初中数学教案大全
九年级数学全章教案(优秀7篇)

九年级数学全章教案(优秀7篇)九年级数学优秀教案篇一教学目标1、理解用配方法解一元二次方程的基本步骤。
2、会用配方法解二次项系数为1的一元二次方程。
3、进一步体会化归的思想方法。
重点难点重点:会用配方法解一元二次方程。
难点:使一元二次方程中含未知数的项在一个完全平方式里。
教学过程(一)复习引入1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”。
2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?(二)创设情境现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?怎样解这类方程:2x2-4x-6=0(三)探究新知让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。
让学生进一步体会化归的思想。
(四)讲解例题1、展示课本P.14例8,按课本方式讲解。
2、引导学生完成课本P.14例9的填空。
3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。
(五)应用新知课本P.15,练习。
(六)课堂小结1、用配方法解一元二次方程的基本步骤是什么?2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。
3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。
4、按图1—l的框图小结前面所学解一元二次方程的算法。
(七)思考与拓展不解方程,只通过配方判定下列方程解的情况。
(1)4x2+4x+1=0;(2)x2-2x-5=0;(3)–x2+2x-5=0;[解]把各方程分别配方得(1)(x+)2=0;(2)(x-1)2=6;(3)(x-1)2=-4由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。
初中数学优秀教案大全5篇

初中数学优秀教案大全5篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
这里给大家分享一些关于初中数学优秀教案大全,方便大家学习。
初中数学优秀教案大全篇1一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。
首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。
通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。
学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。
②合并同类项法则③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。
这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
初中数学教案(优秀8篇)

初中数学教案(优秀8篇)初中数学优秀教案篇一一、教学目标:1、知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2、能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3、情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1、引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2、数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0.指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.用字母a表示数,则绝对值的代数意义可以表示为:指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3、例题精讲例1.求8,-8的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|。
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3例3.已知一个数的绝对值等于2,求这个数。
初中数学教案(精选13篇)

初中数学教案初中数学教案一、什么是教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。
二、初中数学教案(精选13篇)作为一名教学工作者,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。
那么写教案需要注意哪些问题呢?以下是小编精心整理的初中数学教案(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学教案1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,—3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:5、过点(0,2)且与直线y=3x平行的直线是:6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。
八年级数学教案(最新6篇)

八年级数学教案(最新6篇)八年级数学教案篇一一、教学目标①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
二、教学重点与难点重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
三、教学准备卡片及多媒体课件。
四、教学设计(一)情境引入教科书第161页问题:木星的质量约为1。
90×1024吨,地球的质量约为5。
98×1021吨,你知道木星的质量约为地球质量的多少倍吗?重点研究算式(1。
90×1024)÷(5。
98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
(二)探究新知(1)计算(1。
90×1024)÷(5。
98×1021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的。
除法法则的推导,应按从具体到一般的步骤进行。
探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。
在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。
重视算理算法的渗透是新课标所强调的。
(三)归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
初中数学教案(精选15篇)

初中数学教案(精选15篇)初中数学教案 1学习目标:1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力学习重难点:重点:矩形的性质定理难点:灵活应用矩形的性质进行有关的计算与证明课前准备教具准备:活动平行四边形框架、教师准备PPT课件教学过程:知识回顾1、什么叫平行四边形?2、平行四边形有哪些性质?【设计意图】:通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫合作探究一:矩形的定义阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?用四根木条制作一个平行四边形教具。
利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?【设计意图】:通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维归纳:有一个角是直角的平行四边形叫做矩形合作探究二:矩形的性质定理1、自主完成18页的观察与思考,通过实际操作回答提出的问题2、小组合作:完成对性质的证明过程【设计意图】:通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础矩形的性质定理1:矩形的四个角都是直角矩形的性质定理2:矩形的两条对角线相等合作探究三:直角三角形的性质定理3设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB 中一条怎样的特殊线段(BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关系,为什么?【设计意图】:根据图形学生很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法、学生独立完成证明,以培养学生的推理能力、让学生感受数学结论的确定性和证明的`必要性结论:直角三角形斜边上的中线等于斜边的一半例题讲解:例1、矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=6㎝,求矩形对角线AC的长?当堂检测:1、矩形具有而平行四边形不具有的性质()(A)对角相等(B)对边相等(C)对角线相等(D)对角线互相平分2、已知Rt△ ABC中,∠ABC=900,BD是斜边AC上的中线(1)若BD=3㎝,则AC=㎝(2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的长4、工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,使AB=CD,EF=GH;(2)摆放成四边形,则这时窗框的形状是xx,根据的数学道理是xx;(3)将直角尺靠紧窗框的一个角调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是xx,根据的数学道理是xx。
初中七年级数学教案(优秀12篇)

初中七年级数学教案(优秀12篇)七年级数学教案篇一一、素质教育目标(一)知识教学点使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小。
(二)能力训练点逐步培养学生观察、比较、分析、概括等逻辑思维能力。
(三)德育渗透点培养学生良好的学习习惯。
二、教学重点、难点和疑点1、重点:由锐角的正弦值或余弦值,查出这个锐角的大小。
2、难点:由锐角的正弦值或余弦值,查出这个锐角的大小。
3、疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错。
三、教学步骤(一)明确目标1、锐角的。
正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆。
答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大)。
2、若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______。
3、不查表,比较大小:(1)sin20°______sin20°15′;(2)cos51°______cos50°10′;(3)sin21°______cos68°。
学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案。
3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算。
(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值。
反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小。
因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑。
而且通过逆向思维,可能很快会掌握已知函数值求角的方法。
(三)重点、难点的学习与目标完成过程。
例8已知sinA=0.2974,求锐角A。
初中数学优秀教案【精选6篇】

初中数学优秀教案【精选6篇】作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。
那么优秀的教案是什么样的呢?牛牛范文的小编精心为您带来了6篇初中数学优秀教案,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
初中数学优秀教案篇一【教学目标】1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。
2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。
3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。
【教学重点与教学难点】1、重点:多边形的内角和公式。
2、难点:多边形内角和的推导。
3、关键:。
多边形"分割"为三角形。
【教具准备】三角板、卡纸【教学过程】一、创设情景,揭示问题1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力二、探索研究学会新知1、回顾旧知,引出问题:(1)三角形的内角和等于_________。
外角和等于____________(2)长方形的内角和等于_____,正方形的内角和等于__________。
2、探索四边形的内角和:(1)学生思考,同学讨论交流。
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。
)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。
以四边形的内角和作为探索多边形的。
突破口。
(3)引导学生用"分割法"探索四边形的内角和:方法一:连接一条对角线,分成2个三角形:180°+180°=360°从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教案大全【篇一:实用初中数学优秀教案大全】实用初中数学优秀教案大全课题:二元一次方程一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念.难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法; 通过―合作学习‖,使学生认识数学是根据实际的需要而产生发展的观点.四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880.2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.做一做:(1)根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .(2)课本p80练习2. 判定哪些式子是二元一次方程方程.合作学习:活动背景爱心满人间——记求是中学―学雷锋、关爱老人‖志愿者活动.问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人. 团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.并提出注意二元一次方程解的书写方法.试一试:检验下列各组数是不是方程2x=y+1的解:①②③②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.3.合作学习:给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?出示例题:已知二元一次方程 x+2y=8.(1)用关于y的代数式表示x;(2)用关于x的代数式表示y;(3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)4.课堂练习:(1)已知:5xm-2yn=4是二元一次方程,则m+n=;(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;(3) 已知是关于x,y的方程2x+ay=5的一个解,则a= .5.你能解决吗?小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.6.课堂小结:(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);(2)二元一次方程解的不定性和相关性;(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.7.布置作业:(1)教材p82; (2)作业本.教学设计意图:依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.《4.1二元一次方程》教学设计衢州市兴华中学徐勇一、教材的地位与作用《二元一次方程》是九年义务教育课程标准实验教科书浙教版教材七年级下册第四章《二元一次方程组》的第一节。
在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。
本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。
二、教学目标(一)知识与技能:1.了解二元一次方程概念;2.了解二元一次方程的解的概念和解的不唯一性;3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
(二)数学思考:体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
(三)问题解决:初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。
获得求二元一次方程解的思路方法。
(四)情感态度:培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
三、教学重点与难点教学重点:二元一次方程及其解的概念。
教学难点:二元一次方程的概念里―含未知数的项的次数‖的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
四、教法与学法分析教法:情境教学法、比较教学法、阅读教学法。
学法:阅读、比较、探究的学习方式。
五、教学过程(一)创设情境,引入新课从学生熟悉的姚明受伤事件引入。
师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?设姚明投进了x 个两分球,罚进了y个球,可列出方程______。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。
你知道他分别投进几个两分球、几个三分球吗?设易建联投进了x个两分球,y个三分球,可列出方程______。
师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?从而揭示课题。
(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。
另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的―导火索‖,引起学生的学习兴趣,以―我要学‖的主人翁姿态投入学习,而且―会学‖、―乐学‖。
)(二)探索交流,汲取新知1、概念思辩,归纳二元一次方程的特征师:那到底什么叫二元一次方程?(学生思考后回答)师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)师:根据概念,你觉得二元一次方程应具备哪几个特征?活动:你自己构造一个二元一次方程。
快速判断:下列式子中哪些是二元一次方程?③④⑤⑦(设计意图:这一环节是本课设计的重点,为加深学生对―含有未知数的项的次数‖的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对―项的次数‖的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把―项的次数‖形象化。
在归纳二元一次方程特征的时候,引导学生理解―含有未知数的项的次数都是一次‖实际上是说明方程的两边是整式。
在判断的过程中,②⑥⑦是在书本的基础上补充的,②是让学生先认识这种形式,后面出现用关于一个未知数的代数式表示另一个未知数实际上是方程变形;⑥是方程两边都出现了x,强化概念里两个未知数是不一样的;⑦是再次理解―项的次数‖。
)2、二元一次方程解的概念师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。
(学生看书本上的记法)使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。
引导学生看书本,目的是让学生在记法上体会―一对未知数的取值‖的真正含义。
)3、二元一次方程解的不唯一性对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。
)4、如何去求二元一次方程的解例已知方程3x+2y=10(1)当x=2时,求所对应的y 的值;(2)取一个你自己喜欢的数作为x的值,求所对应的y 的值;(3)用含x的代数式表示y;(4)用含y的代数式表示x;(5)当x=-2,0时,所对应的y 的值是多少?(6)写出方程3x+2y=10的三个解.(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成―正迁移‖,引导学生体会―用关于一个未知数的代数式表示另一个未知数‖的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。