微分方程问题的解法

合集下载

微分方程的解法

微分方程的解法

微分方程的解法微分方程是数学中的重要概念,被广泛应用于各个领域。

解微分方程是找到满足给定条件的函数表达式或数值解的过程。

在本文中,我将介绍微分方程的几种解法,并说明其具体应用。

一、一阶微分方程的解法一阶微分方程是最基础的微分方程类型,通常形式为dy/dx=f(x,y),其中f(x,y)是已知函数。

下面介绍两种常见的一阶微分方程的解法:1. 分离变量法:分离变量法适用于可以将微分方程中的变量分开的情况。

具体步骤如下:(1) 将方程变形,将含有dy和dx的项分别放在等式两边;(2) 将等式两边分别关于y和x进行积分;(3) 解得y的表达式,得到方程的通解。

2. 齐次微分方程的解法:齐次微分方程是形如dy/dx=f(y/x)的微分方程。

具体步骤如下:(1) 令v=y/x,将原微分方程化为关于v的方程;(2) 求得关于v的方程的通解;(3) 代入v=y/x,得到原微分方程的通解。

二、二阶微分方程的解法二阶微分方程是更加复杂的微分方程类型,形如d²y/dx²=f(x,y,dy/dx)。

下面介绍两种常见的二阶微分方程的解法:1. 特征方程法:特征方程法适用于二阶常系数线性齐次微分方程。

具体步骤如下:(1) 假设原方程的解为y=e^(rx),代入原方程,求得r的值;(2) 根据r的不同情况分别求得通解。

2. 变量替换法:变量替换法适用于二阶非齐次微分方程,通过适当的变量替换将原方程化简为一阶方程。

具体步骤如下:(1) 假设y=v/u,将原方程变形;(2) 求出v和u的关系式,将原方程转化为v和u的一阶方程组;(3) 解一阶方程组,得到u的表达式;(4) 代入y=v/u,得到原方程的通解。

三、应用案例微分方程作为数学工具,在物理学、生物学、工程学等领域有广泛的应用。

以下是一些实际应用案例:1. 弹簧振动方程:假设弹簧的振动满足y''+k/m*y=0,其中k是弹簧的劲度系数,m是弹簧的质量。

微分方程组求解方法

微分方程组求解方法

微分方程组求解方法微分方程组是描述自然现象的一种重要数学模型,可以用于解决许多实际问题。

解微分方程组有许多不同的方法,常见的有直接法、变量分离法、常数变易法、齐次方程法、二阶线性常系数齐次微分方程法等等。

接下来,我将详细介绍这些常见的微分方程组求解方法。

1.直接法:如果能直接从方程组中解出一个或多个未知函数,则可以直接得到微分方程组的解。

但是这种方法只适用于少数情况,大多数微分方程组需要使用其他方法求解。

2. 变量分离法:对于一个可分离变量的微分方程组,可以通过将方程两边变量分离,然后分别对两边进行积分的方式得到解。

例如,对于方程组dy/dx = f(x)g(y),可以将方程两边同时除以g(y),然后将变量分离即可得到解。

3. 常数变易法:对于一般的非齐次微分方程组,可以通过令未知函数的系数为常数来转化为齐次微分方程组来求解。

例如,对于方程组dy/dx = f(x) + g(x)y,可以令g(x)为常数,然后将方程组转化为齐次微分方程组dy/dx = f(x) + gy,再使用其他方法求解。

4. 齐次方程法:对于齐次微分方程组,可以使用变量代换的方式将其转化为一阶线性常系数齐次微分方程组求解。

例如,对于方程组dy/dx = f(x)/g(x),可以令y = ux,然后将方程组转化为一阶线性常系数齐次微分方程组du/dx + (u - f(x)/g(x))/x = 0,再使用其他方法求解。

5. 二阶线性常系数齐次微分方程法:对于二阶线性常系数齐次微分方程组,可以使用特征方程法求解。

首先,假设方程组的解为y =e^(mx),然后将其代入方程组中得到特征方程,求解特征方程的根,然后根据根的类型(不同、相等、复数根)确定方程组的通解。

在实际问题中,常常需要将微分方程组转化为矩阵形式进行求解。

例如,对于二阶线性常系数齐次微分方程组,可以将其转化为矩阵方程Dy=Ay,其中D是微分算子,A是常数矩阵,y是未知函数向量。

微分方程几种求解方法

微分方程几种求解方法

微分方程几种求解方法微分方程是数学中重要的概念之一,用于描述变量之间的函数关系。

求解微分方程是数学和工程中的常见问题。

根据问题的性质和条件,有多种方法可以用来求解微分方程,下面将介绍几种常见的求解方法。

1.变量分离法:变量分离法是求解一阶常微分方程的常用方法。

它的基本思想是将微分方程中的变量分离,然后进行积分。

具体步骤是将微分方程写成形式dy/dx=f(x)g(y),然后将方程变换为g(y)dy=f(x)dx,再两边同时积分,即可得到方程的解。

这种方法适用于一阶常微分方程,如y'=f(x)。

2.齐次方程方法:齐次方程是指微分方程中不包含任意常数项的方程。

对于齐次方程可以使用变量代换法进行求解。

具体的步骤是将微分方程中y的函数形式换成u,然后进行代换,将微分方程变为可分离变量的形式。

然后用变量分离法来求解,最后再进行反代还原,得到原方程的解。

这种方法适用于一阶齐次常微分方程,如dy/dx=f(y/x)。

3.线性方程方法:线性微分方程是指微分方程中只有一阶导数,并且函数关系是线性的。

线性方程可以使用常数变易法或者待定系数法来进行求解。

常数变易法的基本思想是假设方程的解具有特定的形式,然后将其带入方程,通过确定待定的常数来求解。

待定系数法的基本思想是假设方程的解是一组形式已知的函数的线性组合,然后通过确定待定系数来求解。

这些方法适用于一阶线性常微分方程,如dy/dx+a(x)y=b(x)。

4.积分因子法:积分因子法是一种用于求解一阶非齐次线性常微分方程的方法。

它的基本思想是通过引入一个合适的因子,将一阶非齐次线性微分方程转化为恰当微分方程,从而利用变量分离法来求解。

具体步骤是先将非齐次方程写成标准形式dy/dx+p(x)y=q(x),然后通过选择合适的积分因子μ(x)来将方程转为恰当微分方程(即满足(dμ(x)/dx)y+p(x)μ(x)=q(x)),再对该恰当微分方程进行积分,即可得到原方程的解。

各类微分方程的解法

各类微分方程的解法

各类微分方程的解法一、常微分方程的解法。

1. 分离变量法。

分离变量法是解常微分方程的一种常见方法,适用于一阶微分方程。

其基本思想是将微分方程中的变量分离开来,然后对两边分别积分得到解。

例如,对于形如dy/dx = f(x)g(y)的微分方程,可以将其化为dy/g(y) = f(x)dx,然后对两边积分得到解。

2. 积分因子法。

积分因子法适用于一阶线性微分方程,通过求解积分因子来将微分方程化为恰当微分方程,进而求解。

其基本思想是通过乘以一个适当的函数来使得微分方程的系数函数具有某种特殊的性质,使得微分方程变为恰当微分方程。

3. 特征方程法。

特征方程法适用于二阶线性常系数齐次微分方程,通过求解特征方程来得到微分方程的通解。

其基本思想是将二阶微分方程化为特征方程,然后求解特征方程得到微分方程的通解。

4. 变量替换法。

变量替换法是一种常见的解微分方程的方法,通过引入新的变量替换原微分方程中的变量,从而将原微分方程化为更简单的形式,然后求解。

例如,对于形如dy/dx = f(ax+by+c)的微分方程,可以通过引入新的变量u=ax+by+c来简化微分方程的形式,然后求解得到解。

二、偏微分方程的解法。

1. 分离变量法。

分离变量法同样适用于偏微分方程,其基本思想是将偏微分方程中的变量分离开来,然后对各个变量分别积分得到解。

例如,对于形如∂u/∂t = k∂^2u/∂x^2的一维热传导方程,可以将其化为∂u/∂t = k∂^2u/∂x^2,然后对各个变量分别积分得到解。

2. 特征线法。

特征线法适用于一些特殊的偏微分方程,通过引入特征线变量来化简偏微分方程的形式,然后求解。

例如,对于一维波动方程∂^2u/∂t^2 = c^2∂^2u/∂x^2,可以通过引入特征线变量ξ=x-ct和η=x+ct来化简方程的形式,然后求解得到解。

3. 分析法。

分析法是一种常见的解偏微分方程的方法,通过分析偏微分方程的性质和特征来求解。

微分方程常见题型解法

微分方程常见题型解法

微分方程常见题型攻略一、一阶微分方程1.可分离变量的微分方程及或化为可分离变量的微分方程(齐次)(略)2.一阶线性微分方程(1)一阶线性齐次微分方程:0)( y x P y 法一:分离变量,积分;法二:套公式dxx P Ce y )(.(2)一阶线性非齐次微分方程:)()(x Q y x P y 法一:常数变易法①先求出对应齐次微分方程的通解 dxx P Ce y )(;②常数变易(设原方程的通解为) dx x P e x u y )()(;③代入原方程求出)(x u 即得原方程的通解。

法二:公式法])([)()(C dx e x Q e y dx x P dx x P 。

例1【2011年考研】微分方程x ey y xcos 满足条件0)0( y 的解为_________。

解:此为一阶线性微分方程,其中1)( x P ,x ex Q xcos )( ,通解为])([)()(C dx e x Q e y dx x P dx x P ]cos [11C dx xe e e dxx dx ]cos [C dx xe e e x x x ]cos [C xdx e x )(sin C x e x 。

由初始条件0)0( y ,得0 C ,故所求特解为x ey xsin 。

注:对于微分方程,经常以积分方程的形式出现,即给出的方程中含有积分上限函数。

(1)对于积分方程,方法是两边同时求导,化为微分方程。

但是在求导过程中要注意,如果两边同时求一阶导后还是含有积分上限函数,那么需要再一次求导,直到方程中不再求有积分上限函数,并且也要注意有时候需要对方程进行恒等变换后再求导。

(2)注意积分方程中隐含的初始条件。

例2已知函数)(x f 满足1)(21)(1x f du ux f ,1)(10 dx x f ,求)(x f 。

解:设ux t ,则dt x du 1,于是 10)(du ux f xdt t f x 0)(1。

微分方程的数值解法

微分方程的数值解法

微分方程的数值解法微分方程是描述自然界中众多现象和规律的重要数学工具。

然而,许多微分方程是很难或者无法直接求解的,因此需要使用数值解法来近似求解。

本文将介绍几种常见的微分方程数值解法。

1. 欧拉方法欧拉方法是最简单的数值解法之一。

它将微分方程转化为差分方程,通过计算离散点上的导数来逼近原方程的解。

欧拉方法的基本思想是利用当前点的导数值来估计下一个点的函数值。

具体步骤如下:首先,将自变量区间等分为一系列的小区间。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,根据导数的定义,计算每个小区间上函数值的斜率。

最后,根据初始函数值和斜率,递推计算得到每个小区间上的函数值。

2. 龙格-库塔方法龙格-库塔方法是一种常用的高阶精度数值解法。

它通过进行多次逼近和修正来提高近似解的准确性。

相比于欧拉方法,龙格-库塔方法在同样的步长下可以获得更精确的解。

具体步骤如下:首先,确定在每个小区间上的步长。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,根据当前点的导数值,使用权重系数计算多个中间点的函数值。

最后,根据所有中间点的函数值,计算出当前点的函数值。

3. 改进欧拉方法(改进的欧拉-克罗默法)改进欧拉方法是一种中阶精度数值解法,介于欧拉方法和龙格-库塔方法之间。

它通过使用两公式递推来提高精度,并减少计算量。

改进欧拉方法相对于欧拉方法而言,增加了一个估计项,从而减小了局部截断误差。

具体步骤如下:首先,确定在每个小区间上的步长。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,利用欧拉方法计算出中间点的函数值。

最后,利用中间点的函数值和斜率,计算出当前点的函数值。

总结:微分方程的数值解法为我们研究和解决实际问题提供了有力的工具。

本文介绍了欧拉方法、龙格-库塔方法和改进欧拉方法这几种常见的数值解法。

选择合适的数值解法取决于微分方程的性质以及对解的精确性要求。

在实际应用中,我们应该根据具体情况选择最合适的数值解法,并注意控制步长以尽可能减小误差。

解微分方程的方法

解微分方程的方法微分方程是数学中的重要概念,它在物理、工程、经济学等领域都有着广泛的应用。

解微分方程是数学分析中的一个重要课题,本文将介绍解微分方程的几种常见方法。

一、分离变量法。

分离变量法是解微分方程最常用的方法之一。

对于形如dy/dx=f(x)g(y)的微分方程,我们可以通过将方程两边分别关于x和y进行积分来求解。

具体步骤如下:1. 将方程写成dy/g(y)=f(x)dx的形式;2. 对两边同时积分,得到∫(1/g(y))dy=∫f(x)dx;3. 对两边进行积分,得到解函数y(x)。

二、特征方程法。

特征方程法适用于形如dy/dx+P(x)y=Q(x)的一阶线性微分方程。

具体步骤如下:1. 将方程写成dy/dx+P(x)y=Q(x)的形式;2. 求解特征方程r+P(x)=0,得到特征根r;3. 根据特征根的不同情况,得到通解形式。

三、常数变易法。

常数变易法适用于形如dy/dx+P(x)y=Q(x)的一阶线性微分方程。

具体步骤如下:1. 将方程写成dy/dx+P(x)y=Q(x)的形式;2. 通过乘以一个适当的积分因子来将方程转化为恰当微分方程;3. 求解恰当微分方程,得到通解形式。

四、变量分离法。

变量分离法适用于形如dy/dx=f(x)g(y)的微分方程。

具体步骤如下:1. 将方程写成dy/g(y)=f(x)dx的形式;2. 对两边同时积分,得到∫(1/g(y))dy=∫f(x)dx;3. 对两边进行积分,得到解函数y(x)。

五、常系数线性微分方程的求解。

常系数线性微分方程是指系数为常数的线性微分方程。

求解常系数线性微分方程的方法包括特征方程法、常数变易法等。

总结:解微分方程的方法有很多种,本文介绍了分离变量法、特征方程法、常数变易法、变量分离法以及常系数线性微分方程的求解方法。

在实际问题中,选择合适的方法来解微分方程是非常重要的,希望本文的介绍能够帮助读者更好地理解和应用微分方程的解法。

求解微分方程的常用方法

求解微分方程的常用方法微分方程是数学的一个重要领域,在各个科学领域中都有着广泛的应用。

求解微分方程是解决实际问题的重要方法之一。

本文将介绍一些求解微分方程的常用方法。

一、解析解法解析解法是指用变量分离、母函数法、变量代换等方法,将微分方程转化为一些已知函数的方程,从而求得方程的解。

变量分离法是一种常见的解析解法。

对于形如y'=f(x)g(y)的微分方程,可以将其变为dy/g(y)=f(x)dx的形式,进而通过积分得到y的解。

母函数法是将微分方程变成一个恒等式的形式,从而求出微分方程的通解。

变量代换法则是通过适当的变量代换,使微分方程变为已知形式的微分方程,进而求出其解。

二、初值问题法初值问题法通常用于求解一阶微分方程的初值问题。

该方法的基本思路是先求得微分方程的通解,然后利用给定的初始条件(即初值),确定通解中的任意常数,从而得到特解。

三、数值解法数值解法是指将微分方程转化为一个差分方程,利用数值方法求得近似解。

数值解法的基本思路是将区间分为若干小段,然后在每一小段上通过近似计算求得微分方程的解。

常用的数值方法包括欧拉法、梯形法、龙格-库塔法等。

这些方法的特点是简单易实现,但对于复杂的微分方程而言,计算量较大,精度也有限。

四、级数解法级数解法是将微分方程的解表示为幂级数的形式,从而求解微分方程。

这种方法的思路是假设微分方程的解为幂级数的形式,然后代入微分方程得到一组关于幂级数系数的递推公式,进而求得幂级数的系数,并由此得出微分方程的解。

五、特殊函数解法特殊函数解法是指利用已知的特殊函数求解微分方程。

一些常见的特殊函数包括贝塞尔函数、连带勒让德函数、超几何函数等。

这些特殊函数有着特殊的性质,可以用于求解某些类型的微分方程。

例如,我们可以用贝塞尔函数求解振动问题中的一些微分方程。

六、变分法变分法是一种通过变分原理,求解微分方程的方法。

变分法需要通过变分原理,利用根据函数微小变化的变分量所对应的增量来导出微分方程的一些重要性质。

微分方程解法总结

微分方程解法总结微分方程是数学中的重要概念,广泛应用于自然科学和工程技术领域。

解微分方程的方法繁多,但主要可以归纳为以下几种常见的解法:分离变量法、齐次方程法、一阶线性常微分方程法、常系数线性齐次微分方程法、变量可分离的高阶微分方程法和常系数高阶线性齐次微分方程法等。

一、分离变量法分离变量法是解微分方程最基本的方法之一,适用于可以把方程中的变量分离开的情况。

其基本思想是将微分方程两边进行分离,将含有未知函数和其导数的项移到方程的一边,含有自变量的项移到另一边,并对两边同时进行积分。

最后,再通过反函数和常数的替换,得到完整的解。

二、齐次方程法齐次方程法适用于微分方程中,当未知函数和其导数之间的比值是关于自变量的函数时,可以通过引入新的变量进行转换,将微分方程转化为可分离变量或者常微分方程的形式。

三、一阶线性常微分方程法一阶线性常微分方程可以表示为dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数。

解这类方程需要使用一阶线性常微分方程解的通解公式,即y=e^(-∫p(x)dx)*∫[e^(∫p(x)dx)]q(x)dx。

通过对p(x)和q(x)的积分以及指数函数的运用,可以得到最终的解。

四、常系数线性齐次微分方程法常系数线性齐次微分方程可以表示为ay'' + by' + cy = 0,其中a、b、c为常数。

解这类方程需要使用特征根的方法。

通过假设y=e^(mx)的形式,将其带入方程中,并解出方程的特征根m1和m2,再根据数学推导,可以得到最终的通解。

五、变量可分离的高阶微分方程法变量可分离的高阶微分方程适用于可以将高阶微分方程转化为一阶微分方程的情况。

其基本思想是对微分方程两边进行合理的转化和变量替换,将高阶微分方程转化为一阶微分方程的形式,然后使用分离变量法进行求解。

六、常系数高阶线性齐次微分方程法常系数高阶线性齐次微分方程可以表示为ay^n + by^(n-1) + ... + cy = 0,其中a、b、c为常数。

微分方程解法总结

微分方程解法总结微分方程(DifferentialEquations)是数学中一类重要的运筹学问题,也是许多应用数学领域中最重要的数学工具之一。

微分方程可以应用在物理学、化学、工程学、生物学及经济学等学科中,在多学科领域中都发挥了重要作用。

一般来说,微分方程可以用一组方程来描述某种函数的变化,其中包括两个或更多的未知函数。

常用的微分方程解法包括,比如直接法、可积性法、积分变换法等。

1.接法直接法是指从微分方程的定义出发,直接寻找微分方程的解的方法。

一般来说,将定义域上的某个变量作为一个变量来代替原方程中的其它变量,从而将原方程变为一个关于这个变量的微分方程,再解此新的微分方程,最终得到需要的解。

2.积性法可积性法,即牛顿-拉夫逊定理,是指依据微分方程中的微分操作,运用积分学手段求出微分方程的解的方法。

牛顿-拉夫逊定理具有很强的通用性,几乎可以用于解决所有的不定积分问题,而且可以在多个变量之间进行推导。

3.分变换法积分变换法是一种特殊的可积性法,通过运用微积分中的奇偶变换,由傅里叶变换求出微分方程的解。

这种方法主要用于解决有限区间上的微分方程,既可以解决常规的微分方程,也可以解决非线性微分方程。

4.值方法数值方法是指用计算机从解析计算的角度进行微分方程的解法。

数值方法可分为两类,一类是有限差分的方法,另一类是可积性方法。

有限差分方法是在有限域上利用数值误差求解微分方程,它主要用于解决常微分方程组和椭圆型方程;可积性方法是指基于可积性定理,将微分方程转变为积分形式,再采用计算机数值解法,求出积分方程的解的方法。

总之,上述四类解法分别具有自己的优势和不足,因此要采取最适合的方式来解决某一类微分方程。

此外,在进行解微分方程的过程中,要进行精确的数学推导,以确保最终得到的解析解是准确可靠的。

通过上述分析,可以清楚地了解微分方程解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 例:
>> syms t x >> x=dsolve('Dx=x*(1-x^2)') x= [ 1/(1+exp(-2*t)*C1)^(1/2)] [ -1/(1+exp(-2*t)*C1)^(1/2)]
>> syms t x; x=dsolve('Dx=x*(1-x^2)+1') Warning: Explicit solution could not be found; implicit solution returned. > In D:\MATLAB6p5\toolbox\symbolic\dsolve.m at line 292 x= t-Int(1/(a-a^3+1),a=``..x)+C1=0 故只有部分非线性微分方程有解析解。
分别处理系数,如: >> [n,d]=rat(double(vpa(-445/26*cos(1)-51/13*sin(1)-69/2)))] ans = -8704 185 % rat()最接近有理数的分数
判断误差: >> vpa(-445/26*cos(sym(1))-51/13*sin(1)-69/2+8704/185) ans = .114731975864790922564144636e-4
>> y=dsolve(['D4y+10*D3y+35*D2y+50*Dy+24*y=',... '87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1) ... +10'], 'y(0)=3', 'Dy(0)=2', 'D2y(0)=0', 'D3y(0)=0')
(4)
(t ) 7 D4 y 7
描述条件时
y(2) 3 D2 y(2) 3
例:
>> syms t; u=exp(-5*t)*cos(2*t+1)+5; >> uu=5*diff(u,t,2)+4*diff(u,t)+2*u uu = 87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1)+10 >> syms t y; >> y=dsolve(['D4y+10*D3y+35*D2y+50*Dy+24*y=',... '87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1)+10'])
7.2 微分方程问题的数值解法
7.2.1 微分方程问题算法概述
微分方程求解的误差与步长问题:
7.2.2 四阶定步长Runge-Kutta算法 及 MATLAB 实现
function [tout,yout]=rk_4(odefile,tspan,y0) %y0初值列向量 t0=tspan(1); th=tspan(2); if length(tspan)<=3, h=tspan(3); % tspan=[t0,th,h] else, h=tspan(2)-tspan(1); th=tspan(end); end %等间距数组 tout=[t0:h:th]'; yout=[]; for t=tout' k1=h*eval([odefile ‘(t,y0)’]); % odefile是一个字符串变 量,为表示微分方程的文件名。 k2=h*eval([odefile '(t+h/2,y0+0.5*k1)']); k3=h*eval([odefile '(t+h/2,y0+0.5*k2)']); k4=h*eval([odefile '(t+h,y0+k3)']); y0=y0+(k1+2*k2+2*k3+k4)/6; yout=[yout; y0']; end %由效果看,该算法不是一个较好的方法。
7.2.3 一阶微分方程组的数值解
7.2.3.1 四阶五级Runge-差向量调节步长,此为自动变步长方法。 四阶五级RKF算法有参量系数表。
7.2.3.2 基于 MATLAB 的微分方程
求解函数 格式1: 直接求解 [t,x]=ode45(Fun,[t0,tf],x0)
如果用推导的方法求Ci的值,每个系数的解析解至少要写出10 数行,故可采用有理式近似 的方式表示. >> vpa(y,10) %有理近似值 ans = 1.196361839*exp(-5.*t)+.4166666667.4785447354*sin(t)*cos(t)*exp(-5.*t)-.4519262218e1*cos(2.*t)*exp(-5.*t)-2.392723677*cos(t)^2*exp(5.*t)+.2259631109*sin(2.*t)*exp(-5.*t)-473690.0893*exp(3.*t)+31319.63786*exp(-2.*t)-219.1293619*exp(1.*t)+442590.9059*exp(-4.*t)
格式2: 带有控制参数 [t,x]=ode45(Fun,[t0,tf],x0,options) 格式3: 带有附加参数 [t,x]=ode45(Fun,[t0,tf],x0,options,p1,p2,…)
第七章 微分方程问题的解法
• 微分方程的解析解方法 • 微分方程问题的数值解法
–微分方程问题算法概述 –四阶定步长 Runge-Kutta算法及 MATLAB 实现 –一阶微分方程组的数值解 –微分方程转换
• 特殊微分方程的数值解
7.1 微分方程的解析解方法
• 格式: y=dsolve(f1, f2, …, fm) • 格式:指明自变量 y=dsolve(f1, f2, …, fm ,’x’) fi即可以描述微分方程,又可描述初始条件 或边界条件。如: 描述微分方程时 y
>> y=dsolve(['D4y+10*D3y+35*D2y+50*Dy+24*y=',...
'87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1) + ... 10'],'y(0)=1/2','Dy(pi)=1','D2y(2*pi)=0','Dy(2*pi)=1/5');
相关文档
最新文档