【浙江新中考】2016中考数学二轮复习(专题突破强化训练):专题八 统计与概率(共47张)
通用版中考数学总复习专题突破预测与详解第八单元统计与概率专题统计试题新版新人教版

第八单元统计与概率专题25统计2016~2018详解详析第32页A组基础巩固1.(2017浙江宁波海曙模拟,2,4分)要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是(D)A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生2.(2017江苏无锡江阴周庄一模,7,3分)下列调查中,不适合采用抽样调查的是(D)A.了解滨湖区中小学生的睡眠时间B.了解无锡市初中生的兴趣爱好C.了解江苏省中学教师的健康状况D.了解“天宫二号”飞行器各零部件的质量3.(2017江苏盐城一模,15,3分)数据1,2,3,4,5的方差为2 .4.(2017江苏苏州张家港一模,16,3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0<x≤5 5<x≤1010<x≤1515<x≤2频数(通话次数)20 16 9 5则通话时间不超过10 min的频率为.5.(2016北京石景山二模,14,3分)甲、乙两名队员在5次射击测试中,成绩如图所示:五次射击训练成绩若需要你根据两名队员的5次成绩,选择一名队员参加比赛,你会选择队员甲,选择的理由是通过计算知甲、乙成绩的平均数相同,但观察统计图可知甲的成绩比乙的成绩波动小,甲的成绩比乙的成绩稳定.6.(2017江苏泰州姜堰一模,18,8分)某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2∶3∶5的比例计算总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见表:序号 1 2 3 4 5 6笔试成绩66 90 86 64 66 84专业技能测试95 92 93 80 88 92成绩说课成绩85 78 86 88 94 85(1)笔试成绩的平均数是;(2)写出说课成绩的中位数为,众数为;(3)已知序号为1,2,3,4号选手的总分成绩分别为84.2分、84.6分、88.1分、80.8分,请你通过计算判断哪两位选手将被录用?解(1)76(2)85.5 85(3)5号选手的成绩为66×0.2+88×0.3+94×0.5=86.6(分);6号选手的成绩为84×0.2+92×0.3+85×0.5=86.9(分).∵序号为1,2,3,4号选手的成绩分别为84.2分、84.6分、88.1分、80.8分,∴3号选手和6号选手应被录取.〚导学号92034111〛7.(2018中考预测)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表组别正常字数x人数A0≤x<8 10B8≤x<16 15C16≤x<24 25D24≤x<32 mE32≤x<40 n各组别人数分布比例根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C”组所对应的圆心角是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.解(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20.(2)“C”组所对应的圆心角是25÷100×360°=90°.(3)估计这所学校本次听写比赛不合格的学生人数为900×(10%+15%+25%)=450.B组能力提升1.(2017浙江宁波海曙模拟,6,4分)已知2,2,x,4,9,这组数据的平均数是4,则这组数据的中位数和众数分别是(D)A.2和2B.4和2C.2和3D.3和22.(2016湖北襄阳枣阳二模,6,3分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是(C)A.10B.C.2D.3.(2017山东临沂模拟,16,3分)一次考试中,甲组12人的平均分为70分,乙组8人的平均分为80分,那么这两组20人的平均分为74分.4.(2017广东深圳南山一模,14,3分)小明用s2=[(x1-3)2+(x2-3)2+…+(x10-3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=30.。
专题八 概率与统计 第二讲 概率,随机变量及分布列——2023届高考数学二轮复习重点练(含解析)

专题八 概率与统计 第二讲 概率,随机变量及分布列1.为了援助湖北抗击疫情,全国各地的白衣天使走上战场的第一线,他们分别乘坐6架我国自主生产的“运20”大型运输机,编号分别为1,2,3,4,5,6,同时到达武汉天河飞机场,每五分钟降落一架,其中1号与6号相邻降落的概率为( ) A.112B.16C.15D.132.一个不透明的袋子中装有4个完全相同的小球,球上分别标有数字为0,1,2,3.现甲从中摸出1个球后放回,乙再从中摸出1个球,谁摸出的球上的数字大谁获胜,则甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数的概率为( ) A.14B.13C.49D.3163.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110B.15C.310D.254.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击2次,则他能击落敌机的概率为( ) A.0.23B.0.2C.0.16D.0.15.设两个相互独立事件A ,B 都不发生的概率为19,则A 与B 都发生的概率的取值范围是( )A.80,9⎡⎤⎢⎥⎣⎦B.15,99⎡⎤⎢⎥⎣⎦C.28,39⎡⎤⎢⎥⎣⎦D.40,9⎡⎤⎢⎥⎣⎦6.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是49,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( ) A.23B.13C.49D.197.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A.25B.1225C.1625D.458.(多选)从甲袋中摸出1个红球的概率是13,从乙袋中摸出1个红球的概率是12.从甲袋、乙袋各摸出1个球,则下列结论正确的是( )A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为129. (多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )A.两件都是一等品的概率是13B.两件中有1件是次品的概率是12C.两件都是正品的概率是13D.两件中至少有1件是一等品的概率是5610. (多选)在一次随机试验中,A,B,C,D是彼此互斥的事件,且A B C D+++是必然事件,则下列说法正确的是( )A.A B+与C是互斥事件,也是对立事件B.B+C与D是互斥事件,但不是对立事件C.A C+与B D+是互斥事件,但不是对立事件D.A与B C D++是互斥事件,也是对立事件11.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________.12.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.13.从甲、乙、丙、丁四人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为_____________.14.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求2n m<+的概率..假定甲、乙两位同学15.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案以及解析1.答案:D解析:6架飞机的降落顺序有66A 种,而1号与6号相邻降落的顺序有2525A A 种,所以所求事件的概率252566A A 1A 3P ==.故选D.2.答案:A解析:甲、乙各摸一次球,有可能的结果有4416⨯=(种),甲摸的数字在前,乙摸的数字在后,则甲获胜的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种. 其中甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数有4种,则所求概率41164P ==. 3.答案:D解析:先后有放回地抽取2张卡片的情况有(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种.其中满足条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10种情况.因此所求的概率102255P ==.故选D. 4.答案:A解析:A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 射击1次就击落敌机,则他击中了敌机的机尾,概率为0.1;若A 射击2次就击落敌机,则他2次都击中了敌机的机首,概率为0.20.20.04⨯=或者第1次没有击中机尾且第2次击中了机尾,概率为0.90.10.09⨯=,因此若A 至多射击2次,则他能击落敌机的概率为0.10.040.090.23++=.故选A. 5.答案:D解析:设事件A ,B 发生的概率分别为()P A x =,()P B y =,则1()()()(1)(1)9P AB P A P B x y ==-⋅-=,即11199xy x y +=++≥+x y =时取“=”,211)9∴≥23≤43(舍去),409xy ∴≤≤.4()()()0,9P AB P A P B xy ⎡⎤∴==∈⎢⎥⎣⎦.6.答案:A解析:用事件A 表示“旅行团选择去百花村”,事件B 表示“旅行团选择去云洞岩”,A ,B 相互独立,则4()9P AB =,()()P AB P AB =.设()P A x =,()P B y =,则4,9(1)(1),xy x y x y ⎧=⎪⎨⎪-=-⎩解得2,323x y ⎧=⎪⎪⎨⎪=⎪⎩或2,323x y ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去),故旅行团选择去百花村的概率是23.故选A.7.答案:C解析:设“甲同学收到李老师的信息”为事件A ,“收到张老师的信息”为事件B ,A ,B 相互独立,42()()105P A P B ===,则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C. 8.答案:ACD解析:设“从甲袋中摸出1个红球”为事件1A ,“从乙袋中摸出1个红球为事件2A ,则()113P A =,()212P A =,且1A ,2A 独立.对于A 选项,2个球都是红球为12A A ,其概率为111326⨯=,故A 正确;对于B 选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为15166-=,故B 错误;对于C 选项,2个球中至少有1个红球的概率为()()1221211323P A P A -=-⨯=,故C 正确;对于D 选项,2个球中恰有1个红球的概率为1121132322⨯+⨯=,故D 正确.故选ACD. 9.答案:BD解析:由题意设一等品编号为a ,b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种. 对于A ,两件都是一等品的基本情况有(,)a b ,共1种,故两件都是一等品的概率116P =,故A 错误; 对于B ,两件中有1件是次品的基本情况有(,)a d ,(,)b d ,(,)c d ,共3种,故两件中有1件是次品的概率23162P ==,故B 正确;对于C ,两件都是正品的基本情况有(,)a b ,(,)a c ,(,)b c ,共3种,故两件都是正品的概率33162P ==,故C 错误;对于D ,两件中至少有1件是一等品的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,共5种,故两件中至少有1件是一等品的概率456P =,故D 正确. 10.答案:BD解析:由于A ,B ,C ,D 彼此互斥,且A B C D +++是必然事件,故事件的关系如图所示.由图可知,任何一个事件与其余三个事件的和事件互为对立,任何两个事件的和事件与其余两个事件中任何一个是互斥事件,任何两个事件的和事件与其余两个事件的和事件互为对立,故B,D 中的说法正确.11.答案:35解析:设此队员每次罚球的命中率为p ,则216125p -=,所以35p =. 12.答案:16;23解析:甲,乙两球都落入盒子的概率为111236⨯=.方法一:甲、乙两球至少有一个落入盒子的情形包括:①甲落入、乙未落入的概率为121233⨯=;②甲未落入,乙落入的概率为111236⨯=;③甲,乙均落入的概率为111236⨯=.所以甲、乙两球至少有一个落入盒子的概率为11123663++=.方法二:甲,乙两球均未落入盒子的概率为121233⨯=,则甲、乙两球至少有一个落入盒子的概率为12133-=.13.答案:23解析:从甲、乙、丙、丁四人中随机选取两人,有{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},共6种结果;其中甲、乙两人中有且只有一人被选取,有甲,丙},{甲,丁},{乙,丙},{乙,丁},共4种结果. 故甲、乙两人中有且只有一人被选取的概率为4263=. 14.答案:(1)13. (2)概率为1316. 解析:(1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个, 因此所求事件的概率为2163P ==.(2)先从袋中随机取一个球,记下编号为,放回后,再从袋中随机取一个球,记下编号为m , 试验的样本空间{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),Ω=(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共16个样本点.又满足条件2n m ≥+的样本点有:(1,3),(1,4),(2,4),共3个. 所以满足条件2n m ≥+的事件的概率为1316P =,故满足条件2n m <+的事件的概率为1313111616P -=-=. 15.答案:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321()C ,0,1,2,333kkk P X k k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以随机变量X的分布列为随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫⎪⎝⎭,且{3,1}{2,0}M X Y X Y ===⋃==.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(1)知()P M =({3,1}{2,0})(3,1)(2,P X Y X Y P X Y P X ==⋃=====+=8240)(3)(1)(2)(0)2799Y P X P Y P X P Y ====+===⨯+⨯12027243=.。
中考数学专题复习八(概率)同步练习题 试题

勾文六州方火为市信马学校<概率>同步练习题1. 点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作a 的值,再从余下的四个数中任取一个数作为b 的值.那么点P (a ,b )在平面直角坐标系中第二象限内的概率是________.2.在平面直角坐标系中,作△OAB ,其中三个顶点分别是O (0,0),B (1,1),A (x ,y ) (-2≤ x ≤2,-2≤ y ≤ 2,x ,y 均为整数),那么所作△OAB 为直角三角形的概率是________.3. 从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,假设k =mn ,那么正比例函数y =kx 的图象经过第三、第一象限的概率是________.4. 从-3,-2,-1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x=+的自变量取值范围内的概率是______. 5. 从-2,-1,0,1,2这5个数中,随机抽取一个数记为a ,那么使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为________. 6. 在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将该小球上的数字作为a 的值,那么使关于x 的不等式组212x a x a >-⎧⎨≤+⎩只有..一个整数解的概率为________. 7. 从-1、1、2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +≤⎧⎨-≤⎩有解..的概率为________. 8.从-1,1,2这三个数字中,随机抽取一个数,记为a ,那么使关于x 的一次函数y =2x +a 的图象与x轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +≤⎧⎨-≤⎩无解..的概率为________. 9. 有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们反面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,那么使关于x 的分式方程11222ax x x -+=--有正整数解的概率为________.10. 在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,那么点P 落在抛物线 y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是________.11.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法 ( 如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是________.13.在平面直角坐标系xOy 中,直线y =-x +3与两坐标轴围成一个△AOB.现将反面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,反面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,那么点P 落在△AOB 内的概率为________.14.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动〞的调查,并将调查结果分为书法和绘画类(记为A )、音乐类(记为B )、球类(记为C )、其他类(记为D ).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动,班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答以下问题:第15题图(1)七年级(1)班学生总人数为________人,扇形统计图中D 类所对应扇形的圆心角为________度,请补全条形统计图;(2)将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.15.某餐饮文化公司准备承办“火锅美食文化节〞.为了解民对火锅的喜爱程度,该公司设计了一个调查问卷,将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,并派业务员进行场调查.其中一个业务员小丽在解放碑步行街对民进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图.请结合统计图所给信息解答以下问题:(1)在扇形统计图中C所占的百分比是________;小丽本次抽样调查的人数共有________人;请将折线统计图补充完整;(2)为了解少数民很不喜欢吃火锅的原因,小丽决定在上述调查结果中从“很不喜欢〞吃火锅的民里随机选出两位进行回访,请你用列表法或画树状图的方法,求所选出的两位民恰好都是男性的概率.第16题图答案1. 162. 153. 164. 255. 356. 147. 138. 259. 1410. 3511. 1512. 25【解析】如解图,每个格点中去掉不能与B 、O 组成三角形的五个点(-2,-2)、(-1,-1)、(0,0)、(1,1)、(2,2),其他20个格点都可能是点A ,所以点A 可以出现的地方共20个.其中能与B 、O 组成直角三角形的点有8个,分别是(-2,2)、(-1,1)、(0,1)、(0,2)、(1,0)、(2,0)、(1,-1)、(2,-2),所以能组成直角三角形的概率是820=25. 13. 3514. 解:(1)由题得:x %+10%+15%+45%=1,解得x =30.…………………………………………………………(1分)调查总人数为180÷45%=400(人),………………………………(2分)B 等级的人数为400×30%=120(人);……………………………(3分)C 等级的人数为400×10%=40(人).………………………………(4分)补全条形统计图如解图①:第14题解图①…………………………………………………………………………(6分)(2)分别用P1、P2,Q1、Q2表示两个小组的4个同学,画树状图如解图②:第14题解图②或列表如下:可得共有12种情况,2人来自不同小组的有8种情况,∴所求的概率为812=23.………………………………………………(10分)15. 解:(1)48;105.……………………………………………………(3分)补全条形统计图如解图所示:“我最喜欢的课外活动〞各类别人数条形统计图第15题解图………………………………………………………………………………(5分)【解法提示】∵B类学生12人,占调查总人数的25%,∴调查总人数为12÷25%=48人.∵由条形统计图知,A类4人,B类12人,D类14人,∴C类有48-4-12-14=18人,D类学生占调查总人数的百分比为1448×100%,那么D类所对应扇形的圆心角度数为1448×360°=105°.(2)设4名学生中,擅长书法的两人为A1、A2,擅长绘画的两人为a1、a2,列表如下:(A1) (A2) (a1) (a2)A1(A1 A2) (A1a1) (A1 a2)A2(A2 A1) (A2a1) (A2a2)a1(a1 A1) (a1 A2) (a1 a2)a2(a2 A1) (a2 A2) (a2a1) ………………………………………………………………………………(8分)由上表可以看出,共有12种等可能的情况,其中一名擅长书法、一名擅长绘画的有8种,∴P(一名擅长书法、一名擅长绘画)=812=23.……………………………(10分)。
2016年最新浙教版中考数学第一轮复习第八章 统计与概率第1讲数据的收集、整理与描述(精品课件)

)
答案:D
类型二
平均数、众数、中位数
某居民小区开展节约用电活动,对该小区 100 户家庭的节电量情况进行了统计,4 月份与 3 月份相比,节电情况如下表: 20 30 40 节电量(千瓦时) 10 40 30 户 数 则 4 月份这 100 户节电量的平均数、中位数、众数分别是( A.35,35,30 B. 25,30,20 C.36,35,30 D. 36,30,30 50 20 )
2016年最新浙教版中考数学第一轮 精品复习课件
第八章
第 1讲
统计与概率
数据的收集、整理与描述
知识点一
普查与抽样调查
1.为一特定目的而对所有考察对象作的全面调查叫做普查. 2.为一特定目的而对部分考察对象作的调查叫做抽样调查.
知识点二
统计的有关概念
1.总体、个体及样本:在统计中,我们把所要考察对象的全体叫做总体,其中每一个 考察对象叫做个体.当总体中个体数目较多时,一般从总体中抽取一部分个体,这一部分个 体叫做总体的样本,样本中个体的数目叫做样本容量. - 1 2.平均数和加权平均数:如果有 n 个数 x1,x2,x 3,„,xn,那么 x = (x1+x2+x 3+„ n +xn)叫做这 n 个数的平均数.若 n 个数 x1,x 2,„,xn 的权分别是 w 1,w 2,„,wn,则 x1w1+x2w 2+„+xnwn 叫做这 n 个数的加权平均数. w1+w 2+„+wn 总体中所有个体的平均数叫做总体平均数.样本中所有个体的平均数叫做样本平均 数.通常用样本平均数去估计总体平均数,用样本估计总体时,样本容量越大,样本对总体 的估计也就越精确. 3.众数与中位数 (1) 在一组数据中,出现次数最多的数叫做这组数据的众数 ( 一组数据的众数有时有几 个 ); (2)将一组数据按大小依次排列, 把处在最中间的一个数据(或最中间两个数据的平均数 ) 叫做这组数据的中位数; (3)众数、中位数与平均数从不同的角度描述了一组数据的集中趋势.
2014届浙江新中考总复习第二篇专题突破(专题8统计与概率)

【解题方法】解决统计与概率问题常用的数学思 想是方程思想,分类思想;常用的数学方法有:分类 讨论法,整体代入法等.
(2013· 漳州 )某日福建省九地市的最高气温统 计如下表: 地 福 市 州 最高 气温 29 (℃ )
莆 田 28 泉 州 30 厦 门 31 漳 州 31 龙 岩 30 三 明 30 南 平 32 宁 德 28
解:(1)搅匀后从中任意摸出 1 个球,恰好是红球 1 的概率为 . 4 (2)由题意列表如下:
所有等可能的情况数有 16 种, 其中两次都为红球 1 的情况数有 1 种,则 P= . 16
ห้องสมุดไป่ตู้
16. (2013· 湖州 )为了激励教师爱岗敬业,某市开 展了 “我最喜爱的老师 ”评选活动.某中学确定如下评 选方案: 由学生和教师代表对 4 名候选教师进行投票, 每票选 1 名候选教师,每位候选教师得到的教师票数 的 5 倍与学生票数的和作为该教师的总得票数.以下 是根据学生和教师代表投票结果绘制的统计表和条形 统计图 (不完整 ). 学生投票结果统计表 候选教师 得票数 王老师 赵老师 200 李老师 陈老师 300
(1)若共有 25 位教师代表参加投票, 则李老师得到 的教师票数是多少?请补全条形统计图.
针对这组数据,下列说法正确的是 ( A.众数是 30 C.中位数是 31 B.极差是 1 D.平均数是 28
)
【思路点拨】根据众数、中位数、极差、平均数 的定义及计算公式分别进行计算,即可得出答案. 答案: A 规律方法 解决此类题目的关键是准确掌握各个统计量的概 念及计算方法,分别计算直接选择或排除.
解:(1)40÷ 40%= 100(名),所以该县共调查了 100 名初中毕业生. (2)B 的人数: 100× 30%= 30(名), C 所占的百分 25 比为: × 100%= 25%,补全统计图如图所示: 100
浙江省中考数学第八单元统计与概率课时训练32数据与图表练习(新版)浙教版

课时训练(三十二) 数据与图表|夯实基础|1.[2018·葫芦岛] 以下检查中,检查方式选择最合理的是( )A.检查“乌金塘水库”的水质状况,采纳抽样检查B.检查一批飞机部件的合格状况,采纳抽样检查C.查验一批入口罐装饮料的防腐剂含量,采纳全面检查D.公司招聘人员,对应聘人员进行面试,采纳抽样检查2.某校学生参加体育兴趣小组状况的统计图如图K32-1所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )图K32-1A.25人B.35人C.40人D.100人3.[2018·齐齐哈尔] 如图K32-2是自动测温仪记录的图象,它反应了齐齐哈尔市的春天某天气温T怎样随时间t的变化而变化.以下从图象中获得的信息正确的选项是 ( )图K32-2A.0点时气温达到最低1B.最低气温是零下4℃C.0点到14点之间气温连续上涨D.最高气温是8℃4.[2018·贵阳]某班50名学生在2018年适应性考试中,数学成绩在100~110分这个分数段的频次为0.2,则该班在这个分数段的学生为人.5.[2018·菏泽]据资料表示:中国已成为全世界机器人第二大专利根源国和目标国.机器人几大重点技术领域包含:谐波减速器,RV减速器,电焊钳,3D视觉控制,焊缝追踪,涂装轨迹规划等,此中涂装轨迹规划的根源国构造(仅计算了中、日、德、美)如图K32-3所示,在该扇形统计图中,美国所对应的扇形圆心角是度.图K32-36.[2018·北京]从甲地到乙地有A,B,C三条不一样的公交线路.为认识早顶峰时期这三条线路上的公交车从甲地到乙地的用时状况 ,在每条线路上随机选用了500个班次的公交车,采集了这些班次的公交车用时(单位:分钟)的数据,统计以下:30≤t≤3535<t≤4040<t≤4545<t≤50共计A59151166124500B5050122278500C45265167235002早顶峰时期,乘坐(填“A”“B”或“C”)线路上的公交车,从甲地到乙地“用时不超出45分钟”的可能性最大.7.[2018·杭州]某校踊跃参加垃圾分类活动,以班级为单位采集可回收的垃圾,下边是七年级各班一周采集的可回收垃圾的质量频数和频数直方图(每组含前一个界限值 ,不含后一个界限值).求a的值.(2)已知采集的可回收垃圾以0.8元/千克被回收,该年级这周采集的可回收垃圾被回收后所得的金额可否达到50元?组别(千克)频数4.0~4.524.5~5.0a50553.~.55601.~.图K32-438.[2018·宁波]在第23个世界念书日前夜我市某中学为认识本校学生的每周课外阅读时间(用t表示,单位:小时),采纳随机抽样的方法进行问卷检查,检查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并挨次用A,B,C,D表示.根据检查结果统计的数据绘制成了如图K32-5所示的两幅不完好的统计图,由图中给出的信息解答以下问题:求本次检查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图增补完好;(3)若该校共有学生1200人,试预计每周课外阅读时间知足3≤t<4的人数.图K32-5|拓展提高|9.[2018·绍兴]为认识某地域灵活车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年灵活车拥有量、车辆经过人民路路口和学校门口的堵车次数进行检查统计,并绘制成如图K32-6所示的统计图:4精选文档图K32-6依据统计图,回答以下问题:(1)写出2016年灵活车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的均匀数;(2)依据统计数据,联合生活实质,对灵活车拥有量与人民路路口和学校门口堵车次数,谈谈你的见解.5参照答案1.A2.C3.D4.10557.6[分析]360°×(1-21%32%31%)576°,即美国所对应的扇形圆心角是57.6°..--=.6.C [分析]由统计表可知,C线路中从甲地到乙地“用时不超出45分钟”的多达477辆,远远高于A,B两条线路,故答案为C线路.7.解:(1)由表格和图形联合知:a=4.设采集的可回收垃圾总质量为y千克,总金额为m元.由题意得:y<2×4.5+4×5+3×5.5+1×6=51.5,m<51.5×0.8=41.2,41.2<50,∴该年级这周采集的可回收垃圾被回收后所得金额不可以达到50元.8.解:(1)20÷10%=200(人).答:本次检查的学生人数有200人.(2)等级D的人数为200×45%=90(人),∴等级B的人数为200-20-60-90=30(人),等级B所在扇形的圆心角度数为×360°=54°.答:等级B所在扇形的圆心角度数为54°.补全条形统计图如图.6(3)1200×=人).360(答:预计每周课外阅读时间知足3≤t<4的人数有360人.9.解:(1)从2010年~2017年灵活车拥有量统计图能够看到2016年灵活车拥有量为3.40万辆;2010年~2017年这八年人民路路口堵车次数之和为:54+82+86+98+124+156+196+164=960(次),均匀数为:960÷8=120(次);2010年~2017年这八年学校门口堵车次数之和为:65+85+121+144+128+108+77+72=800(次),均匀数为:800÷8=100(次).(2)答案不独一,如:2010年~2013年,跟着灵活车拥有量的增添,对道路的影响加大,每年堵车次数也增添 ;只管2017年灵活车拥有量比2016年有所增添,因为进行了交通综合治理,人民路路口和学校门口堵车次数反而降低.7。
【4份】浙江省2016中考数学一轮复习(考点梳理即时训练):第九章 统计与概率 共264张PPT

A. 23,25
B. 24,23
C. 23,23
D. 23,24
7.(2015· 嘉兴、舟山 )质检部门为了检测某品牌电器的 质量,从同一批次共 10 000 件产品中随机抽取 100 件进行 检测,检测出次品 5 件,由此估计这一批次产品中的次品 件数是 ( C ) A. 5 B. 100 C. 500 D. 10 000 【解析】从 100 件样本中检测出的次品是 5 件,说明 样本的次品率是 5%,由此估计出总体的次品率也是 5%, 则这一批次产品中次品件数是 10 000× 5%= 500(件 ).故 选 C.
总体中所有个体的平均数叫做总体平均数.样本中所 有个体的平均数叫做样本平均数.通常用样本平均数去估 计总体平均数,用样本估计总体时,样本容量越大,样本 对总体的估计也就越精确.
3.众数与中位数 (1)在一组数据中,出现次数最多的那个数据叫做这组 数据的众数 (有时一组数据的众数有多个). (2)将一组数据按大小顺序排列,位于最中间的一个数 据 (当数据个数为奇数时 )或最中间两个数的平均数 (当数据 个数为偶数时 )叫做这组数据的中位数. (3)众数、中位数与平均数从不同的角度描述了一组数 据的集中趋势. (4)当所给数据有单位时,众数、中位数也要有单位, 且与原数据单位一致.
(1)根据三项得分的平均分,从高到低确定三名应聘者
(2)该公司规定:笔试、面试、体能得分分别不得低于 80 分、 80 分、 70 分, 并按 60%,30%,10%的比例计入总分, 根据规定,请你说明谁将被录用. 83+ 79+ 90 解: (1) x 甲 = = 84(分), 3 85+ 80+ 75 x 乙= = 80(分 ), 3 80+ 90+ 73 x 丙= = 81(分 ), 3 ∴排名顺序为甲、丙、乙.
题型八抛物线型问题(专题训练)-2024年中考数学二轮复习满分冲刺题型突破(全国通用)(原卷版)

类型四抛物线型问题(专题训练)1.(2023·浙江温州·统考中考真题)一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?2.现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根OE ,该抛物线的顶点P到OE的距离为9m.据设计要求:10m(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.3.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验,(1)若发射平台相对于安全线的高度为0m ,求飞机落到安全线时飞行的水平距离;(2)在安全线上设置回收区域,125m,=MN AM MN ,M N ),求发射平台相对于安全线的高度的变化范围.4.甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.5.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)(1)写出1C 的最高点坐标,并求(2)若嘉嘉在x 轴上方1m 的高度上,且到点求符合条件的n 的整数值.6.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.7.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.8.如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且8AB =dm,外轮廓线是抛物线的一部分,对称轴为y 轴,高度8OC =dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.9.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的乒乓球到球台的竖直高度记为y(单位:cm),乒乓球运行的水平距离记为x(单位:cm得如下数据:水平距离x/cm010509013017023010.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++≠.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h;②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.11.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB =,4m BC =,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线透过A 点恰好照射到C 点,此时大棚截面的阴影为BK ,求BK 的长.12.根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m ,拱顶离水面5m .据调查,该河段水位在此基础上再涨1.8m 达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.13.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.图2(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?14.如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱项部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.15.(2021·浙江金华市·中考真题)某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.16.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s )的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少?(2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)已求得甲的平均成绩为 8 环,求乙的平均成绩;
(2)观察图形,直接写出甲、乙这 10 次射击成绩的方差
S
甲2,S
2
乙
哪个大;
(3)如果其他班级参赛选手的射击成绩都在 7 环左右,
本班应该选 7 环参赛更合适;如果其他班级参赛选手的射
击成绩都在 9 环左右,本班应该选 9 环参赛更合适.
解: (1)乙的平均 成绩: (8+ 9+ 8+ 8+ 7+ 8+ 9+ 8+ 8
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
由上表可知,共有 36 种等可能的结果,其中小亮、小 丽获胜各有 9 种结果,∴P(小亮胜)=396=14,P(小丽胜)=396 =14.
A.落在菱形内 C.落在正六边 形内
B.落在圆内 D.一样大
6.小李是 9 人队伍中的一员,他们随机排成一列队伍, 从 1 开始按顺序报数,小李报到偶数的概率是( B )
2 A. 3
4 B. 9
1 C. 2
1 D. 9
7.为积极响应创建“全国卫生城市”的号召,某校 1 500 名学生参加了卫生知识竞赛,成绩记为 A,B,C,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成 如下两幅不完整的统计图,根据图中信息,以下说法不正 确的是( )
【自主解答】
解: (1)所求概率P=36=12.
(2)游戏公平.理由如下:
小亮
小丽
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
Байду номын сангаас
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4.一个袋子中装有 6 个黑球和 3 个白球,这些球除颜
色外 ,形状、大小 、质地等完全 相同,在看不 到球的条件
下 , 随 机 从 这 个袋 子 中 摸出 一 个 球 ,摸 到 白 球 的概 率 是
( B)
1
1
1
2
A. 9
B. 3
C. 2
D. 3
5.如图,在一长方形内有对角线长分别为 2 和 3 的菱 形、边长为 1 的正六边形和半径为 1 的圆,则一点随机落 在这三个图形内的概率较大的是( B )
(2015·襄阳)若一组数据 1,2,x,4 的众数是 1,那
么这组数据的方差是
3 2
.
【思路点拨】根据众数的定义求出 x 的值,再根据平
均数的计算公式求出这组数据的平均数,再根据方差公式
进行计算即可.
【解析】根据众数的意义得到 x=1,这组数据的平均
数
x
=
1+2+1+4 4
=
2
,
所
以
这
组
数
据
的
方
那么关于这 10 户居民月用电量(单位:千瓦时),关于
这组数据下列说法错误的是( )
A.中位数是 55 B.众数是 60
C.方差是 29
D.平均数是 54
【思路点拨】根据 众数、中位数、方差、平均数的定 义及计算公式分别 进行计算,即可得出答案.
答案: C 规律方法: 解决此类题目的关 键是准确掌握各个统计量的概念及 计算方法,分别计 算直接选择或排除.
如果小亮和小丽按上述规则各掷一次骰子,那么请你 解答下列问题:
(1)小亮掷得向上一面的点数为奇数的概率是多少? (2)该游戏是否公平?请用列表或画树状图的方法说明 理由. (骰子:六个面上分别刻有 1,2,3,4,5,6 个小圆点的小正 方体 )
【思路点拨】(1)由题意得,掷一枚质地均匀的骰子, 向上一面的点数的等可能的情况共有 6 种,其中点数为奇 数的情况有 3 种,所以 P=36=12;(2)判断游戏是否公平, 利用画树状图或列表法表示出所有等可能的情况,求出两 人胜出的概率,若概率相同,则游戏公平,否则游戏不 公平.
(1)报名参加课外活动小组的学生共有 30 人,将条形图 补充完整;
(2)扇形图中 m=25,n=108; (3)根 据报名情况,学校决定从报名 “经典诵读”小组 的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小 组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多 少?请用列表或画树状图的方法说明.
13.“ 服务社会, 提升自我. ”凉山州某学 校积极开
展志愿者服务活动,来自九年级的 5 名同学(三男两女)成立
了“ 交通秩序维护 ”小分队,若 从该小分队中 任选两名同
学进行交通秩序维 护,则恰是一男一女的概率是
3 5
.
三、解答题 14. (2015·吉林 )要 从甲、乙 两名同学 中选出一 名,代 表班级参加射击比赛,如图是两人最近 10 次射击训练成绩 的折线统计图.
∴该游戏是公平的.
规律方法: 解决判断游戏是否公平的问题,首先应分别计算出两 人获胜的概率,然后比较两个概率的大小,若相同则公平, 若不相同则不公平 .
能力评估检测
一、选择题 1.下列事件是随机事件的是( D ) A.明天太阳从东方升起 B.任意画一个三角形,其内角和是 360° C.通常温度降到 0 ℃以下,纯净的水结冰 D.射击运动员射击一次,命中靶心
+ 7)÷10= 8(环 ).
(2)根据 图象可知,甲的波动小于乙的波动,
则
S
2
甲
<S
2
乙
.
(3)如果其他班级参赛选手的射击成绩都在 7 环左右,
本班 应该选乙参赛 更合适;如果 其他班级参赛 选手的射击
成绩都在 9 环左右,本班应该选甲参赛更合适.
15.(2015·黄冈)在某电视台的一档选秀节目中,有三 位评委,每位评委在选手完成才艺表演后,出示“通 过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组 规定:每位选手至少获得两位评委的“通过”才能晋级.
A.样本容量是 200 B.D 等所在扇形的圆心角为 15° C.样本中 C 等所占百分比是 10% D.估计全校学生成绩为 A 等的有 900 人 答案: B
8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四
位候选人进行了面试和笔试,他们的成绩如下表所示:
候选人
甲乙丙丁
测试成绩 面试 86 92 90 83 (百分制) 笔试 90 83 83 92
作为宁波市政府民 生实事之一的公共自行车建 设工作已基本完成 ,某部门对今年 4月份中的 7天进行了公 共自行车日租车量 的统计,结果如下:
宁波市 4月份某一周 公共自行车日租车量统计图
(1)求这 7 天日租车量的众数、中位数和平均数; (2)用(1)中的平均数估计 4 月份(30 天)共租车多少万 车次; (3)市政府在公共自行车建设项目中共投入 9 600 万元, 估计 2014 年共租车 3 200 万车次,每车次平均收入租车费 0.1 元,求 2014 年租车费收入占总投入的百分率(精确到 0.1%).
差
是
S2 =
14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.
规律方法: 为了准确而快速地记忆方差的计算公式,可以用下面 12 个字来理解性的记忆,即“先平均、再作差、平方后、 再平均”,也就是说,先求出一组数据的平均数,再将每 一个数据都与平均数作差,然后将这些差进行平方,最后 求这些差的平方的 平均数,其结果就是这组数据的方差 .
A.①②③ B.①② C.①③ D.②③
10.(2015·泰安)若十位上的数字比个位上的数字、百
位上的数字都大的三位数叫做中高数.如 796 就是一个
“中高数”.若十位上的数字为 7,则从 3,4,5,6,8,9 中任选
两个数,与 7 组成“中高数”的概率是( C )
A.
1 2
B.
2 3
C.
2 5
【思路点拨】(1)根据众数、中位数和平均数的定义即 可求出; (2)4 月份天数与平均数的积;(3)租车的次数与每 次的租车费的积为租车收入,由租车收入与投入的比即可 求出百分率.
【自主解答】 解:(1)8,8,8.5. (2)30×8.5=255(万车次). (3)3 200×0.1÷9 600=1÷30≈3.3%. 答:2014 年租车费收入占总投入的 3.3%.
【解题方法】解决统计与概率问题常用的数学思想是 方程思想和分类讨论思想;常用的数学方法有分类讨论法, 整体代入法等.
为了解某社区居民的用电情况,随机对该社区 10
户居民进行了调查,下表是这 10 户居民 2014 年 4 月份用
电量的调查结果.
居民(户)
1324
月用电量(千瓦时/户)
40 50 55 60
C. 9,9.1
D. 8.7,9
3.(2015·盘锦)甲、乙两名同学某学期的四次数学测试
成绩(单位:分)如下表:
第一次 第二次 第三次 第四次
甲
87
95
85
93
乙
80
80
90
90
据上表计算,甲、乙两名同学四次数学测试成绩的方 差分别为 S 甲2 =17,S 乙2 =25,下列说法正确的是( )
A.甲同学四次数学测试成绩的平均数是 89 分 B.甲同学四次数学测试成绩的中位数是 90 分 C.乙同学四次数学测试成绩的众数是 80 分 D.乙同学四次数学测试成绩较稳定 答案: B
【浙江新中考】2016中考数学二轮复 习(专题突破强化训练):专题八 统计
与概率(共47张)