2019年深国交G1入学考试数学复习资料:创新题1(含答案)

合集下载

2019年广东省深圳市招生入学数学试卷

2019年广东省深圳市招生入学数学试卷

2019年广东省深圳市招生入学数学试卷一、比眼力,你能把每题中正确答案的序号都写在()里(14分)1. 一个三角形,三个内角度数的比为2:5:3,则此三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2. 一批水泥,用去49,剩下的是用去的()A.5 9B.45C.54D.1093. 一台电冰箱的原价是2400元,现在按七折出售,求便宜了多少元?列式是()A.2400÷70%B.2400×70%C.2400×(1−70%)D.2400÷(1−70%)4. 已知:a×23=a×135=a÷23,且a、a、a都不等于0,则a、a、a中最小的数是()A.aB.aC.a5. 用100个盒子装杯子,每盒装的个数都不相同,并且每盒不空,那么至少要用()杯子。

A.100B.500C.1000D.50506. 一个小数的小数点向右移动一位,比原数大5.4,原来的这个小数是()A.0.6B.5.4C.0.54D.0、457. 张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果的价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果()个。

A.10B.100C.20D.160二、细心填一填,你一定行(共22分,每小题2分)8. 四川汶川特大地震发生以来,全国共接收国内外社会各界捐赠款物(截至2008年9月25日12时)总计(五百九十四亿六千万零八十元),括号里的数写作________,省略亿后面的尾数约是________.9. 水是由氢气和氧气按1:8的质量比反应生成的。

如果要生成54千克的水,需要氢气________千克。

10. 一个正方形的边长增加2aa,面积增加20aa2,扩大后正方形面积为36aa2.11. 工地上有a吨水泥,每天用去a吨,用了2天。

用式子表示剩下的吨数是________.如果a=20,a=4,那么剩下的是________吨。

2019年深国交G1入学考试数学:二次函数01(填空)

2019年深国交G1入学考试数学:二次函数01(填空)

G1入学二次函数01(填空)一.填空题(共30小题)1.(2015•肥城市一模)已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为.2.(2015•杭州模拟)已知点P(5,n),点Q(m,n)是抛物线y=2x2+4x﹣c的两个不同的点,则m=.3.(2015•和平区一模)某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t ﹣1.5t2,那么飞机着陆后滑行米才能停止.4.(2015•杭州模拟)已知正整数a满足不等式组(x为未知数)无解,则a的值为;函数y=(3﹣a)x2﹣x﹣3图象与x轴的交点坐标为.5.(2015秋•潮州期末)抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为.6.(2014•涪城区校级自主招生)一个函数的图象关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y=x2+bx﹣4是“偶函数”,该函数的图象与x轴交于点A和点B,顶点为P,那么△ABP的面积是.7.(2014•杨浦区二模)抛物线y=2x2+4x﹣2的顶点坐标是.8.(2014•上海一模)已知一个二次函数的图象具有以下特征:(1)经过原点;(2)在直线x=1左侧的部分,图象下降,在直线x=1右侧的部分,图象上升.试写出一个符合要求的二次函数解析式..9.(2014•丹东校级二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论正确的有个①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.10.(2014•老河口市模拟)抛物线y=2x2+3上有两点A(x1,y1)、B(x2,y2),且x1≠x2,y1=y2,当x=x1+x2时,y=.11.(2014•独山县模拟)如图,抛物线y=x2沿直线y=x向上平移个单位后,顶点在直线y=x上的M处,则平移后抛物线的解析式为.12.(2014•工业园区一模)二次函数y=(x+3)(2﹣x)取得最大值时,x=.13.(2014•牡丹江一模)已知抛物线y=ax2+bx+c经过三个点(0,5),(4,5)(3,0)并且与x轴另一个交点为点P,若将抛物线先向左平移2个单位,再向下平移1个单位,则点P 的对应点的坐标为.14.(2014•天门模拟)抛物线y=kx2﹣5x+2的图象和x轴有交点,则k的取值范围是.15.(2014•乳山市二模)抛物线y=x2﹣(2m﹣1)x﹣2m与x轴的两交点坐标分别是A(x1,0),B(x2,0),且||=1,则m的值为.16.(2013秋•龙口市期末)已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式m2﹣m+2012的值为.17.(2013秋•开封县期末)将抛物线y=3x2﹣6x+4先向右平移3个单位,再向上平移2个单位后得到新的抛物线,则新抛物线的顶点坐标是.18.(2013秋•文登市期末)已知下列函数:①y=﹣(x﹣1)2;②y=x2+1;③y=﹣x2﹣1.其中,图象通过平移可以得到函数y=﹣(x﹣2)2﹣1的图象的有(填写所有正确选项的序号).19.(2013秋•日照期末)二次函数y=x2+4x+5(﹣3≤x≤0)的最大值和最小值分别是.20.(2014春•永定县校级期末)不论x取何值,二次函数y=﹣x2+6x+c的函数值总为负数,则c的取值范围为.21.(2013秋•南京期末)某公园草坪的防护栏形状是抛物线形.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则其中防护栏支柱A3B3的长度为m.22.(2013秋•宜城市期末)向上发射一枚炮弹,经x秒后的高度为ym,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则炮弹飞行第秒时高度是最高的.23.(2013秋•宝安区期末)某服装店销售童装平均每天售出20件,每件赢利50元,根据销售经验:如果每件童装降价4元,那么平均每天就可以多售出4件.则每件童装应降价元时,每天能获得最大利润.24.(2013•鞍山一模)若二次函数y=(a+1)x2+2x+a2﹣1的图象经过原点,则a的值是.25.(2013•大港区一模)已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下则该二次函数的关系式为.26.(2013•黄陂区模拟)已知y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是.27.(2013•灌云县模拟)根据下列表格中y=ax2+bx+c的自变量x与函数值y的对应值,判228.(2013•黄冈二模)如图,是y=x2、y=x、y=在同一直角坐标系中图象,请根据图象写出<x<x2时x的取值范围是.29.(2013秋•如皋市期中)已知点A(x1,y1)、B(x2,y2)在二次函数y=﹣(x﹣1)2+1的图象上,若﹣1<x1<0,3<x2<4,则y1y2(填“>”、“<”或“=”).30.(2013秋•工业园区期中)若二次函数y=(m+1)x2+m2﹣9有最小值,且图象经过原点,则m=.。

2019年深国交G1入学考试数学:二次函数的性质01(选择题)

2019年深国交G1入学考试数学:二次函数的性质01(选择题)

二次函数的性质01(选择题)一.选择题(共30小题)1.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<02.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣13.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.45.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣26.(2015•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)7.(2016•重庆模拟)在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个8.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)9.(2015•贵阳)已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3 B.y≤3 C.y>3 D.y<310.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数11.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<012.(2015•南开区二模)二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y <0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m13.(2015•深圳模拟)若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=314.(2015•潍坊模拟)若函数y=的自变量x的取值范围是全体实数,则c的取值范围是()A.c<1 B.c=1 C.c>1 D.c≤115.(2015•巴中模拟)抛物线y=x2﹣8x+m的顶点在x轴上,则m等于()A.﹣16 B.﹣4 C.8 D.1616.(2015•大庆模拟)若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y22时,y随x的增大而增大;⑤方程ax2+bx+c=0有两个不相等的实数根.其中正确的是()A.①②③ B.①③⑤ C.①③④ D.①④⑤18.(2015•巴中模拟)若直线y=ax+b(a≠0)在第二、四象限都无图象,则抛物线y=ax2+bx+c ()A.开口向上,对称轴是y轴B.开口向下,对称轴平行于y轴C.开口向上,对称轴平行于y轴D.开口向下,对称轴是y轴19.(2015•鄄城县三模)关于二次函数y=3x2﹣kx+k﹣3,以下结论:①抛物线交x轴有两个不同的交点;②不论k取何值,抛物线总是经过一个定点;③设抛物线交x轴于A、B两点,若AB=1,则k=9;④抛物线的顶点在y=﹣3(x﹣1)2图象上.中正确的序号是()A.①②③④B.②③C.②④D.①②④20.(2015•山西模拟)已知二次函数y1=﹣3x2,,,它们的图象开口由小到大的顺序是()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y3<y121.(2015•亭湖区校级模拟)若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2 B.k>2 C.k≥2 D.k≤222.(2015•平阴县二模)下列函数中,在0≤x≤2上y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣4x+5 C.y=x2D.y=23.(2015•石家庄校级模拟)已知二次函数y=ax2+bx+c的x、y的部分对应值如表:则该二)y 5 1 ﹣1 ﹣1 1A.y轴B.直线x= C.直线x=2 D.直线x=﹣224.(2015•海宁市模拟)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部+(b ﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.1个B.2个C.3个D.4个25.(2015•岱岳区二模)已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A(﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论错误的是()A.当x<﹣1时,M=Y1B.当﹣1<x<0时,Y2<Y3<Y1C.当0≤x≤2时,M的最大值是1,无最小值D.当x≥2时,M最大值是1,无最小值26.(2015•牡丹江二模)抛物线y=ax2+bx+c经过点(4,﹣5)且对称轴是直线x=2,则代数式c﹣2的值为()A.25 B.﹣25 C.D.﹣27.(2015•彭州市校级模拟)已知二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)对于该二次函数有如下说法:①它的图象与x轴有两个公共点;②若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3.其中正确的说法的个数是()A.1 B.2 C.3 D.428.(2015•杭州模拟)如图,已知二次函数的解析式为y=x2﹣1,其图象上有一个动点P,连接OP(O为坐标原点),并以OP为半径作圆,则该圆的最小面积是()A.πB.πC.πD.π29.(2015•杭州模拟)如图,已知点A(﹣1,0),B(7,0),P是线段AB上任意一点(不含端点A,B),过A、P两点的二次函数y1和过P、B两点的二次函数y2的图象开口均向上,它们的顶点分别为C、D,射线BD与AC相交于点E.当AE=BE=5时,这两个二次函数的最小值之和等于()A.﹣1 B.﹣2 C.﹣3 D.﹣430.(2015•岱岳区二模)若不等式组(x为未知数)无解,则对二次函数y=ax2﹣2x+1的图象的下列叙述:(1)开口向上;(2)与x轴没有交点;(3)顶点在第二象限;(4)当x>﹣时,y随x的增大而增大.其中正确的有()A.4个B.3个C.2个D.1个。

2019年深国交G1入学考试数学:三角函数概率规律题(解答题)

2019年深国交G1入学考试数学:三角函数概率规律题(解答题)

G1入学三角函数/概率/规律题(解答题)一.解答题(共30小题)1.(2015•济宁)阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明;(2)求乙船每小时航行多少海里?2.(2015•湘西州)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.3.(2014•佛山)我们把“按照某种理想化的要求(或实际可能应用的标准)来反映或概括的表现某一类或一种事物关系结构的数学形式”看作是一个数学中的一个“模式”(我国著名数学家徐利治).如图是一个典型的图形模式,用它可测底部可能达不到的建筑物的高度,用它可测河宽,用它可解决数学中的一些问题.等等.(1)如图,若B1B=30米,∠B1=22°,∠ABC=30°,求AC(精确到1);(参考数据:sin22°≈0.37,cos22°≈0.92,tan22°≈0.40,≈1.73)(2)如图2,若∠ABC=30°,B1B=AB,计算tan15°的值(保留准确值);(3)直接写出tan7.5°的值.(注:若出现双重根式,则无需化简)4.(2013•郴州)我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).5.(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)6.(2013•万州区校级模拟)已知在△ABC中,∠B=30°,tanC=2,AB=2,求△ABC的周长.(结果保留根号)7.(2009•咸宁)如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB 的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A 运动,点D为2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.(1)当0<t<时,证明DC⊥OA;(2)若△OCD的面积为S,求S与t的函数关系式;(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、D、E 为顶点的四边形是梯形,求点E的坐标.8.(2010•赤峰)关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.9.(2013•武汉模拟)中国籍作家莫言获2012年诺贝尔文学奖后,国内掀起了一股购阅莫言作品的热潮.小明的语文老师是莫言的忠实读者,家中现有:A.《透明的红萝卜》,B.《红高粱家族》,C.《生死疲劳》,D.《蛙》等四部作品.(1)若老师随机拿来一本给小明阅读,拿到《蛙》的概率是多少?(2)若小明想向老师同时借阅两本,请用树形法或列表法的一种,列举出老师随机抽取两本时所有可能的结果(用A、B、C、D表示相应的作品),并求出小明恰好借到《蛙》和《透明的红萝卜》的概率.10.(2012•江西)如图,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机的取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.11.(2011•营口)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=﹣图象上的概率.12.(2011•宁夏)有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x;另有三张背面完全相同,正面分布写有数字﹣2,﹣1,1的卡片,将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后计算出S=x+y的值.(1)用树状图或列表法表示出S的所有可能情况;(2)求出当S<2时的概率.13.(2012•济宁)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果;(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.14.(2009•南充)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3,4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?15.(2011•汕头校级二模)在9年级毕业前,团支部进行“送赠言”活动,某班团支部对该班全体团员在一个月内所发赠言条数的情况进行了统计,并制成了如图两幅不完整的统计图:(1)求该班团员共有多少?该班团员在这一个月内所发赠言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条赠言的同学中有两位男同学,发了4条赠言的同学中有三位女同学.现要从发了3条赠言和4条赠言的同学中分别选出一位参加该校团委组织的“送赠言”活动总结会,请你用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.16.(2008•庐阳区)端午节吃粽子是中华民族的传统习俗.又快到农历五月初五端午节了,小明奶奶包了6个粽子,其中有3个是枣豆馅的,有2个是鲜肉馅的,有1个是咸蛋黄馅的(这些粽子除馅料不同外其他外观均相同.小明随手拿了两只来吃.(1)求小明第一个就吃到了喜欢的鲜肉馅粽子的概率.(2)求小明所吃两只粽子馅料相同的概率.(3)若在吃粽子之前,小明准备用一枚均匀的正六面体骰子进行吃粽子的模拟试验,规定:掷得点数1,2,3向上代表吃枣豆馅的,点数4,5向上代表吃鲜肉馅的,点数6向上代表吃咸蛋黄馅的,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是枣豆馅的概率.你认为这样模拟正确吗?试说明理由.17.(2006•芜湖)抛掷红、蓝两枚六面编号分别为1~6(整数)的质地均匀的正方体骰子,将红色和蓝色骰子正面朝上的编号分别作为二次函数y=x2+mx+n的一次项系数m和常数项n的值.(1)问这样可以得到多少个不同形式的二次函数?(只需写出结果)(2)请求出抛掷红、蓝骰子各一次,得到的二次函数图象顶点恰好在x轴上的概率是多少并说明理由.18.(2008•青岛)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10﹣1)=28(如图⑩)模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是;(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是;(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是.模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是.(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是.问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?19.(2005•芜湖)在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.(1)试问小球通过第二层A位置的概率是多少?(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层B位置和第四层C位置处的概率各是多少?20.(2012•灌南县校级模拟)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去.问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少?21.(2011•凉山州)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.22.(2010•东莞)阅读下列材料:1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3),3×4=(3×4×5﹣2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=.23.(2008•湛江)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.24.(2005•恩施州)下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.25.(2005•峨眉山市模拟)先看数列:1,2,4,8,…,263.从第二项起,每一项与它的前一项的比都等于2,象这样,一个数列:a1,a2,a3,…,a n﹣1,a n;从它的第二项起,每一项与它的前一项的比都等于一个常数q,那么这个数列就叫等比数列,q叫做等比数列的公比.根据你的阅读,回答下列问题:(1)请你写出一个等比数列,并说明公比是多少?(2)请你判断下列数列是否是等比数列,并说明理由;,,,,…;(3)有一个等比数列a1,a2,a3,…,a n﹣1,a n;已知a1=5,q=﹣2;请求出它的第5项a5.26.(2006•佛山)在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…⇒2m×2n=2m+n,…⇒a m×a n=a m+n(m、n都是正整数).我们亦知:,,,,…(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相同的关系式并给予证明.27.有三堆石子的个数分别为20、10、12,现进行如下操作:每次从三堆的任意两堆中分别取出1粒石子,然后把这2粒石子都加到另一堆上去.问:能否经过若干次这样的操作,使得(1)三堆石子的石子数分别为4、14、24;(2)三堆石子的石子数均为14.如能满足要求,请用最少的操作次数完成;如不能满足,请说明理由.28.(2007•镇江)探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n2﹣32n+247,1≤n<16,n为整数.(1)例如,当n=2时,a2=22﹣32×2+247=187,则a5=,a6=;(2)第n层比第(n+1)层多堆放多少个仪器箱;(用含n的代数式表示)(3)如果不考虑仪器箱堆放所承受的压力,请根据题设条件判断仪器箱最多可以堆放几层?并说明理由;(4)设每个仪器箱重54N(牛顿),每个仪器箱能承受的最大压力为160N,并且堆放时每个仪器箱承受的压力是均匀的.①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力;②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?29.(2004•吉林)如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n﹣1)×(n﹣1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD 的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1:S2的值;②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.30.(2006•青岛)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如:求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)。

2019年深国交G1入学考试数学复习资料:创新题1(含答案)

2019年深国交G1入学考试数学复习资料:创新题1(含答案)
A.矩形 B.三角形 C.梯形 D.菱形
答案:D
【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是( )
A. B. C. D.
答案:D
【10】小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()
答案:D
五.折叠后得结论
【15】亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”
答案:180
【16】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则与之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()
【20】同学们肯定天天阅读报纸吧?我国的报纸一般都有一个共同的特征:每次对折后,所得的长方形和原长方形相似,问这些报纸的长和宽的比值是多少?
答案: ∶1.
【21】用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.
整理得9x2-9x+2=0.
解得x1= ,x2= .
当AA1= 时,AD1= ,
当AA1= 时,AD1= .
∴当AA1=BB1=CC1=DD1= 或 时,
四边形A1B1C1D1仍为正方形且面积是原面积的 .
答案:C
【2】如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )

2019年深国交G1入学考试复习专题:二次函数的最值(试题版)

2019年深国交G1入学考试复习专题:二次函数的最值(试题版)

2019年深国交G1入学考试复习专题:二次函数的最值一.选择题(共15小题)22或C或或2.已知二次函数的图象y=ax2+bx+c(0≤x≤3)如图.关于该函数在所给自变量取值范围内,下列说法正确的是()22﹣D﹣22225.二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y最大值=﹣(t﹣3)2+2,则t的取值范27.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()C210.小聪、小明、小伶、小俐四人共同探究代数式2x2﹣4x+6的值的情况.他们作了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小俐负11.y=x2+(1﹣a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取22222C15.正实数x,y满足xy=1,那么的最小值为()C二.填空题(共8小题)16.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.17.已知实数x、y满足x2﹣2x+4y=5,则x+2y的最大值为.18.若的最大值为a,最小值为b,则a2+b2的值为.19.正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM=时,四边形ABCN的面积最大.20.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.21.若二次函数y=x2+2x﹣3(0≤x≤3)的最小值为,最大值为.22.函数y=﹣+的最大值为.23.已知二次函数y=(x﹣1)2+(x﹣3)2,当x=时,函数达到最小值.。

2019年深国交G1入学数学考试真题精选3:数与式训练

2019年深国交G1入学数学考试真题精选3:数与式训练

2
A.8 B.9 ( C.16 ) D.17 20、如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中 M 与 m、n 的关系是( )
A.M=mn
B.M=n(m+1)
C.M=mn+1
D.M=m(n+1)
21、已知 m2-m=6,则 1-2m2+2m=

22、观察下列各式的计算过程:
等式,则这个等式是( )
A.a2-b2=(a+b)(a-b)
B.(a+b)2=a2+2ab+b2
1
C.(a-b)2=a2-2ab+b2
D.(a+2b)(a-b)=a2+ab-2b2
13、如图 1 的长为 a,宽为 b(a>b)的小长方形纸片,按图 2 的方式不重叠地放在矩形 ABCD
内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为
甲图中阴影部分的面积 26、如图,设 k= 乙图中阴影部分的面积 (a>b>0),则有( )
A.k>2
B.1<k<2
C. 1 <k<1 2
D.0<k< 1 2
3
27.使代数式 2x 1 有意义的 x 的取值范围是

3 x
28.无论 x 取任何实数,代数式 x2 6x m 都有意义,则 m 的取值范围为
(-1)•i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数 n,我们可以得到 i4n+1=i4n•i=(i4)n•i=i,
同理可得 i4n+2=-1,i4n+3=-i,i4n=1.那么 i+i2+i3+i4+…+i2012+i2013 的值为( )

2019年深国交G1入学考试复习专题:相似三角形以及锐角三角函数(试题版)

2019年深国交G1入学考试复习专题:相似三角形以及锐角三角函数(试题版)

2019年深国交G1入学考试复习专题:相似三角形以及锐角三角函数一.填空题(共30小题)1.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.2.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.3.如图,长方体的底面是边长为1cm 的正方形,高为3cm.如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要cm.4.如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为cm.5.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)6.如图,将等腰直角△ABC沿斜边BC方向平移得到△A1B1C1.若AB=3,图中阴影部分面积为2,则BB1=.7.在直角坐标系中,已知点P(﹣3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是.8.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OP n(n为正整数),则点P6的坐标是;△P5OP6的面积是.9.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.10.如图,边长为6的正方形ABCD绕点B按顺时针方向旋转30°后得到正方形EBGF,EF 交CD于点H,则FH的长为(结果保留根号).11.如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且∠AOB=90°,则tan∠OAB的值为.12.如图,从点A(0,2)发出一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为.13.如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S n=(用含n的式子表示).14.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为.15.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影长度在A处为米,在B处为米.16.如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且AD=AB,则△ADE的周长与△ABC的周长的比为.17.小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米.若此时他的弟弟的影子长为1.6米,则弟弟的身高为米.18.李老师从拉面的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB,对折后(点A与B重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB上的,均变成,变成1,等).那么在线段AB上(除A,B)的点中,在第二次操作后,恰好被拉到与1重合的点所对应的数之和是.19.如图,在△ABC中DE∥BC,若DE=2,BC=3,则S三角形ADE:S四边形DBEC.20.将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为.21.若,则=.22.如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=.23.在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,,则AC 的长是.24.观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)=.25.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣;因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣;猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于.26.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,,则tan∠B 的值为.27.如图,∠AOB=30°,过OA上到点O的距离为1,3,5,7,…的点作OA的垂线,分别与OB相交,得到如图所示的阴影梯形,它们的面积依次记为S1,S2,S3,….则:(1)S1=;(2)通过计算可得S2009=.28.如图,在正方形网格中,∠AOB的正切值是.29.如图,一艘海轮位于灯塔P的东北方向,距离灯塔40海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为海里(结果保留根号).30.⊙O的半径OA=2,弦AB、AC的长分别为一元二次方程x2﹣(2+2)x+4=0的两个根,则∠BAC的度数为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【20】同学们肯定天天阅读报纸吧?我国的报纸一般都有一个共同的特征:每次对折后,所得的长方形和原长方形相似,问这些报纸的长和宽的比值是多少?
答案: ∶1.
【21】用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.
答案:C
【13】如图1所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )
答案:C
【14】如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,AD=BC.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是( )
A.1B.2
C.3D.4
【18】如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于( ).
A. B. C. D.
答案:A
六.折叠和剪切的应用
【19】将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
答案:D
【11】如图,把矩形ABCD对折,折痕为MN(图甲),再把B点叠在折痕MN上的处。得到(图乙),再延长交AD于F,所得到的是()
A.等腰三角形B.等边三角形
C.等腰直角三角形D.直角三角形
答案:B
【12】将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
答案:D
五.折叠后得结论
【15】亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”
答案:180
【16】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则与之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()
答案:36°
二.折叠后求面积
【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为( )
A.4B.6C.8D.10
答案:C
【5】如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是
A.矩形 B.三角形 C.梯形 D.菱形
答案:D
【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是( )
A. B. C. D.
答案:D
【10】小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()
(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程 的两个实数根,试求出原矩形纸片的面积.
答案:B
三.折叠后求长度
【7】如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且 ,则CE的长是( )
(A) (B)
(C) (D)
答案:D
四.折叠后得图形
【8】将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )
答案:C
【2】如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )
A.50° B.55° C.60° D.65°
答案:A
【3】用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.
A.2 B.4 C.8 D.10
答案:B
【6】如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm。操作:
(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c。则△GFC的面积是( )
A.1cm2B.2 cm2C.3 cm2D.4cm2
2019年深国交G1入学考试数学复习资料:创新题1(含答案)
-------折叠剪切问题
折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题.
一.折叠后求度数
【1】将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为( )
A.600B.750C.900D.950
A.B.
C.D.
答案:B
【17】从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )
A.a2–b2=(a+b)(a-b) B.(a–b)2=a2–2ab+b2
C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)
答案:A
答案:(1)如图
(2)由题可知AB=CD=AE,又BC=BE=AB+AE
∴BC=2AB,即
由题意知 是方程 的两根

消去a,得
解得 或
经检验:由于当 , ,知 不符合题意,舍去.
符合题意.

答:原矩形纸片的面积为8cm2.
【22】电脑CPU蕊片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄型圆片,叫“晶圆片”。现为了生产某种CPU蕊片,需要长、宽都是1cm的正方形小硅片若干。如果晶圆片的直径为10.05cm。问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由。(不计切割损耗)
(1)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;
(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;, , 后证之.
(2)注意到△DEM∽△CMG,求出△CMG的周长等于4a,从而它与点M在CD边上的位置无关.
相关文档
最新文档