当日产量为 c 万件时,可获得最大利润.
微专题28 以分段函数为载体的应用题
1.某驾驶员喝了 1 000 mL 某种酒后,血液中的酒精含量 f(x)(mg/mL) 5x-2,0≤x≤1,
随时间 x(h)变化的规律近似满足表达式 f(x)=35·13x,x>1. 《酒后驾车与醉酒驾车的标准及相应的处罚》规定为驾驶员血液中 酒精含量不得超过 0.02 mg/mL,据此可知,此驾驶员至少要过
-t2+70t-550, t∈20,35].
因为 t∈[0,10]时,smax=32×102=150<650,t∈(10,20]时,smax= 30×20-150=450<650,所以当 t∈(20,35]时,令-t2+70t-550=650. 解得 t1=30,t2=40.∵20<t≤35,∴t=30.
(2)当车流密度为 100 辆/千米时,车流量可以达到最大,最大值约 为 3 333 辆/小时.
解析:(1)由题意:当 0≤x≤20 时,v(x)=60; 当 20≤x≤200 时,设 v(x)=ax+b.
由已知得22000a+a+b=b=600,,
ቤተ መጻሕፍቲ ባይዱ
解得a=-31, b=2300,
60,0≤x≤20, 故函数 v(x)的表达式为 v(x)=2003-x,20<x≤200.
知函数 T=9x6--2xx2在[1,3]上递增, ∴Tmax=9c6--2cc2,此时 x=c. 综上,若 3≤c<6,则当日产量为 3 万件时,可获得最大利润;若 1≤c<3,则当日产量为 c 万件时,可获得最大利润.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/
1
—/
% 1 4
1
3
5
5. 一名考生步行前往考场, 10分钟走了总路程的 他改乘出租车赶往考场,他的行程与时间关系如图 达考场所花的时间比一直步行提前了多少分钟?
1
-,估计步行不能准时到达,于是
4
2所示(假定总路程为 1),则他到
全部售完.该公司对第一批产品 如图所示,其中图(3)中的折线表 的折线表示的是每件产品 A 的销
(1) 试写出第一批产品 A 的市

(2) 第一批产品A 上市后,哪一
6.某公司专销产品 A,第一批产品A 上市40天内 上市后的市场销售情况进行了跟踪调查, 调查结果 示的是市场日销售量与上市时间的关系;图 (4)中 售利润与
上市时间的关系.
日销售量y 与上市时间t 的关系式;
天这家公司市场日销售利润最大?最大利润是多
7.为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳 动时间所得奖励加上基本生活费从父母那里获取的•若设小强每月 的家务劳动时间为 x 小时,该月可得(即下月他可获得)的总费用 为y 元,贝U y (元)和x (小时)之间的函数图像如图
5所示.
(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖
分段函数应用题
1.(四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间 x (分钟)与相应话费 y (元)之间的函数
图象如图1所示:
(1) _____________________________ 月通话为100分钟时,应交话费 元; (2) 当x > 100时,求y 与x 之间的函数关系式;
(3) 月通话为280分钟时,应交话费多少元?
3.
(广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若 某户居民每月应交电费 y (元)与用电量 x
(度)
的函数图象是一条折线(如图
3所示),根据图象解下列问题:
(1) 分别写出当0w x < 100和x > 100时,y 与x 的函数关系式; (2) 利用函数关系式,说明电力公司采取的收费标准;
(3) 若该用户某月用电 62度,则应缴费多少元?若该用户某月缴费
105元时,则该用户该月用了多少度电?
4.
某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修 3天,剩下的工作由甲、乙两个装修
公司合作完成•工程进度满足如图
1所示的函数关系,该家庭共支付工资
8000元.
(1) 完成此房屋装修共需多少天?
(2) 若按完成工作量的多少支付工资,甲装修公司应得多少元?
路裡
时间(分钟)
y 口佶售呈/万件
门)
励小强家务劳动
1 4
(2)已知王老师一个月的通话时间是
700分钟,那么他选择哪种业务更便宜?便宜多少?
15. (2016?永康市模拟)某电信公司提供的移动通讯服务的收费标准有两种套餐如表:
A 套餐
B 套餐
每月基本服务费 a 30 每月免费通话时间
100
b
超出每分钟收费 0.4 0.5
设每月通话时间为 x 分种, A , B 两种套餐每月话费分别为 y1, y2元.y1 , y2关于x 的函数图象如图所示
(1)表格中的a=
b= ; (2)通话时间超过每月免费通话时间后,求
y1, y2关于x 的函数关系式,并写出相应的取值范围;
(3) 已知甲乙两人分别使用 A , B 两种套餐,他们的通话时间都是 t 分钟(t > 150),但话费相差5元,求两人的通话 时间.
(2)若小强5月份希望有250元费用,则小强 4月份需做家务多少时间?
8.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图 6所示;乙公司每月通话收费标
准如表1所示. (1)
观察图6,甲公司用户月通话时间不超过 _ 100分钟时应付话费金额是 元;甲
公司用户通话100分钟以后,每分钟的通话费为 ____________ 元;
(2)
李女士买了一部手机,如果她的月通话时间不超过
100分钟,她选择哪家通迅公司更合
月租费
通话费
2 5元
0. L5无/分钟
9.如图 7,矩形 ABCD 中, AB= 1, AA 2, M 是 CD 的中 点,点
P 在矩形的边上沿 2 B T S M 运动,则厶APM 勺 面积y 与点P 经过的路程x 之间的函数关系用图象表示 大致是下图中的( )
Ay
10.星期天,小强骑自行车到郊外与同学一起游玩,从家
出发2小时到达目的地,游玩 3小时后按原路以原速 返回,小强离家4小时40分钟后,妈妈驾车沿相同路 线迎接小强,如图 11,是他们离家的路程 y(千米)与
时间x(时)的函数图像。

已知小强骑车的速度为 15千
米/时,妈妈驾车的速度为
60千米/时。

(1)小强家与游玩地的距离是多少? (2)妈妈出发多长时间与小强相遇?
11. 小明同学骑自行车去郊外春游,下图表示他离家的距离 y (千米)与所用的时
间x (小时)之间关系的函数图象
.
(1) 根据图象回答:小明到达离家最远的地方需几小时?此时离家多远? (2) 求小明出发两个半小时离家多远? (3)
求小明出发多长时间距家 12千米?
12. (2016秋?余姚市校级期中) 为了提高手机通信服务, 余姚市移动公司开展了多
种服务业务,规定了相应的收费标准,其中使用“飞享
48套餐”的收费标准为: 每月固定费48元,已包括500分钟通话时间,超过 500分钟部分按每分钟 收取;使用“神州行”的收费标准为:每月固定费 9元,通话费按每分钟
0.19 元 0.12 元
收取.已知电话费=固定费+通话费. (1)当一个月通话时间为
x 分钟,用含x 的代数式分别表示这个月两种电话业务
的电话费.

1
D_MC
第T 题阳
图[2
(1) ( 2016秋?永州月考)移动公司推出两种方式的电话收费,
(1) 当一个月通话时间为x分钟,用含x的代数式分别表示这个月两种电话业务的电话费.
(2) 李老师每月通话200分钟,请你帮老师算一算采用哪种收费方式合算.
20元套餐优惠?
资费名称轻松卡10元套餐轻松卡20元套餐月套餐基本费10元20元
包含通话时间40分钟100分钟
套餐外通话0.18元/分钟0.20元/分钟
移动公司根据市场客户的不同需求,对某地区的
手机套餐通话费提出两种优惠方案,两种方案所付电话费(元)与通话时间(分钟)之间的关系如图所示(实线部分:MN与CD平行即直线方程y=kx+b中的斜率k相等).
(1)若通话时间为两小时,按方案A, B各付话费多少元?
(2)方案B从400分钟以后,每分钟收费多少元?
3)通话时间在什么范围内,方案B比方案A优惠?。

相关文档
最新文档