山东省济南外国语中学2021届高三11月月考数学试题(含答案解析)

合集下载

山东省济南市外国语学校2020-2021学年高一数学文月考试题含解析

山东省济南市外国语学校2020-2021学年高一数学文月考试题含解析

山东省济南市外国语学校2020-2021学年高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 化简得()A.B.C.D.参考答案:D【考点】向量加减混合运算及其几何意义.【分析】本题考查的知识点是向量加减混合运算及其几何意义,根据向量加法及减法的三角形法则,我们易得﹣+﹣的值.【解答】解:﹣+﹣=﹣﹣=﹣=故选D2. 长方体ABCD - A1B1C1D1中,已知,,棱AD在平面内,则长方体在平面内的射影所构成的图形面积的取值范围是()A. B.C. D.参考答案:A【分析】本题等价于求过BC直线的平面截长方体的面积的取值范围。

【详解】长方体在平面内的射影所构成的图形面积的取值范围等价于,求过BC直线的平面截长方体的面积的取值范围。

由图形知, ,故选A.【点睛】将问题等价转换为可视的问题。

3. 某校高一年级某班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“跑操与健康”的调查,为此将学生编号为1,2…,60,选取的这6名学生的编号可能是()A. B.C. D.参考答案:B分析:根据系统抽样的定义进行求解即可.详解:根据系统抽样的定义,从60名学生中抽取6名学生,编号的间隔为∴编号组成的数列应是公差为10的等差数列,故选:B.点睛! 本题主要考查系统抽样的应用,求出号码间隔是解决本题的关键.4. 给出下列结论,其中判断正确的是 ( )A.数列前项和,则是等差数列B.数列前项和,则C.数列前项和,则不是等比数列D.数列前项和,则ks5u参考答案:D略5. 化简:=( )A.4 B.2π﹣4 C.2π﹣4或4 D.4﹣2π参考答案:A【考点】方根与根式及根式的化简运算.【专题】计算题.【分析】由π<4,得,由此能求出原式的值.【解答】解:=4﹣π+π=4.故选:A.【点评】本题考查根式的化简运算,解题时要注意被开方数的符号,合理地选取公式.6. 下列函数中,是偶函数又在区间(0,+∞)上递增的函数为()A.y=2|x| B.y=|log2x| C.y=x3 D.y=x﹣2参考答案:A【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数思想;综合法;函数的性质及应用.【分析】根据指数函数的单调性,减函数的定义,偶函数定义域的特点,以及奇函数和偶函数的定义便可判断出每个选项的正误,从而找出正确选项.【解答】解:A.y=2|x|为偶函数,且x>0时,y=2|x|=2x为增函数;即该函数在(0,+∞)上递增,∴该选项正确;B.y=|logx|的定义域为{x|x>0},不关于原点对称,不是偶函数,∴该选项错误;C.y=x3为奇函数,∴该选项错误;D.若x∈(0,+∞),x增大时,x﹣2减小,即y减小;∴y=x﹣2在(0,+∞)上单调递减,∴该选项错误.故选:A.【点评】考查指数函数的单调性,单调性的定义,偶函数定义域的特点,以及奇函数和偶函数的定义.7. 如果等差数列中,,那么(A)14 (B)21 (C)28 (D)35参考答案:C8. 下列函数中,是奇函数且在区间(﹣∞,0)上为增函数的是()A.f(x)=lgx B.y=x3 C.y=x﹣1 D.y=e x参考答案:B【考点】函数奇偶性的性质.【分析】根据对数函数和指数函数图象容易判断f(x)=lgx和y=e x都不是奇函数,而根据反比例函数单调性知y=x﹣1在(﹣∞,0)上为减函数,而容易判断y=x3的奇偶性和单调性,从而找出正确选项.【解答】解:A.f(x)=lgx为非奇非偶函数,∴该选项错误;B.y=x3为奇函数,在R上为增函数,则在(﹣∞,0)上为增函数,∴该选项正确;C.y=x﹣1在(﹣∞,0)上为减函数,∴该选项错误;D.y=e x的图象不关于原点对称,不是奇函数,∴该选项错误.故选B.【点评】考查,奇函数的定义,增函数的定义,奇函数图象的对称性,反比例函数的单调性,熟悉指数函数和对数函数的图象,并清楚y=x3的图象.9. 若a,b,c∈R,a>b,则下列不等式成立的是()A. B.a2>b2 C. D.a|c|>b|c|参考答案:C略10. 在△ABC中,角A,B,C所对的边分别为a,b,c,已知,,为使此三角形有两个,则a满足的条件是()A. B. C. D. 或参考答案:C【分析】计算三角形AB 边上的高即可得出结论. 【详解】C 到AB 的距离d=bsinA=3, ∴当3<a <2时,符合条件的三角形有两个,故选C .【点睛】本题考查了三角形解的个数的判断,属于基础题.二、 填空题:本大题共7小题,每小题4分,共28分 11. 设数列为公比的等比数列,若是方程的两根,则_________.参考答案: 18 略12. 执行右图所示程序框图所表达的算法,其输出的结果应为 .参考答案: 4513. 将曲线C 1:y=ln 关于x 轴对称得到的曲线C 2,再将C 2向右平移1个单位得到函数f (x )的图象,则f (+1)=.参考答案:考点: 函数的图象与图象变化. 专题: 函数的性质及应用.分析: 根据函数图象的对称变换和平移变换法则,求出函数f (x )的解析式,将x=+1代入可得答案.解答: 解:将曲线C 1:y=ln 关于x 轴对称得到的曲线C 2,∴曲线C 2的方程为:y=﹣ln ,再将C 2向右平移1个单位得到函数f (x )的图象,∴函数f (x )=﹣ln,∴f(+1)=﹣ln =﹣ln =﹣(﹣)=,故答案为:点评: 本题考查的知识点是函数的图象与图象变化,函数求值,根据函数图象的对称变换和平移变换法则,求出函数f (x )的解析式,是解答的关键.14. 已知 则f(3)= ________.参考答案:2 略15. 下列几个命题中真命题的序号是 .(1)已知函数f (x )的定义域为[2,5),则f (2x ﹣1)的定义域为[3,9);(2)函数是偶函数,也是奇函数;(3)若f(x+1)为偶函数,则f(x+1)=f(﹣x﹣1);(4)已知函数f(x)=x2+2ax+2在区间[﹣5,5]上是单调增函数,则实数a≥5.参考答案:(2)(4)【考点】命题的真假判断与应用.【专题】函数思想;定义法;简易逻辑.【分析】(1)由f(x)的定义域为[2,5),知2x﹣1∈[2,5),解出x的范围即为定义域;(2)求出定义域可得函数为y=0,满足f(x)=f(﹣x),也满足f(x)=﹣f(﹣x),故是偶函数,也是奇函数,(3)由f(x+1)为偶函数,由定义可知f(﹣x+1)=f(x+1);(4)利用二次函数的对称轴可得﹣a≤﹣5,求出a的范围即可.【解答】解:(1)∵f(x)的定义域为[2,5),∴2x﹣1∈[2,5),∴x∈[,3),故错误;(2)的定义域为{1,﹣1},此时y=0,故是偶函数,也是奇函数,故正确;(3)f(x+1)为偶函数,∴f(﹣x+1)=f(x+1),故错误;(4)已知函数f(x)=x2+2ax+2在区间[﹣5,5]上是单调增函数,∴﹣a≤﹣5,∴a≥5,故正确.故正确选项为(2)(4).【点评】考查了符合函数的定义域和奇偶性,二次函数的单调性判断.属于基础题型,应熟练掌握.16. (5分)已知圆C:x2+y2+4y﹣21=0,直线l:2x﹣y+3=0,则直线被圆截的弦长为.参考答案:4考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:把圆的方程化为标准方程,可得圆心坐标与圆的半径,求出圆心到直线的距离,利用勾股定理计算直线l:2x﹣y+3=0被圆C所截得的弦长.解答:圆的标准方程为:x2+(y+2)2=25,∴圆的圆心为(0,﹣2),半径为R=5;∴圆心到直线的距离d==,∴直线l:2x﹣y+3=0被圆C所截得的弦长为2=4.故答案为:4.点评:本题考查了直线与圆的相交弦长问题及点到直线的距离公式,考查学生的计算能力,比较基础.17. 设数列为公比的等比数列,若是方程的两根,则_________.参考答案:18略三、解答题:本大题共5小题,共72分。

高三数学11月月考试卷 理含解析 试题 2

高三数学11月月考试卷 理含解析 试题 2

日期:2022年二月八日。

2021届外国语高三11月月考数学〔理〕试题考前须知:1.在答题之前,先将本人的姓名、准考证号填写上在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的规定的正确位置。

2.选择题的答题:每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的答题:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.在在考试完毕之后以后,请将本试题卷和答题卡一并上交。

一、单项选择题1.集合2{|430}A x x x =-+<, {|21,0}xB y y x ==-≥,那么A B ⋂=〔 〕A .∅B .[)()0,13,⋃+∞ C .A D .B2.,那么不等式,,中不成立的个数为A .0B .1C .2D .3 3.假设是两条不同的直线,是三个不同的平面,那么以下说法中正确的选项是A .∥∥B .∥C .∥∥D .∥∥4.将函数y =sin(x +)的图象上各点的纵坐标不变,横坐标缩短到原来的倍,再向右平移个单位,所得到的图象解析式是A .B .C .D .5.向量,满足,,且在方向上的投影与在方向上的投影相等,那么等于A .1B .C .D .36.古代数学著作?九章算术?有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?〞意思是:“一女子擅长织布,每天织布都是前一天的2倍,她5天一共织布5尺,问这女子每天分别织布多少?〞根据上题的条件,假设要使织布的总尺数不少于30,该女子所需的天数至少为A .7B .8C .9D .10 7.定义域为的函数满足,,假设,且,那么 A . B .C .D .与的大小不确定8.数列满足,且,假设,那么的最小值为A .3B .4C .5D .69.0a >,0b >,且3为3a 与3b的等比中项,那么49aba b+的最大值为A .124 B .125 C .126 D .12710.一个几何体的三视图如下图,该几何体外接球的外表积为A .B .C .D .11.向量,,满足:,,,那么最大值为A .B .C .D .制卷人:打自企; 成别使; 而都那。

山东省济南外国语中学2021届上学期高三年级阶段性检测考试数学试卷

山东省济南外国语中学2021届上学期高三年级阶段性检测考试数学试卷

山东省济南外国语中学2021届上学期高三年级阶段性检测考试数学试卷第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设2{|430}A x x x =-+,{|(32)0}B x ln x =-<,则A .3(1,)2B .(1,3]C .3(,)2-∞ D .3(2,3]2.设i 为虚数单位,复数z 满足(1)2z i i -=,则A .1 B.2 D.3.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4π B .2πC .34π D .π4.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C 的直径,则PA PB ⋅的最小值为 A .2 B .52 C .3 D .725.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏6.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为 A .8 B...7.已知12F F ,是椭圆与双曲线的公共焦点,12PF PF >1PF 2F 1e 2e 21e 2e 2+63()(21)x f x e x ax a =--+1a <0x 0()0f x <a 3,12e ⎡⎫-⎪⎢⎣⎭33,2e 4⎡⎫-⎪⎢⎣⎭33,2e 4⎡⎫⎪⎢⎣⎭3,12e ⎡⎫⎪⎢⎣⎭{}n a 221n n a a p --=2n ≥*n N ∈p {}n a {}n a {}2na (){}1n-{}n a {}kn a *k N ∈k {}n a P ABCD -O MN PA PBPD OMN PCD OMN PD MN 90ON PB⊥453595%()()()()()22n ad bc K a b c d a c b d -=++++25456075()2ln x f x x =()f x x e=12e ()f x ()()()23f ff π<<()21f x k x<-()0,∞+2e k >0,0,25x y x y >>+=(1)(21)x y xy ++xoy ABC ∆(4,0),(4,0)A C -B 221259x y +=sin sin sin A C B +=()3x x 1f x =x 2x+e -e -()()2f a-1+f 2a 0≤、、A B C a b c、、sin sin B C 6cos cos 1,3,B C a =={}n a 123(1)(41)236n n n n a a a na +-+++⋯+=*n N ∈1a 2a {}n a 11n n n b a a +=⋅{}n b n T 12n T <ABCD ,E F ,AD BC DF DFC △C P PF BF ⊥PEF ⊥ABFD DP ABFD YY 22:12x C y +=F F l C ,A BM (2,0)l x AM O OMA OMB ∠=∠()()221ln f x ax a x x=-+-()22ln g x a x x =--a R ∈0a >()f x 21,x e e ⎡⎤∈⎢⎥⎣⎦()()f x g x ≥a A B {|13}A x x =3{|0321}{|1}2B x x x x =<-<=<<∴3(1,)2A B ⋂=A (1)2z i i-=22(1)2211(1)(1)2i i i i z i i i i +-====-+--+||2z ∴=B a π()cos sin 2cos()4=-=+f x x x x π02ππ2π,(k Z)4+≤+≤+∈k x k π3π2π2π,(k Z)44-+≤≤+∈k x k π3ππ3ππ[,][,],,044444-⊂-∴-<-≥-≤∴<≤a a a a a a a a π4sin()(0,0)y A x B A ωϕω=++>>max min =+y A B y A B =-,2π.T ω=ππ()2x k k ωϕ+=+∈Z ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z π3π2π2π()22k x k k ωϕ+≤+≤+∈Z PA PB ⋅2||2PC -||PC PA PB ⋅()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-22223||||||222PC CA PC ⎛⎫=-=-≥- ⎪⎝⎭52=()711212a --1111ABCD A B C D-130AC B ∠=2AB =123BC =122CC =1111ABCD A B C D -1BC 130AC B ∠=2AB =123BC =122CC =222282V =⨯⨯=21e 2e 2+12a 22a 1222F F F P c ==1211222,2F P F P a F P F P a +=-=111222,22F P c a F P c a ∴+=-=122a a c-=22112122242222e a a a c ce c a ca ++=+=()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++2222222222a a cc c a c a +≥⋅=2222a c c a =21e 2e 2∴+21e 2e 2+()()21x g x e x =-()1y a x =-0x ()()01g x a x <-()y g x =()01a g ->=-()312g a e-=-≥-a ()()21x g x e x =-()1y a x =-()y g x =y ax a=-()()21xg x e x '=+12x <-()0g x '<12x >-()0g x '>()y g x =12122g e -⎛⎫-=- ⎪⎝⎭()01g =-()10g e =>y ax a =-()1,0a ()01a g ->=-()31g a a e -=-≥--312a e≤<n a n=()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++{}2n a ()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦(){}1n-{}na p R ∈221n n aa p +-={}2n a ()221kn k n a a kp +-={}kn a *k N ∈k {}n a d m R ∈n a dn m =+()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++{}n a p 221n n a a p +-=()222d n m d d p ++=n *∈N ()2202d m d d p ⎧=⎪⎨+=⎪⎩0p d =={}n a N ,再利用面面平行的判定定理即可证明;选项C ,平移直线,找到线面角,再计算;选项D,因为ON ∥PD PD OMN M N PA PB N ∥AB,又底面为正方形,所以MN ∥CD ,由线面平行的判定定理可得,CD ∥平面OMN,又选项A 得PD ∥平面OMN ,由面面平行的判定定理可得,平面PCD ∥平面OMN ;选项C,因为MN ∥CD ,所以∠ PDC 为直线PD 与直线MN 所成的角,又因为所有棱长都相等,所以∠ PDC=60,故直线PD 与直线MN 所成角的大小为60;选项D ,因底面为正方形,所以222AB AD BD +=,又所有棱长都相等,所以222PB PD BD +=,故PB PD ⊥,又PD ∥ON ,所以ON PB ⊥,故ABD 均正确【点睛】解决平行关系基本问题的3个注意点1注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易忽视. 2结合题意构造或绘制图形,结合图形作出判断. 3会举反例或用反证法推断命题是否正确. 11.BC 【分析】设男生的人数为()5n n N*∈,列出22⨯列联表,计算出2K 的观测值,结合题中条件可得出关于n 的不等式,解出n 的取值范围,即可得出男生人数的可能值 【详解】设男生的人数为()5n n N*∈,根据题意列出22⨯列联表如下表所示:则()221042310557321n n n n n n K n n n n ⨯⨯-⨯==⨯⨯⨯, 由于有95%的把握认为是否喜欢抖音和性别有关,则23.841 6.632K ≤<, 即103.841 6.63221n≤<,得8.066113.9272n ≤<, n N *∈,则n 的可能取值有9、10、11、12,因此,调查人数中男生人数的可能值为45或60 故选:BC【点睛】本题考查利用独立性检验求出人数的可能取值,解题时要列举出22⨯列联表,并结合临界值表列不等式求解,考查计算能力,属于中等题12.ACD 【分析】对于选项A 、C ,只需研究()f x 的单调性即可;对于选项B ,令()0f x =解方程即可;对于选项D ,采用分离常数,转化为函数的最值即可【详解】由已知,()3'12ln x fx x-=,令'()0f x >得0x <<,令'()0f x <得x >()f x在上单调递增,在)+∞单调递减,所以()f x 的极大值为12f e=,A 正确;又令()0f x =得ln 0x =,即1x =,当()(),0,x f x f x →+∞→∴只有1个零点,B 不正确;2>>>()2f ff <<,故C 正确;若()21f x k x <-在()0,∞+上恒成立,即()21f x k x +<在()0,∞+上恒成立,设()221ln 1()x g x f x x x +=+=, '32ln 1()x g x x --=,令'()0g x >得120x e -<<,令'()0g x <得12x e ->,故()g x 在12(0,)e-上单调递增,在12(,)e -+∞单调递减,所以12max ()()2eg x g e -==,2e k >,故D 正确 故选:ACD【点睛】本题考查利用导数研究函数的性质,涉及到函数的极值、零点、不等式恒成立等问题,考查学生的逻辑推理能力,是一道中档题13.26xy +,再利用基本不等式求最值.【详解】(1)(2xxy +=0,0,25,0,x y x y xy >>+=>∴≥= 当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.14.1260【分析】按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数 【详解】若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数点睛:求解排列、组合问题常用的解题方法:1元素相邻的排列问题——“捆邦法”;2元素相间的排列问题——“插空法”;3元素有顺序限制的排列问题——“除序法”;4带有“含”与“不含”“至多”“至少”的排列组合问题——间接法15.54【详解】由题意椭圆221259x y +=中.534a b c ===,,,故()()4,0,4,0A C -是椭圆的两个焦点,2108AB BC a AC ,∴+=== ,由正弦定理得2sin sin sin a b cr A B C===, sin sin ? 105 sin 84A C a c AB BC B b AC +++∴====【点睛】本题考查椭圆的简单性质,椭圆的定义以及正弦定理的应用.其中合理转化 椭圆定义进而应用正弦定理是解题的关键 16.1[1,]2-【详解】因为31()2e ()exx f x x x f x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增, 又2(1)(2)0f a f a -+≤,即2(2)(1)f a f a ≤-,所以221a a ≤-,即2210a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【点睛】解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式组,此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.17.12sin sin 3B C =;23+【分析】(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC 的周长为3+【详解】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin a c B A =由正弦定理得1sin sin sin 23sin AC B A = 故2sin sin 3B C =(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=- 所以23B C π+=,故3A π=由题设得21sin 23sin a bc A A=,即8bc =由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c += 故ABC的周长为3【点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可18.111a =;23a =;2 21n a n =-;3见证明; 【分析】(1)令1,2n n ==可求得12,a a ;(2)在已知等式基础上,用1n -代n 得另一等式,然后相减,可求得n a ,并检验一下1a 是否适合此表达式; (3)用裂项相消法求和. 【详解】解:(1)由已知得112316a ⨯⨯== 12237276a a ⨯⨯+==,∴23a = 2由123(1)(41)236n n n n a a a na +-++++=,①得2n ≥时,1231(1)[4(1)1]23(1)6n n n n a a a n a ----++++-=,② ①-②得(1)(41)(1)(45)(21)66n n n n n n n na n n +---=-=- ∴21n a n =-,11a =也适合此式,∴21n a n =-(*n N ∈). (3)由(2)得21n a n =-,∴111111()(21)(21)22121n n n b a a n n n n +===-⋅-+-+∴11111111[(1)()()](1)23352121221n T n n n =-+-++-=--++ ∵*n N ∈,∴1021n >+∴12n T <【点睛】本题考查由数列的通项公式,考查裂项相消法求和.求通项公式时的方法与已知n S 求n a 的方法一样,本题就相当于已知数列{}n na 的前n 项和,要求n na .注意首项求法的区别. 19.(1)证明见解析;(2)【分析】(1)首先从题的条件中确定相应的垂直关系,即BF PF ⊥,BF EF ⊥,又因为PFEF F =,利用线面垂直的判定定理可以得出BF ⊥平面PEF ,又BF ⊂平面ABFD ,利用面面垂直的判定定理证得平面PEF ⊥平面ABFD ;(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD 的法向量,设DP 与平面ABFD 所成角为θ,利用线面角的定义,可以求得34sin 43HP DP HP DPθ⋅===⋅,得到结果【详解】(1)由已知可得,BE PF ⊥,BE EF ⊥,又PF EF F =,所以BF ⊥平面PEF又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD ; (2)作PH EF ⊥,垂足为H 由(1)得,PH ⊥平面ABFD以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H xyz -由(1)可得,DE PE ⊥又2DP =,1DE =,所以PE =1PF =,2EF =,故PE PF ⊥可得32PHEH == 则()330,0,0,0,0,,1,,0,1,,,2222H P D DP ⎛⎛⎛⎫--=⎪ ⎝⎭⎝⎭⎝⎭ 0,0,2HP ⎛⎫= ⎪ ⎪⎝⎭为平面ABFD 的法向量 设DP 与平面ABFD 所成角为θ,则34sin3HP DP HP DPθ⋅===⋅所以DP 与平面ABFD 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可 20.1 ;2万元;3见解析【分析】(1)根据频率分布直方图,求对应条形的面积,可得生猪重量达不到270斤概率;(2)利用组中值乘以频率再作和,求得生猪重量的平均数,再用重量乘以单价乘以头数得到销售收入; (3)由(1)可得随机选一头生猪,其重量达到270斤及以上的概率为310.254-=,利用二项分布的特征求得其分布列,利用公式求得其方差【详解】(1)估计生猪重量达不到270斤的概率为(0.00050.002)400.005300.25+⨯+⨯=(2)生猪重量的平均数为1800.022200.082600.23000.323400.24⨯+⨯+⨯+⨯+⨯3800.1+⨯+4200.04⨯305.6=(斤)所以估计该企业本养殖周期的销售收入是305.685000⨯⨯1222.4=(万元) (3)由(1)可得随机选一头生猪,其重量达到270斤及以上的概率为310.254-=, 由题意可得随机变量Y 的所有可能取值为0,1,2,则3~(2,)4Y B , ∴022311(0)C ()()4416P Y ==⨯⨯=, 1112313(1)C ()()448P Y ==⨯⨯=, 2202319(2)C ()()4416P Y ==⨯⨯=, ∴随机变量Y 的分布列为∴随机变量Y 的方差3()2448D Y =⨯⨯=. 【点睛】该题主要考查了概率与统计的问题,涉及到的知识点有频率分布直方图的应用,利用频率分布直方图求平均数,二项分布的分布列以及其方差,从频率分布直方图中获取信息是解题的关键,属于简单题目21.(1)AM的方程为2y x =-2y x =-(2)证明见解析 【分析】(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为⎛ ⎝⎭或1,⎛⎝⎭,利用两点式求得直线AM 的方程; (2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果 【详解】(1)由已知得()1,0F ,l 的方程为1x =由已知可得,点A的坐标为⎛ ⎝⎭或1,⎛ ⎝⎭ 所以AM的方程为y x =+y x = (2)当l 与x 轴重合时,0OMA OMB ∠=∠=当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<MA 、MB 的斜率之和为121222MA MB y yk k x x +=+-- 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=所以,22121222422,2121k k x x x x k k -+==++ 则()33312122441284234021k k k k kkx x k x x k k --++-++==+ 从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠ 综上,OMA OMB ∠=∠【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论22.(1)见解析;(2)[),e -+∞【分析】(1)求出函数()y f x =的定义域和导数,由()0f x '=得出1x a=和2x =,然后对1a 和2的大小关系进行分类讨论,分析导数符号,可得出函数()y f x =的单调增区间和减区间;(2)由()()f x g x ≥,得出ln 0ax x -≥,得出ln x a x ≥,构造函数()ln x h x x=,将问题转化为()min a h x ≥,其中21,x e e ⎡⎤∈⎢⎥⎣⎦,然后利用导数求出函数()ln x h x x =在区间21,e e ⎡⎤⎢⎥⎣⎦上的最小值,可得出实数a 的取值范围 【详解】(1)函数()y f x =的定义域为()0,∞+,()()()()222221212212ax a x ax x a f x a x x x x -++--+'=-+== 当0a >时,令()0f x '=,可得10x a =>或2x = ①当12a =时,即当12a =时,对任意的0x >,()0f x '≥, 此时,函数()y f x =的单调递增区间为()0,∞+; ②当102a <<时,即当12a >时, 令()0f x '>,得10x a<<或2x >;令()0f x '<,得12x a << 此时,函数()y f x =的单调递增区间为10,a ⎛⎫ ⎪⎝⎭和()2,+∞,单调递减区间为1,2a ⎛⎫ ⎪⎝⎭; ③当12a>时,即当102a <<时, 令()0f x '>,得02x <<或1x a>;令()0f x '<,得12x a << 此时,函数()y f x =的单调递增区间为()0,2和1,a ⎛⎫+∞⎪⎝⎭,单调递减区间为12,a ⎛⎫ ⎪⎝⎭; (2)由题意()()f x g x ≥,可得ln 0ax x -≥,可得ln x a x ≥,其中21,x e e ⎡⎤∈⎢⎥⎣⎦构造函数()ln x h x x =,21,x e e ⎡⎤∈⎢⎥⎣⎦,则()min a h x ≥ ()21ln x h x x -'=,令()0h x '=,得21,x e e e ⎡⎤=∈⎢⎥⎣⎦当1x e e≤<时,()0h x '>;当2e x e <≤时,()0h x '< 所以,函数()y h x =在1=x e 或2x e =处取得最小值, 1h e e ⎛⎫=- ⎪⎝⎭,()222h e e =,则()1h h e e ⎛⎫< ⎪⎝⎭,()min 1h x h e e ⎛⎫∴==- ⎪⎝⎭,a e ∴≥- 因此,实数a 的取值范围是[),e -+∞【点睛】本题考查函数单调区间的求解,同时也考查了利用导数研究函数不等式成立问题,在求解时充分利用参变量分离法求解,可简化分类讨论,考查分类讨论数学思想的应用,属于中等题。

2021年高三数学11月月考试题 理(含解析)新人教A版

2021年高三数学11月月考试题 理(含解析)新人教A版

2021年高三数学11月月考试题理(含解析)新人教A版满分150分,考试时间120 分钟。

注意事项:1.答题前,考生务必先认真按要求填写、填涂本人姓名、学号、班级在答题卡的相应位置上;2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号;3.答题时,必须使用0.5毫米黑色签字笔,将答案规范、整洁地书写在答题卡规定的位置上;4.所有题目必须在答题卡上作答,在试题卷上答题无效;5.考试结束后将答题卡交回,不得折叠、损毁答题卡。

一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)1.已知为虚数单位,,若为纯虚数,则复数的模等于()A. B. C. D.【知识点】复数的有关概念;复数运算. L4【答案】【解析】D 解析:由是纯虚数得,所以=,所以z的模等于,故选D.【思路点拨】由为纯虚数得,所以z=,所以z的模等于.2.如图所示的程序框图的输入值,则输出值的取值范围为()A. B. C. D.【知识点】对程序框图描述意义的理解. L1【答案】【解析】B 解析:由程序框图可知,输出的y值是函数在时的值域,所以输出值的取值范围为,故选B.【思路点拨】由框图得其描述的意义,从而得到输出值的取值范围.3.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该几何体的体积是()A.B.6 C.4 D.【知识点】几何体的三视图;几何体的结构. G1 G2【答案】【解析】A解析:由三视图可知此几何体是正方体,挖去一个以正方体上底面为底面,正方体的中心为顶点的四棱锥,所以其体积为,故选A.【思路点拨】由三视图得该几何体的结构,从而求得该几何体的体积.【题文】4.下列命题正确的个数是()①“在三角形中,若,则”的逆命题是真命题;②命题或,命题则是的必要不充分条件;③“”的否定是“”;④若随机变量,则A.1 B.2 C.3 D.4【知识点】命题及其关系;充分条件;必要条件;含量词的命题的否定;抽样方法. A2 A3 I1【答案】【解析】C 解析:①分A 、B 是锐角且,和A 是钝角且讨论两种情况,得命题①正确;②利用“若p 则q ”的逆否命题中,条件与结论的关系判定②正确;③“”的否定是“”,所以③不正确;显然④按随机变量的分布列可知正确.故选C.【思路点拨】利用命题及其关系,充分条、,必要条件的意义,含量词的命题的否定方法,各种抽样方法的意义及其适用的总体特征,逐一分析各命题的正误即可..【题文】5.已知等比数列的前n 项和为,且,,则( )A .B .C .D .【知识点】等比数列. D3【答案】【解析】D 解析:由,得,所以,故选D.【思路点拨】根据等比数列的通项公式,前n 项和公式求解.【题文】6.若函数的图像向右平移个单位后与原函数的图像关于轴对称,则的最小正值是( )A .B .1C .2D .3【知识点】平移变换;函数的图与性质. C4【答案】【解析】D 解析:函数的图像向右平移个单位得,sin sin 333y x x πππωπωω⎡⎤-⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,这时图像关于x 轴对称,所以 ,所以的最小正值是3.故选D. 【思路点拨】根据平移变换法则得平移后的函数解析式,再由平移后的对称性得关于的方程,进而得到的最小正值.【题文】7.若正实数,满足,则的最大值是( )A .2B .3C .4D .5【知识点】基本不等式.E6【答案】【解析】C 解析:由,可得240,0542x yx y x y x y x y x y +>>∴≥++=++≥=++⎛⎫ ⎪⎝⎭,当且仅当时取等号,所以的最大值为4.【思路点拨】本题可两次利用不等式即可求出结果.【题文】8.某校周四下午第三、四两节是选修课时间,现有甲、乙、丙、丁四位教师可开课。

高三数学11月月考试卷 文含解析 试题

高三数学11月月考试卷 文含解析 试题

历城第二中学2021届高三数学11月月考试卷文〔含解析〕一、选择题:此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.集合,那么( )A. B. C. D.【答案】B【解析】【分析】先解一元二次不等式,化简集合A,进而判断集合间的关系,以及.【详解】由x2-2x>0,得:x<0或者x>2,∴集合A={x|x<0或者x>2},A∩B={x|-2<x<0或者2<x<3},故A不正确.A∪B=R,故B正确,且 ,故C,D选项不正确,应选B【点睛】此题考察了一元二次不等式的解法,考察了集合的交并集和集合之间的包含关系;此类题目一般需要先化简集合,再判断集合间的关系,以及进展交、并集运算.2.函数是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).的图象,只需要将函数的图象〔〕A. 向左平移个单位B. 向右平移个单位C. 向左平移个单位D. 向右平移个单位【答案】B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位。

此题选择B选项.点睛:三角函数图象进展平移变换时注意提取x的系数,进展周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.【此处有视频,请去附件查看】4.等差数列的前项的和等于前项的和,假设,那么〔〕A. B. C. D.【答案】C【解析】【分析】由“等差数列{a n}前9项的和等于前4项的和〞可求得公差,再由a k+a4=0可求得结果.【详解】∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+〔k﹣1〕d+1+3d=0,代入可解得k=10,应选:C.【点睛】此题考察等差数列的前n项和公式及其应用,涉及方程思想,属根底题.5.假设满足,那么的最大值为( )A. 8B. 7C. 2D. 1【答案】B【解析】试题分析:作出题设约束条件可行域,如图内部〔含边界〕,作直线,把直线向上平移,增加,当过点时,为最大值.应选B.考点:简单的线性规划问题.【此处有视频,请去附件查看】6.向量,假设,那么( ).A. B. C. D.【答案】B【解析】【分析】由向量平行的坐标表示列式求解m的值,再求解.【详解】=(1+m, 1),由得,解得m=,.应选B.【点睛】此题考察了向量平行的坐标表示,考察了向量的数量积的坐标表示,假设那么∥, .7.定义,如,且当时,有解,那么实数k的取值范围是〔〕A. B. C. D.【答案】A【解析】【分析】依题意知,当x时,4x-3≥k有解,构造函数g〔x〕=〔2x〕2-,利用一元二次函数与指数函数的单调性,可知g〔x〕的值域为[-9,-5],进而判断k的取值范围.【详解】令g〔x〕=〔2x〕2- =〔2x-3〕2-9,当时,2x,那么g〔x〕的值域为[-9,-5]由有解,那么k .应选:A【点睛】此题考察了新定义的理解和运用,考察了指数函数和二次函数的性质,考察了不等式有解问题,关键是将原问题转化为求函数的最值〔值域〕问题,再通过不等式有解,判断参数的取值范围.8.抛物线的焦点为,准线为,过抛物线上的点作于点,假设,那么=( )A. 6B. 12C. 24D. 48【答案】C【解析】【分析】结合条件和抛物线的简单性质,利用抛物线的定义,建立方程,求解即可.【详解】如下草图:作AB垂直于x轴,垂足为B,∵,∴=30°,∴根据抛物线的定义,可知 ,根据抛物线的简单性质,,易知 ,可得方程:,解得,应选C【点睛】此题考察了抛物线的方程、定义和简单性质,考察了转化思想、数形结合思想,利用抛物线的定义,可以得到抛物线的一个重要的几何性质:抛物线上的点到焦点的间隔等于到准线的间隔 .9.以下命题中,错误的选项是〔〕A. 在中,那么B. 在锐角中,不等式恒成立C. 在中,假设,那么必是等腰直角三角形D. 在中,假设,,那么必是等边三角形【答案】C【解析】【分析】根据三角函数的性质,正弦定理,余弦定理,结合三角形的内角关系,依次判断即可.【详解】A. 在△ABC中,由正弦定理可得, ∴sinA>sinB⇔a>b⇔A>B,因此A >B是sinA>sinB的充要条件,故A正确;B.在锐角△ABC中,A,B,且,那么 ,所以,故B正确;C.在△ABC中,由acosA=bcosB,利用正弦定理可得:sin2A=sin2B,得到2A=2B或者2A=2π-2B,故A=B或者,即是等腰三角形或者直角三角形,故C错误;D. 在△ABC中,假设B=60°,b2=ac,由余弦定理可得:b2=a2+c2-2accosB,∴ac=a2+c2-ac,即〔a-c〕2=0,解得a=c,又B=60°,∴△ABC必是等边三角形,故D正确;应选C【点睛】此题考察了应用正弦定理和余弦定理判断三角形的形状,考察了三角函数的性质;判断三角形的形状时,主要有以下两种途径:①利用正、余弦定理,把条件转化为边边关系,再分析,②转化为内角的三角函数之间的关系,通过恒等变换得出内角关系,结合三角形内角关系,再判断.10.定义函数如下表,数列满足,. 假设,那么〔〕A. 7042B. 7058C. 7063D. 7262【答案】C【解析】【分析】利用函数f〔x〕,可得数列{a n}是:2,5,1,3,4,6,…是一个周期性变化的数列,求出一个周期内的和,进而求得答案.【详解】由题意,∵a1=2,且对任意自然数均有a n+1=f〔a n〕,∴a2=f〔a1〕=f〔2〕=5,即a2=5,a3=f〔a2〕=f〔5〕=1,即a3=1,a4=f〔a3〕=f〔1〕=3,即a4=3,a5=f〔a4〕=f〔3〕=4,即a5=4,a6=f〔a5〕=f〔4〕=6,即a6=6,a7=f〔a6〕=f〔6〕=2,即a7=2,可知数列{a n}:2,5,1,3,4,6,2,5,1…是一个周期性变化的数列,周期为:6.且a1+a2+a3+…+a6=21.故a1+a2+a3+…+a2021=336×〔a1+a2+a3+…+a6〕+a1+a2=7056+2+5=7063.应选C【点睛】此题考察了函数的表示法、考察了数列的周期性,解题的关键是根据函数值的对应关系,推导出数列{a n}是周期为6的周期数列.11.函数是定义在上的偶函数,且满足,当时,,假设方程恰有三个不相等的实数根,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】由题意可得周期为T=2,原方程可变形为,那么为y=f(x)与y=a〔x+1〕〔〕曲线交点恰有三个。

2021年 济南外国语学校高三上学期第一次月考数学文模拟练习解析版配套精选卷

2021年  济南外国语学校高三上学期第一次月考数学文模拟练习解析版配套精选卷

2021届山东省济南外国语学校 高三上学期第一次月考数学〔文〕试题数学考前须知:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题1.设集合,,那么以下结论正确的选项是A .B .C .D .2.=A .B .C .D . 3.假设圆弧长度等于圆内接正方形的边长,那么该圆弧所对圆心角的弧度数为A .B .C .D . 4.函数的定义域为A . (-2,1)B . [-2,1]C . (0,1)D . (0,1]5.函数的值域是A .B .C .D . 6.假设, , ,那么, , 的大小关系是.A .B .C .D . 7.函数〔,,〕的图象如下图,为了得到的图象,可以将的图象A . 向左平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向右平移个单位长度8.命题:,命题:,且是的必要不充分条件,那么实数的取值范围是A .B .C .D .9.将射线按逆时针方向旋转到射线的位置所成的角为,那么A .B .C .D .10.图象可能是A .B .C .D .此卷只装订不密封 姓名 准考证号 考场号 座位号11.函数在上仅有一个最值,且为最大值,那么实数的值不可能...为A.B.C.D.12.是定义域为的奇函数,满足.假设,那么A.B.C.D.二、填空题13.函数,那么的值为__________.14.,且,函数的图象恒过点P,假设在幂函数图像上,那么=__________.15.给出以下四个命题:①半径为2,圆心角的弧度数为的扇形面积为②假设为锐角,,那么③是函数为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是_______.16.函数,存在,使得,那么的取值范围是__________.三、解答题17.定义在上的偶函数,当时单调递增,设,求m的取值范围.18.函数.〔1〕令,求关于的函数关系式及的范围;〔2〕求该函数的值域.19.函数的定义域为上的偶函数,当时,.〔1〕求函数的解析式;〔2〕求不等式的解集.20.函数().(1)求函数的周期和递增区间;(2)假设函数在上有两个不同的零点,求实数的取值范围,并计算的值.21.向量,,函数.(1)求函数的单调递增区间;(2)将函数的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数的图象,当时,求函数的最值及相应的值.22.函数.〔1〕求函数的单调递增区间;〔2〕在中,内角,,所对的边分别为,,,且角满足,假设,边上的中线长为,求的面积.2021届山东省济南外国语学校高三上学期第一次月考数学〔文〕试题数学答案参考答案1.B【解析】【分析】集合,,根据集合的交集的概念和运算得到结果.【详解】集合,,根据集合交集的概念得到.故答案为:B.【点睛】此题主要考查了集合的交集的概念和运算,高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的根底知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.2.B【解析】【分析】利用诱导公式把要求的式子化为,从而求得结果.【详解】,应选B.【点睛】此题主要考查诱导公式的应用以及特殊角的三角函数,属于简单题.对诱导公式的记忆不但要正确理解“奇变偶不变,符号看象限〞的含义,同时还要加强记忆几组常见的诱导公式,以便提高做题速度.3.D【解析】分析:根据圆的圆弧长度等于该圆内接正方形的边长,可得圆弧的长度为即可得出结论.详解:设圆的直径为,那么圆内接正方形的边长为∵圆的圆弧长度等于该圆内接正方形的边长,∴圆弧的长度为∴圆心角弧度为应选D.点睛:此题考查了圆的内接正方形的对角线长与半径的关系及弧长公式,理解以上知识和计算方法是解决问题的关键.4.C【解析】【分析】先根据偶次根式下被开方数非负以及分母不为零列式,解不等式得结果.【详解】由题意得,选C.【点睛】求具体函数定义域,主要从以下方面列条件:偶次根式下被开方数非负,分母不为零,对数真数大于零,实际意义等.5.D【解析】令..应选D.6.C【解析】【分析】直接利用中间量“0〞,“1〞判断三个数的大小即可.【详解】应选C.【点睛】此题主要考查数的大小比拟,一般来讲要转化为函数问题,利用函数的图象分布和单调性比拟,有时也用到0,1作为比拟的桥梁.7.A【解析】解:由题意可得:,当时,,令可得:,即:,而,据此可得:为了得到的图象,可以将的图象向左平移个单位长度.此题选择A选项.点睛:由的图象变换出的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

山东省济南外国语学校三箭分校2021-2022学年高三上学期模拟考试数学试题及参考答案

山东省济南外国语学校三箭分校2021-2022学年高三上学期模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列各组集合表示同一集合的是( ) A .{}{}(3,2),(2,3)M N == B .{}{}(,)1,1M x y x y N y x y =+==+= C .{}4,5M =,{}5,4N =D .{}{}1,2,(1,2)M N ==2.已知0a <,则关于x 的不等式22450x ax a --<的解集是( ) A .{|5x x a >或}x a <- B .{|5x x a <或}x a >- C .{}|5x a x a -<<D .{}5x a x a <<-3.已知函数()()1,03,0f x x f x x x ⎧->=⎨-+≤⎩,则()2f 的值为( )A .0B .1C .2D .34.已知函数()y f x =在R 是奇函数,当0x >时,()21xf x =+, 则()2f - 的值( ) A .5B .-5C .9D .-95.若函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,且其图象向左平移6π个单位后所得图象对应的函数()g x 为奇函数,则()f x 的图象( ) A .关于直线3x π=对称 B .关于点5,012π⎛⎫⎪⎝⎭对称C .关于直线6x π=-对称D .关于点,06π⎛⎫⎪⎝⎭对称6.若(2,1)a =,(1,2)b =-,(2)//()a b a mb +-,则m =( ) A .12-B .12 C .2D .-27.英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{}n x 满足()()n 1n n n f x x x f x +'=-,则称数列{}n x 为牛顿数列.如果函数2()2f x x x =--,数列{}n x 为牛顿数列,设n n 2ln1n x a x -=+且11a =-,2n x >,数列{}n a 的前n 项和为n S ,则2021S =( )A .202121-B .202112-C .20211122⎛⎫- ⎪⎝⎭D .2021122⎛⎫- ⎪⎝⎭8.已知双曲线2212y x m -=,直线l 过其上焦点2F ,交双曲线上支于A ,B 两点,且AB 4=,1F 为双曲线下焦点,1ABF 的周长为18,则m 值为( )A .8B .9C .10D .254二、多选题9.如图,点M 是正方体1111ABCD A B C D -中的侧面11ADD A 上的一个动点,则下列结论正确的是( )A .点M 存在无数个位置满足1CM A D ⊥B .若正方体的棱长为1,三棱锥1BC MD -的体积最大值为13C .在线段1AD 上存在点M ,使异面直线1B M 与CD 所成的角是30° D .点M 存在无数个位置满足到直线AD 和直线11C D 的距离相等 10.经过点()4,2P -的抛物线的标准方程为( ) A .2y x =B .2y x =-C .28y x =-D .28x y11.假定某射手每次射击命中的概率为34,且只有3发子弹.该射手一旦射中目标,就停止射击,否则就一直射击到子弹用完.设耗用子弹数为X ,则( ) A .目标被击中的概率为3132B .()314P X == C .()2316E X =D .()87256D X =12.已知()f x 是定义域为R 的奇函数,且满足(2)(2)f x f x -+=+,则下列结论正确的是( ) A .(4)0f =B .函数()y f x =的图象关于直线1x =对称C .(8)()f x f x +=D .若(3)1f -=-,则(2021)1f =- 三、填空题13.设集合{}2,0a A x x a ==>,{}2230B x x x =-+>,则A B =_________.14.设曲线e x y ax =+在点(0,1)处的切线方程为21y x =+,则=a ___________. 15.已知圆22(1)4x y -+=内一点P (2,1),则过P 点的最短弦所在的直线方程是________.16.如图所示,公园直立的路灯杆BC 正前方有棵挺拔的小树NH ,在路灯杆前的点A (BC ,NH ,点A 在同一平面内)处测得路灯顶点B 处和小树顶点N 处的仰角分别为45°和30°.再朝小树正前方行走到点M ,此时M ,N ,B 三点在同一条直线上.在点M 处测得MH =1m ,小树顶点N 处的仰角为60°,则路灯杆BC 的长为___________m .四、解答题17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . (1)若1+2cos A cos B =2sin A sin B ,求角C ;(2)若()()()2221tan 1tan b A c a A +=--,求角C .18.已知数列{n a }是首项1a =1,公差为d 的等差数列,数列{n b }是首项1b =2,公比为q 的正项等比数列,且公比q 等于公差d ,3a +6a =32b .(1)求数列{n a },{n b }的通项公式;(2)若数列{n c }满足21123333n n c c c c +++⋯+-=n a (n *∈N ),求数列{n c }的通项公式.19.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2PA PD ==,112BC AD ==,CD =(1)求证:平面MQB ⊥平面PAD ;(2)若BM PC ⊥,求直线AP 与BM 所成角的余弦值.20.甲、乙两位大学生参加一企业的招聘,其中有三道测试题△△△,已知甲同学对这三道题解答正确的概率分别为13,13,23,乙同学对这三道题解答正确的概率均为12,公司规定甲、乙均从这三道试题中抽取两道试题进行解答,且两道试题解答完全正确就可以被录用.(1)求甲同学被录用的概率;(2)若甲同学抽中试题△△,乙同学抽中试题△△,设两人解答正确的试题总数为X ,求X 的分布列与数学期望.21.已知椭圆()2222:10x y C a b a b+=>>,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且离心率12e =.(1)求椭圆C 的方程;(2)设P 为椭圆C 上任一点,12,A A 为椭圆C 的左、右顶点,M 为2PA 中点,求证:直线2PA 与直线OM 它们的斜率之积为定值;(3)若椭圆C 的右焦点为F ,过()4,0B 的直线l 与椭圆C 交于,D E ,求证:直线FD 与直线FE 斜率之和为定值.22.设函数()1xf x e -=-.(1)求函数()()g x f x x =-的极值点; (2)令()()()1h x x f x =-. (i )求()h x 的最大值; (ii )如果12x x ≠,且12h x h x ,判断12x x +与2的大小关系,并证明你的结论.参考答案:1.C 【解析】 【分析】根据集合的表示法一一判断即可; 【详解】解:对于A :集合{}(3,2)M =表示含有点()3,2的集合,{}(2,3)N =表示含有点()2,3的集合,显然不是同一集合,故A 错误;对于B :集合M 表示的是直线1x y +=上的点组成的集合,集合N R =为数集,故B 错误;对于C :集合M 、N 均表示含有4,5两个元素组成的集合,故是同一集合,故C 正确; 对于D :集合M 表示的是数集,集合N 为点集,故D 错误; 故选:C 2.D 【解析】 【分析】直接根据一元二次不等式的解法解不等式即可. 【详解】解:因为方程22450x ax a --=的解为x a =-或5a ,且0a <, 所以不等式22450x ax a --<的解集是{}5x a x a <<-. 故选:D. 3.D 【解析】 【分析】根据分段函数解析式求得正确答案. 【详解】()()()210033f f f ===-+=.故选:D 4.B【解析】 【分析】利用函数的奇偶性,可直接得到答案. 【详解】数()y f x =在R 是奇函数,当0x >时,()21xf x =+所以()22(2)(21)5f f -=-=-+=-,故选:B. 5.D 【解析】 【分析】先求出()sin()f x x π=-223,再求出函数的对称轴方程和对称中心即得解.【详解】解:由函数()f x 的最小正周期T π=可得0>ω, 所以2T ππω==,可得2ω=,这时()2sin(2)f x x ϕ=+,向左平移6π可得()2sin[2()]2sin(2)63g x x x ππϕϕ=++=++,要使函数()g x 为奇函数,则3k πϕπ+=,k Z ∈,而||2ϕπ<,所以3πϕ=-,所以()sin()f x x π=-223, 对称轴满足232x k πππ-=+,k Z ∈,可得A,C 不正确;对称中心满足23x k ππ-=,k Z ∈,所以26k x ππ=+,可得D 正确,B 不正确; 故选:D 6.A 【解析】 【分析】首先求出2a b +,a mb -的坐标,再根据向量共线的坐标表示得到方程,解得即可; 【详解】解:因为(2,1)a =,(1,2)b =-,所以()23,4a b +=,()2,12a mb m m -=+- ,因为(2)//()a b a mb +-,所以()()31242m m -=+,解得12m =-故选:A 7.B 【解析】 【分析】先由题设得到:221222121n n n n n n n x x x x x x x +--+=-=--,从而得到12n n a a +=,即可说明数列{}n a 是以-1为首项,2为公比的等比数列,再利用等比数列前n 项和求和公式得到结果. 【详解】解:由题知()21f x x '=-221'()22()2121n n n n n n n n n n f x x x x x x x f x x x +--+=-=-=--22121222212211121n n n n n n n n x x x x x x x x +++-⎛⎫---∴== ⎪+++⎝⎭+-两边取对数得:1122ln 2ln 11n n n n x x x x ++--=++令2ln1n n n x a x -=+即12n n a a +=,所以数列{}n a 是以-1为首项,2为公比的等比数列, ()1202120211121n a q S q-∴==--故选:B 8.D 【解析】 【分析】根据三角形1ABF 周长和双曲线的定义,可得到周长与实半轴a 和||AB 的关系,进而求出m 的值.【详解】:由题意三角形1ABF 的周长为11||||||AB AF BF ++,由双曲线的定义,可知12||2||AF a AF =+,12||2||BF a BF =+ 所以1122||||||||||||442||AB AF BF AB AF BF a a AB ++=+++=+, 由题意,可知42||18a AB +=,||4AB =,a =所以10,解得254m =. 故选:D . 9.ABD 【解析】 【分析】画出示意图,由直线与平面垂直的判定定理,可判断A 正确;求出三棱锥1B C MD -体积的最大值,可判定B 正确;由线面角的概念,求得其正切值,可判定C 错误;根据抛物线的定义,可得M 的轨迹为平面11ADD A 上抛物线的部分,可判断D 正确. 【详解】如图所示,在正方体1111ABCD A B C D -中,CD ⊥平面11ADD A ,则1CD AD ⊥, 又由111,AD A D A DDC D ⊥=,所以1AD ⊥平面1A DC ,当点M 在线段1A D 上时,可得1CM A D ⊥,所以A 正确; 由正方体的性质,可知1A C ⊥平面1BC D ,若正方体的棱长为1, 则M 与1A 重合时,三棱锥1B C MD -的体积取得最大值,最大值为111323⨯=,所以B 正确;异面直线1B M 与CD 所成的角,即为11A B M ∠,当M 在线段1AD 上运动时,取1AD 的中点M 时,11A B M ∠最小,可得11111tan A M A B M A B ∠==>C 错误; 平面11ADD A 上的点M 到直线11C D 的距离等于点M 到1D 的距离,则满足到直线AD 和直线11C D 的距离相等,即满足到直线AD 和点1D 的距离相等, 可知M 的轨迹为平面11ADD A 上抛物线的部分,故D 正确.故选:ABD.10.AD 【解析】 【分析】把点()4,2P -代入选项,逐项检验即可求解. 【详解】因为抛物线过点()4,2P -, 所以代入2y x =,28x y 满足,2y x =-,28y x =-不符合.故选:AD 11.BD 【解析】 【分析】求随机变量X 的分布列,由期望,方差公式求其期望,方差,由此判断各选项对错. 【详解】由题意可得,目标没有被击中的概率为30311464C ⎛⎫= ⎪⎝⎭,所以目标被击中的概率为16316464-=,A 错误. 易知该射手每次射击命中失败的概率为14,X 的取值范围为{1,2,3},所以()314P X ==,()13324416P X ==⨯=,()11134416P X ==⨯=,所以X 的分布列为:()331211234161616E X =⨯+⨯+⨯=,()2222132132118712316416161616256D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, B ,D 正确,C 错误, 故选:BD. 12.ACD 【解析】 【分析】由()f x 奇函数可得(0)0f =,令2x =-,(4)(0)f f =可判断A ;由(2)(2)f x f x -+=+,可得2x =为对称轴,可判断B ;由()f x 是奇函数,(2)(2)f x f x +=-+,分析可判断C ;由()f x 周期为8,可判断D【详解】选项A ,由于()f x 是定义域为R 的奇函数,故(0)0f =,令2x =-,(4)(0)0f f ==,故A 正确;选项B ,由于(2)(2)f x f x -+=+,故函数()f x 关于2x =对称,不一定关于1x =对称,故B 错误;选项C ,()f x 是奇函数,故(2)(2)(2)f x f x f x +=-+=--,令2t x =-,有(4)()f t f t +=-,故(8)(4)()f t f t f t +=-+=,即(8)()f x f x +=,故C 正确; 选项D ,由C ,()f x 周期为8,故(2021)(25383)(3)1f f f =⨯-=-=-,故D 正确 故选:ACD13.{}1x x >##()1,+∞ 【解析】【分析】求出集合A 、B ,利用交集的定义可求得集合A B . 【详解】因为{}{}2,01a A x x a x x ==>=>,{}2230B x x x R =-+>=,因此,{}1A B x x ⋂=>. 故答案为:{}1x x >. 14.1 【解析】 【分析】由题意02x y ='=,求导,代入0x =,即得解 【详解】对函数x y ax e =+求导得xy a e '=+, 由已知可得012x y a ==+=',解得1a =. 故答案为:1 15.30x y +-= 【解析】 【分析】要使过P 点的最短弦,则圆心到弦所在直线的距离最大,由当CP 与所求弦垂直时,圆心到弦所在直线的距离最大,先求出CP k ,从而可得答案. 【详解】圆22(1)4x y -+=的圆心为()1,0C ,半径2r =要使过P 点的最短弦,则圆心到弦所在直线的距离最大. 当CP 与所求弦垂直时,圆心到弦所在直线的距离最大. 由10121CP k -==-,所以所求弦的斜率为1- 故所求弦的方程为()12y x -=--,即30x y +-= 故答案为:30x y +-=16.33 【解析】 【分析】设CH x =,结合Rt MNH △,Rt ANH △中的长度和角度关系可求得3AH =,再由MNH △MBC △,可得NH MHBC MC=,解得x = 【详解】设CH x =,在Rt MNH △中,有1MH =,60NMH ,所以NH =在Rt ANH △中,有NH =30NAH ∠=︒,则3AH =, 所以 3BC AC x ==+, 由题意可知MNH △MBC △,可得NH MHBC MC=,11x =+,解得x =所以3BC =故答案为:3 17.(1)3C π=(2)34C π=【解析】 【分析】(1)根据两角和的余弦公式求出C 的余弦值,求出C 的值即可; (2)结合余弦定理求出C 的正切值,求出C 的值即可. (1)若1+2cos A cos B =2sin A sin B ,则cos A cos B ﹣sin A sin B =12-,即故1cos()2A B +=-,即()1cos()cos cos 2A B C C π+=-=-=-,所以1cos 2C =,由0C π<< ,故3C π=(2)若()()()2221tan 1tan b A c a A +=--,显然2A π≠,所以2222222cos cos tan tan 2cos cos tan c a b ab C a C AA b c a bc A c A C-----====+-, 又由tan A ≠0得到tan C =﹣1,0C π<<,故34C π=.18.(1)21n a n =-,2n n b =;(2)11,112,23n n n c n -=⎧⎪=⎨⎛⎫⨯≥ ⎪⎪⎝⎭⎩. 【解析】 【分析】(1)用基本量11,,,a d b q 表示题干中的条件,求解即可;(2)构造对2n ≥时,有2212311333n n n c c c c a ---++++=,与原式相减,即得解【详解】(1)由题意3632a a b +=,可得211272a d b q +=,因为d q =,则2274d d +=,解得2d =或14-,因为等比数列{}n b 各项为正项,所以2d q ==,则12(1)21n a n n =+-=-,1222n nn b -=⨯=.(2)因为对n *∈N ,有21123333n n n c c c c a -++++=成立,对2n ≥时,有2212311333n n n c c c c a ---++++=成立,两式相减得1132n n n n c a a --=-=,所以()11212233n n n c n --⎛⎫==⨯≥ ⎪⎝⎭,当1n =时,111c a ==不符合上式,所以11,112,23n n n c n -=⎧⎪=⎨⎛⎫⨯≥ ⎪⎪⎝⎭⎩.19.(1)证明见解析;(2 【解析】 【分析】(1)证明BQ AD ⊥,利用面面垂直的性质可得出BQ ⊥平面PAD ,再利用面面垂直的判定定理可证得平面MQB ⊥平面PAD ;(2)连接PQ ,以点Q 为坐标原点,QA 、QB 、QP 所在直线分别为,,x y z 轴建立空间直角坐标系,设(01)PM PC λλ→→=≤≤,根据BM PC ⊥可得出0BM PC →→⋅=,求出λ的值,利用空间向量法可求得直线AP 与BM 所成角的余弦值. 【详解】(1)Q 为AD 的中点,且2AD BC =,则DQ BC =,又因为//BC AD ,则//BC DQ ,故四边形BCDQ 为平行四边形, 因为90ADC ∠=,故四边形BCDQ 为矩形,所以BQ AD ⊥,平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BQ ⊂平面ABCD , BQ ∴⊥平面PAD ,因为BQ ⊂平面MBQ ,因此,平面MQB ⊥平面PAD ;(2)连接PQ ,由(1)可知,BQ ⊥平面PAD ,PA PD =,Q 为AD 的中点,则PQ AD ⊥,以点Q 为坐标原点,,,QA QB QP 所在直线分别为,,x y z 轴建立空间直角坐标系,则(1,0,0)A 、P 、B 、(C -、(1,0,0)D -, 设((,)(01)PM PC λλλλ→→==-=-≤≤,(0,(,)()BM BP PM λλ→→→=+=+-=-,因为BM PC ⊥,则3333760BM PC λλλλ→→⋅=+--+=-=,解得67λ=,6(,7BM →∴=-,(AP →=-,则9cos ,||||AP BM AP BM AP BM →→→→→→⋅<>===⋅. 因此,直线AP 与BM所成角的余弦值为28. 20.(1)527;(2)53.【解析】 【分析】(1)利用独立事件的概率公式,分别计算甲同学抽取△△,△△和△△被录用的概率,再利用互斥事件的加法公式计算即可;(2)列出X 的可能取值为0,1,2,3,4,利用事件的独立性分别计算概率,列出分布列,求解数学期望即可. 【详解】(1)甲同学抽取△△被录用的概率为1311113327C ⨯⨯= 甲同学抽取△△和△△被录用的概率均为1311223327C ⨯⨯= 所以甲同学被录用的概率为1252272727+⨯=. (2)由题意可知X 的可能取值为0,1,2,3,4,可知22214(0)3236P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭ 22211221212112(1)3323236P X C C ⎛⎫⎛⎫⎛⎫==⨯⨯⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 222221122111212113(2)323323236P X C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 2221122111216(3)3233236P X C C ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,22111(4)3236P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为:所以4121361605012343636363636363EX =⨯+⨯+⨯+⨯+⨯==. 21.(1)22143x y +=;(2)证明见解析;(3)证明见解析. 【解析】 【分析】(1)利用离心率公式得到,a c 的关系,得到b 和c 的关系,将点31,2Q ⎛⎫⎪⎝⎭的坐标代入椭圆方程,即可求出c 的值,从而得到a 和b 的值,求出椭圆的标准方程;(2)设()00,P x y 为椭圆C 上任意一点,由题意可得1//OM PA ,由两点间斜率公式表示出2PA OM k k ,由点P 在椭圆上,化简求解即可证明结论;(3)设直线l 的方程为()4y k x =-,与椭圆方程联立方程组,得到韦达定理,利用两点间斜率公式表示出FD FE k k +,结合韦达定理进行化简整理,即可证明结论. 【详解】(1)由题意,椭圆C 的离心率12e =,即12c e a ==,可得2a c =, 又由22223b a c c =-=,所以椭圆的方程为2222143x y c c+=,因为点31,2Q ⎛⎫⎪⎝⎭在椭圆C 上,可得所以22914+143c c =,解得21c =, 则224,3a b ==,所以椭圆的方程为22143x y +=. (2)设()00,P x y 为椭圆C 上任意一点,由题意可知,212,PM MA AO OA ==,所以1//OM PA , 故210000,22PA OM PA y y k k k x x ===-+,所以22222003334444PA OMx y k k x x -===---, 故直线2PA 与直线OM 它们的斜率之积为定值34-.(3)设直线l 的方程为()4y k x =-,()()1122,,,D x y E x y , 联立方程组()224143y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222343264120k x k x k +-+-=,则()()()2223243464120k k k ∆=-+->,解得214k <, 所以22121222326412,3434k k x x x x k k-+==++, 故()()()12121212122581111FD FE k x x x x y y k k x x x x -++⎡⎤⎣⎦+=+=----, 因为()22212122221282416024322580343434k k k x x x x k k k -+-++=-+=+++, 即0FD FE k k +=,所以直线FD 与直线FE 斜率之和为定值0. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.22.(1)0x =;(2)(i )()h x 的最大值为1e ;(ii )122x x +>;证明见详解.【解析】 【分析】(1)由()()1x g x f x x e x -=-=--,则()1xg x e -'=-,利用导数求出函数()g x 的单调性,进而求出函数的极值点.(2)由题意得()xh x xe -=,()()1xh x x e -'=-,(i )利用导数求出函数的单调性,从而得到函数的极值与最值; (ii )由题意不妨设12x x <,又12h x h x ,可得1201x x <<<,令()()()2H x h x h x =--,[)1,x ∈+∞,利用导数可得函数()H x 在[)1,+∞上单调递增,从而可推出()()2h x h x >-,结合条件可得()()122h x h x >-,易得12,21x x -<,从而借助函数()h x 在(),1-∞上单调递增即可证明.【详解】(1)证明:由()()1x g x f x x e x -=-=--,则()1xg x e -'=-,由()0g x '≤得0x ≥,由()0g x '>得0x <,△函数()g x 在(),0-∞上单调递增,在[)0,+∞上单调递减, △0x =是函数()g x 的极大值点.(2)解:()()()1h x x f x =-()11xx x e xe --⎡⎤=--=⎣⎦,()()1x h x x e -'=-, (i )由()0h x '≤得1≥x ,由()0h x '>得1x <,△函数()h x 在(),1-∞上单调递增,在[)1,+∞上单调递减, △函数()h x 在1x =处取得极大值,也是最大值, △()h x 的最大值()()1max 11h x h e e-===;(ii )由12x x ≠,不妨设12x x <,又12h x h x ,△当0x >时,()0xh x xe -=>,且()00h =,△1201x x <<<,令()()()2H x h x h x =--()22x x xe x e --=--,[)1,x ∈+∞,则()()()2112x x H x x e x e --'=---+-()()2211x x x ee --=--, △1≥x ,△220x -≥,2210x e --≥,△()0H x '≥,△函数()H x 在[)1,+∞上单调递增, 又()10H =,△当1x >时,()()()()210H x h x h x H =-->=, 即()()2h x h x >-,则()()222h x h x >-, 又12h x h x ,则()()122h x h x >-,△1201x x <<<,△221x -<,即12,21x x -<, 而函数()h x 在(),1-∞上单调递增,△122x x >-, △122x x +>.。

2021届山东省济南外国语学校高三上学期模拟数学试题(解析版)

山东省济南外国语学校2021届高三上学期模拟英语试题第一部分阅读理解(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。

AJoseph Francis Charles Rock (1884–1962) was an Austrian-American explorer, botanist, and anthropologist(人类学家). For more than 25 years, he travelled extensively through Tibet and Yunnan, Gansu, and Sichuan provinces in China before finally leaving in 1949.In 1924, Harvard sent Joseph Francis Rock on a treasure hunt through China’s southwestern provinces—the Wild West of their day. But gold and silver weren’t his task: Rock, a distinguished botanist, sought only to fill his bags with all the seeds, saplings, and shrubs he could find. During his three-year expedition, he collected 20,000 specimens for the Arnold Arboretum(阿诺德植物园).Botany, though, was just one of Rock’s strengths. As an ethnologist(民族学者), he took hundreds of photographs of the Naxi, a tribe in Yunnan province, recording their now-lost way of life for both Harvard and National Geographic, and took notes for an eventual 500-page dictionary of their language. His hand-drawn map of his travels through China’s “Cho-Ni” territory, in the Harvard Map Collection, includes more than a thousand rivers, towns, and mountains indicated in both English and Chinese, and was so well made that the U.S. government used it to plan aerial missions in World War II.Scientist, linguist, cartographer, photographer, writer—Rock was not a wallflower in any sense. Arrogant and self-possessed, he would walk into a village or warlord’s place “as if he owned the place,” said Lisa Pearson, the Arboretum’s head librarian.In declaring his successful return under the headline “Seeking Strange Flowers, in the Far Reaches of the World” , the Boston Evening Transcript ran a large photo of the daring explorer wearing in a woolly coat and fox-skin hat. “In discussing his heroism including hair-raisingescapes from death either from mountain slides, snow slides and robber armies, he waves the idea away as if it is of no importance.”The Arboretum and Rock parted ways after 1927, mainly because his trip cost Harvard a fortune—about $900,000 in today’s dollars. Fortunately, many of his specimens, many of his amazing photos, and his great stories remain.1. What is the passage mainly about?A. Rock’s service for the U.S government.B. Rock’s cooperation with Harvard.C. Rock’s work as a botanist.D. Rock’s exploration in Southwest China.2. What contribution did Rock make to the USA besides collecting new plants and specimens?A. He traveled through some uncivilized places in China.B. His hand-drawn map was used in WWII.C. He showed heroism by escaping difficulties.D. He made headlines in Boston Evening News.3. How did Rock respond when people mentioned his heroic deeds?A. Excitedly.B. Proudly.C. CalmlyD. Nervously4. What caused Rock to stop work for The Arboretum?A. The vast expense.B. The dangerous journey.C. The challenging tasks.D. The unknown world.『答案』1. D 2. B 3. C 4. A『解析』本文是一篇说明文。

2021届山东省济南外国语学校高三10月月考数学试题(解析版)

2021届山东省济南外国语学校高三10月月考数学试题一、单选题1.设集合{}2=A x x x <,1{|1}B x x=≥,则A B =( ) A .(0,1) B .[0,1]C .(,1]-∞D .(,0)(0,1]-∞【答案】A【解析】根据一元二次不等式和分式不等式的解法求得集合{}=|01A x x <<,{|01}B x x =<≤,再结合集合交集的运算,即可求解.【详解】由题意,集合{}{}2=|01A x x x x x <=<<,1{|1}{|01}B x x x x=≥=<≤, 则{|01}(0,1)A B x x =<<=.故选:A. 【点睛】本题主要考查了集合的交集的概念及运算,以及一元二次不等式和分式不等式的解法,其中解答中根据一元二次不等式和分式不等式的解法求得集合,A B 是解答的关键,着重考查运算与求解能力.2.已知i 为虚数单位,,a b ∈R ,复数12ii a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .2551i +【答案】B【解析】由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案. 【详解】由题意,复数12ii a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题. 3.命题“2[2,),4x x ∀∈+∞≥”的否定是( ) A .2[2,),4x x ∀∈+∞<B .2(,2),4x x ∀∈-∞≥C .200[2,),4x x ∃∈+∞<D .200[2,),4x x ∃∈+∞≥【答案】C【解析】根据全称命题的否定形式书写. 【详解】命题“2[2,),4x x ∀∈+∞≥”的否定是[)02,x ∃∈+∞,204x <.故选C 【点睛】本题考查全称命题的否定,属于基础题型.4.已知向量(1,2),(2,2),(,1)a b c m ==-=,若//(2)c a b +,则m =( ) A .0 B .1 C .2 D .3【答案】C【解析】根据向量的坐标运算,求得2(4,2)a b +=,再结合//(2)c a b +,即可求解. 【详解】由题意,向量(1,2),(2,2),(,1)a b c m ==-=,可得2(4,2)a b +=, 因为//(2)c a b +,可得142m =,解得2m =. 故选:C. 【点睛】本题主要考查了向量的坐标运算,以及共线向量的坐标表示及应用,其中解答中熟记向量的共线的坐标表示,列出方程是解答的关键,着重考查了运算与求解能力. 5.二项式*(1)()nx n +∈N 的展开式中3x 项的系数为10,则n =( )A .8B .6C .5D .10【答案】C【解析】写出二项式展开式的通项公式,再令x 的幂指数为3,即可求出n 的值. 【详解】由二项式*(1)()n x n +∈N 的展开式的通项1r n r r n T C x -+=得:令3n r -= ,得3r n =-,则3310r n n n n C C C -=== ,所以(1)(2)60n n n --=,解得5n =,故选C . 【点睛】本题考查二项式定理的应用,二项式展开式的通项公式,属于基础题. 6.已知0.2log 2a =,20.2b =,0.23c =,则( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】A【解析】利用指对函数的单调性,借助中间量0,1比较大小. 【详解】0.2log 20a =<,20.2(0,1)b =∈,0.231c =>,所以a b c <<, 故选:A . 【点睛】利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.7.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中以,22a a ⎛⎫- ⎪⎝⎭为中点的弦长为( ) A .1 B .2 C .3 D .4【答案】D【解析】圆22:240C x y x y +-+=关于直线32110x ay --=对称即说明直线32110x ay --=过圆心(1,2)-,即可求出2a =,即可由中点弦求出弦长.【详解】依题意可知直线过圆心(1,2)-,即34110a +-=,2a =.故(),1,122a a ⎛⎫-=- ⎪⎝⎭.圆方程配方得22(1)(2)5x y -++=,(1,1)-与圆心距离为1,故弦长为4=. 故选D . 【点睛】本题考查直线与圆的位置关系,利用中点弦三角形解弦长,属于基础题。

2021年高三11月月考数学(文)试题含答案

2021年高三11月月考数学(文)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

试卷满分150分。

考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每题5分,满分60分)1.已知全集,集合,,则等于A.B.C.D.2.函数是奇函数的充要条件是A.B.C.D.3.复数的共轭复数是()A.i +2 B.i -2 C.-i -2 D.2 - i4.若是上周期为5的奇函数,且满足,则()A.-1 B.1 C.-2 D.25.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积和体积分别是()A.B.C.D.8, 86.已知函数若=4,则实数=()A.B.C.2 D.97.已知a>0,函数,若满足关于的方程2ax+b=0,则下列选项的命题中为假命题的是()A.B.C.D.8.设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.9.已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线垂直,则=()A.B.1 C.2 D.10.若函数f(x)=,若fA>f(-a),则实数a的取值范围是()A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)11.若存在x∈[﹣2,3],使不等式4x﹣x2≥a 成立,则实数a的取值范围是()A.[﹣8,+∞)B.[3,+∞)C.(﹣∞,﹣12] D.(﹣∞,4] 12.已知向量,满足,,且对任意实数,不等式恒成立,设与的夹角为,则()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每题5分,满分20分)13.设,为单位向量.且、的夹角为,若,,则向量在方向上的射影为________.14.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.15.从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得,,,.则家庭的月储蓄对月收入的线性回归方程为.(附:线性回归方程中,,,其中,为样本平均值,线性回归方程也可写为.)16.函数的部分图象如图所示,设是图象的最高点,是图象与轴的交点,则三、解答题:(本大题共6小题,满分70分)17.(本题满分10分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2=b2+c2+bc.(1)求;(2)设,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.18.(本题满分12分)在公差为的等差数列{a n}中,已知a1=10,且成等比数列.(1)求;(2)若,求.19.(本题满分12分)某校100名学生期中考试语文成绩频率分布直方图如图所示,期中成绩分组区间是:[)[)[)[)[),,,,,,,,,.506060707080809090100(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数.分数段1:1 2:1 3:4 4:520.(本题满分12分)如图①,在边长为1的等边中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图②所示的三棱锥,其中.①②(1)证明://平面;(2)证明:平面;(3)当时,求三棱锥的体积.21.(本题满分12分)已知函数f(x)=x2+xsin x+cos x.(1)若曲线y=f(x)在点(a,f A.)处与直线y=b相切,求a与b的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档