数学建模MATLAB算法大全第02章 整数规划
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
Matlab学习系列26.整数规划

26. 整数规划全部变量限制为整数的规划问题,称为纯整数规划;部分变量限制为整数的规划问题,称为混合整数规划;变量只取0或1的规划问题,称为0-1整数规划。
整数规划问题,建议使用Lingo 软件求解。
常用的整数规划问题解法有:(1)分枝定界法:可求纯或混合整数线性规划; (2)割平面法:可求纯或混合整数线性规划;(3)隐枚举法:用于求解0-1整数规划,有过滤法和分枝法; (4)匈牙利法:解决指派问题(0-1规划特殊情形); (5)蒙特卡罗法:求解各种类型规划。
一、分枝定界法分支定界法的基本思想是:设有最大化的整数规划问题A ,先解与之相应的线性规划问题B ,若B 的最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z*的上界,记作z2, 而A 的任意可行解的目标函数值将是z*的一个下界z1, 分支定界法就是将B 的可行域分成子区域(称为分支)的方法,逐步减小z2和增大z1, 最终求到z*。
例1 分枝定界法原理示例:1212120max 58s. t. 65945 () 0, Z (1,2)i i z x x x x x x P x x i =++≤+≤≥∈=用Lingo软件求解:代码:max 5x1+8x2stx1+x2<=65x1+9x2<=45endgin 2运行结果:Global optimal solution found.Objective value: 40.00000Objective bound: 40.00000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 0.000000 -5.000000X2 5.000000 -8.000000Row Slack or Surplus Dual Price1 40.00000 1.0000002 1.000000 0.0000003 0.000000 0.000000二、0-1整数规划变量x i只能取值0,1,该约束条件可表示为:0≤x i≤1, x i∈N 或x i (1-x i)=0 1. 隐枚举法例2求解下列0-1规划问题:1231231231223 max 325s. t. 2 2 () 4 4 () 3 () 4 6 z x x x x x x a x x x b x x c x x =-++-≤++≤+≤+≤123 () ,,0 1d x x x =或求解思路:(1)先试探性地求一个可行解,易看出(x1, x2, x3)=(1, 0, 0)满足约束条件,故是一个可行解,相应的目标函数值为z=3.(2)由于是求极大值,故目标值z<3的解,不必检验是否满足约束条件即可删除,于是可增加一个约束条件(称为过滤条件):1233253x x x -+≥ (e)(3)用全部枚举法,3个变量共23=8种可能的组合,用过滤条件(并计算目标函数值,不断改进过滤条件)筛选每个可能的组合,最终得到问题的最优解。
matlab学习——02整数规划(蒙特卡洛法,指派问题,混合整数规划)

matlab学习——02整数规划(蒙特卡洛法,指派问题,混合整数规划)02整数规划蒙特卡洛法(随机取样法)编写⽂件mengte.m,⽬标函数f和约束向量gfunction[f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)^2-8*x(1)-2*x(2)-3*x(3)-x(4)-...2*x(5);g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-8002*x(1)+x(2)+6*x(3)-200x(3)+x(4)+5*x(5)-200]; 主函数format compact;rand('state',sum(clock)); % 初始化随机数发⽣器p0=0;tic % 计时开始for i=1:10^6x=randi([0,99],1,5); % 产⽣1⾏5列的区间[0,99]上的随机整数[f,g]=mengte(x);if all(g<=0)if p0<fx0=0;p0=f; % 记录下当前较好的解endendendx0,p0toc % 计时结束指派问题clearC=[2 10 9 715 4 14 813 14 16 114 15 13 9];A = perms(1:4);%perm显⽰1,2,3,4四个数的全排列L = length(A)for i=1:La = zeros(4,4);b = A(i,:);%遍历全排列中的每⼀种c = 1:4;a(sub2ind(size(a), b, c))=1;%a矩阵指定的位置赋值为1D{i}=a;S(i)=sum(sum(a.*C));%求出费⽤和end[a,b]=find(S==min(S))D{b}S(b)%适⽤于任意n阶系数矩阵clear all;C=[2 10 9 7,15 4 14 8,13 14 16 11,4 15 13 9,];%效率矩阵Cn=size(C,1);%计算C的⾏列数nC=C(:);%计算⽬标函数系数,将矩阵C按列排成⼀个列向量即可。
数学建模中规划问题的MATLAB求解

min P ( x, M )
的最优解 x 也是原问题的最优解。
【例 2-10】求非线性规划问题的解
min f ( x) x1 x2 8
2 x1 x2 0 2 s.t. x1 x2 2 0 x , x 0 1 2
2 2
function g=test(x) M=50000; f=x(1)^2+x(2)^2+8; g=f-M*min(x(1),0)-M*min(x(2),0)-M*min(x(1)^2-x(2),0)... +M*abs(-x(1)-x(2)^2+2);
命令窗输入[x,y]=fminunc('test',rand(2,1))
第二章
规划问题的MATLAB求解
2.1 线性规划 2.2 非线性规划
2.3 整数规划
数学规划模型
序:
规划问题是常见的数学建模问题,离散系统的优化问题 一般都可以通过规划模型来求解。因此快速求解规划问题是 数学建模的基本素质。利用MATLAB提供的规划模型求解命 令,可以快速得到想要的结果。
2.1 线性规划
以下介绍外罚函数法,内罚函数法参考PPT“内罚函数 法”。
设规划模型为 min f ( x)
gi ( x ) 0, i 1 ~ r s.t. hi ( x ) 0, i 1 ~ s k ( x ) 0, i 1 ~ t i
取充分大的数 M 0 ,构造函数 P ( x , M ) f ( x ) M max( g i ( x ), 0) M min( hi ( x ), 0)
数学规划模型——整数规划问题

数学规划模型——整数规划问题title: 数学规划模型——整数规划问题date: 2020-02-27 00:37:35categories: 数学建模tags: [MATLAB, 数学规划模型]整数规划整数规划:线性整数规划 - Matlab可进⾏求解(线性的意思在线性规划的基础上 , 加⼊决策变量取整数的条件)⾮线性整数规划→⽆特定算法, 只能⽤近似算法 , 如蒙特卡罗模拟、智能算法 ( 后续会讲到)特例: 特殊的整数规划 , Matlab中也只能求解线性01规划, 对于⾮线性 0-1规划也只能近似求解 。
(数模⽐赛中常出现)Matlab整数规划求解线性整数规划求解[x ,fval] = linprog [ c, A, b, Aeq, beq, lb, ub, X0] -> 线性规划的函数[x ,fval] = intlinprog [ c, intconA, b, Aeq, beq, lb, ub]→ 线性整数规划的求解注 :intlinpng 不能指定初始值 ;加⼊了 inton 参数可以指定哪些决策变量是整数。
例如决策变量有三个 : x1,x2,x3 ; 若x1和x3,是整数 , 则 intcon= [1 , 3] 。
线性 0-1规划求解仍然使⽤intlinprog 函数 , 只不过在 lb和ub上作⽂章 。
例如决策变量有三个 : x1,x2,x3 ; 若x1和x3是0-1变量,x2不限制, 则 intcon= [1 , 3] ,lb=[0 -inf 0]',ub=[1,+inf,1]。
⼩例题%% 线性整数规划问题%% 例1c=[-20,-10]';intcon=[1,2]; % x1和x2限定为整数A=[5,4;2,5];b=[24;13];lb=zeros(2,1);[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)fval = -fval%% 例2c=[18,23,5]';intcon=3; % x3限定为整数A=[107,500,0;72,121,65;-107,-500,0;-72,-121,-65];b=[50000;2250;-500;-2000];lb=zeros(3,1);[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)%% 例3c=[-3;-2;-1]; intcon=3; % x3限定为整数A=ones(1,3); b=7;Aeq=[4 2 1]; beq=12;lb=zeros(3,1); ub=[+inf;+inf;1]; %x(3)为0-1变量[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)整数规划的典型例题背包问题%% 背包问题(货车运送货物的问题)c = -[540 200 180 350 60 150 280 450 320 120]; % ⽬标函数的系数矩阵(最⼤化问题记得加负号)intcon=[1:10]; % 整数变量的位置(⼀共10个决策变量,均为0-1整数变量)A = [6 3 4 5 1 2 3 5 4 2]; b = 30; % 线性不等式约束的系数矩阵和常数项向量(物品的重量不能超过30)Aeq = []; beq =[]; % 不存在线性等式约束lb = zeros(10,1); % 约束变量的范围下限ub = ones(10,1); % 约束变量的范围上限%最后调⽤intlinprog()函数[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)fval = -fval指派问题%% 指派问题(选择队员去进⾏游泳接⼒⽐赛)clear;clcc = [66.8 75.6 87 58.6 57.2 66 66.4 53 78 67.8 84.6 59.4 70 74.2 69.6 57.2 67.4 71 83.8 62.4]'; % ⽬标函数的系数矩阵(先列后⾏的写法)intcon = [1:20]; % 整数变量的位置(⼀共20个决策变量,均为0-1整数变量)% 线性不等式约束的系数矩阵和常数项向量(每个⼈只能⼊选四种泳姿之⼀,⼀共五个约束)A = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];% A = zeros(5,20);% for i = 1:5% A(i, (4*i-3): 4*i) = 1;% endb = [1;1;1;1;1];% 线性等式约束的系数矩阵和常数项向量(每种泳姿有且仅有⼀⼈参加,⼀共四个约束)Aeq = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];% Aeq = [eye(4),eye(4),eye(4),eye(4),eye(4)]; % 或者写成 repmat(eye(4),1,5)% Aeq=zeros(4,20);% for i = 1:4% for j =1:20% if mod(j,4)==i% Aeq(i,j)=1;% end% if i==4% if mod(j,4)==0% Aeq(i,j)=1;% end% end% end% endbeq = [1;1;1;1];lb = zeros(20,1); % 约束变量的范围下限ub = ones(20,1); % 约束变量的范围上限%最后调⽤intlinprog()函数[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)% reshape(x,4,5)'% 0 0 0 1 甲⾃由泳% 1 0 0 0 ⼄蝶泳% 0 1 0 0 丙仰泳% 0 0 1 0 丁蛙泳% 0 0 0 0 戊不参加钢管切割问题%% 钢管切割问题%% (1)枚举法找出同⼀个原材料上所有的切割⽅法for i = 0: 2 % 2.9m长的圆钢的数量for j = 0: 3 % 2.1m长的圆钢的数量for k = 0:6 % 1m长的圆钢的数量if 2.9*i+2.1*j+1*k >= 6 & 2.9*i+2.1*j+1*k <= 6.9disp([i, j, k])endendendend%% (2) 线性整数规划问题的求解c = ones(7,1); % ⽬标函数的系数矩阵intcon=[1:7]; % 整数变量的位置(⼀共7个决策变量,均为整数变量)A = -[1 2 0 0 0 0 1;0 0 3 2 1 0 1;4 1 0 2 4 6 1]; % 线性不等式约束的系数矩阵b = -[100 100 100]'; % 线性不等式约束的常数项向量lb = zeros(7,1); % 约束变量的范围下限[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。
整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。
在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。
1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。
目标函数可以是最小化或者最大化某个线性表达式。
b. 定义约束条件:其次,需要定义线性规划问题的约束条件。
约束条件可以是等式或者不等式形式的线性表达式。
c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。
d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。
e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。
b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。
c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。
d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。
例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为200元。
生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。
工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。
求解如何安排生产,使得利润最大化。
1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数学软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将介绍如何使用Matlab求解这两类问题,并分析其优点和适用范围。
正文内容:1. 线性规划问题1.1 线性规划问题的定义线性规划问题是指在一定的约束条件下,通过线性目标函数求解最优解的问题。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。
1.2 Matlab中的线性规划求解函数Matlab提供了linprog函数来求解线性规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界,来求解线性规划问题的最优解。
1.3 线性规划问题的应用线性规划问题在实际应用中非常广泛,例如生产计划、资源分配、运输问题等。
通过Matlab求解线性规划问题,可以高效地得到最优解,为实际问题的决策提供科学依据。
2. 整数规划问题2.1 整数规划问题的定义整数规划问题是指在线性规划问题的基础上,决策变量的取值限制为整数。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0x为整数其中,c、A、b的定义与线性规划问题相同,x为整数。
2.2 Matlab中的整数规划求解函数Matlab提供了intlinprog函数来求解整数规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界和整数约束条件,来求解整数规划问题的最优解。
2.3 整数规划问题的应用整数规划问题在实际应用中常见,例如生产调度、投资决策、路径规划等。
通过Matlab求解整数规划问题,可以考虑到决策变量的整数性质,得到更为实际可行的解决方案。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:线性规划和整数规划是数学中常见的优化问题,通过Matlab可以方便地求解这些问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,包括问题的建模、求解方法和实际操作步骤。
一、线性规划问题的建模和求解1.1 确定优化目标:线性规划问题的目标是最大化或者最小化一个线性函数,通常表示为目标函数。
1.2 约束条件建模:线性规划问题还需要满足一系列线性约束条件,这些约束条件可以通过不等式或者等式表示。
1.3 使用Matlab求解:在Matlab中,可以使用linprog函数来求解线性规划问题,将目标函数和约束条件输入函数即可得到最优解。
二、整数规划问题的建模和求解2.1 确定整数规划问题:整数规划是线性规划的一个扩展,其中变量需要取整数值。
2.2 整数规划建模:整数规划问题可以通过将变量限制为整数来建模,通常使用0-1整数变量表示。
2.3 使用Matlab求解:Matlab中提供了intlinprog函数来求解整数规划问题,输入目标函数、约束条件和整数变量的取值范围即可得到最优解。
三、线性规划和整数规划问题的实际操作步骤3.1 准备数据:首先需要准备问题的数据,包括目标函数系数、约束条件系数和整数变量范围。
3.2 建立模型:将数据输入Matlab中的相应函数,建立线性规划或者整数规划模型。
3.3 求解问题:调用Matlab函数求解问题,得到最优解和最优值。
四、Matlab求解线性规划和整数规划问题的优势4.1 高效性:Matlab提供了高效的优化算法,能够快速求解复杂的线性规划和整数规划问题。
4.2 灵便性:Matlab支持多种约束条件和整数变量类型,可以灵便应对不同类型的优化问题。
4.3 可视化:Matlab还可以将优化结果可视化展示,匡助用户更直观地理解问题和解决方案。
五、总结通过本文的介绍,我们了解了如何使用Matlab求解线性规划和整数规划问题,包括建模方法、求解步骤和优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1o 变量全限制为整数时,称纯(完全)整数规划。 2o 变量部分限制为整数的,称混合整数规划。
1.2 整数规划特点
(i) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:
①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例 1 原线性规划为
min z = x1 + x2
+ +
7x2 ≤ 56 20x2 ≤ 70
⎪⎩x1 ≥ 5, x2 ≥ 0
最优解为: x1 = 5.0, x2 = 1.57, z1 = 341.4 。 再定界: 0 ≤ z* ≤ 349 。
(iii)对问题 B1 再进行分枝得问题 B11 和 B12 ,它们的最优解为
-17-
B11 : x1 = 4, x2 = 2, z11 = 340 B12 : x1 = 1.43, x2 = 3.00, z12 = 327.14 再定界: 340 ≤ z* ≤ 341,并将 B12 剪枝。 (iv)对问题 B2 再进行分枝得问题 B21 和 B22 ,它们的最优解为 B21 : x1 = 5.44, x2 = 1.00, z22 = 308 B22 无可行解。 将 B21, B22 剪枝。
x
* j
,
j
=
1,L, n
。
§3 0 − 1 型整数规划 0 − 1 型整数规划是整数规划中的特殊情形,它的变量 x j 仅取值 0 或 1。这时 x j 称
为 0 − 1 变量,或称二进制变量。 x j 仅取值 0 或 1 这个条件可由下述约束条件: 0 ≤ x j ≤ 1,整数
-18-
所代替,是和一般整数规划的约束条件形式一致的。在实际问题中,如果引入 0 − 1 变
变量取值的 2n 个组合。对于变量个数 n 较大(例如 n > 100 ),这几乎是不可能的。因
此常设计一些方法,只检查变量取值的组合的一部分,就能求到问题的最优解。这样的 方法称为隐枚举法(Implicit Enumeration),分枝定界法也是一种隐枚举法。当然,对
最优目标函数值最大者作为新的上界 z 。从已符合整数条件的各分支中,找出目标函数
值为最大者作为新的下界 z ,若无作用 z 不变。
第二步:比较与剪枝,各分枝的最优目标函数中若有小于 z 者,则剪掉这枝,即
以后不再考虑了。若大于 z ,且不符合整数条件,则重复第一步骤。一直到最后得到
z*
=
z
为止。得最优整数解
方式投资高(选购自动化程度高的设备),由于产量大,因而分配到每件产品的变动成 本就降低;反之,如选定的生产方式投资低,将来分配到每件产品的变动成本可能增加。 所以必须全面考虑。今设有三种方式可供选择,令
x j 表示采用第 j 种方式时的产量;
c j 表示采用第 j 种方式时每件产品的变动成本;
k j 表示采用第 j 种方式时的固定成本。
3.1.3 关于固定费用的问题(Fixed Cost Problem)
在讨论线性规划时,有些问题是要求使成本为最小。那时总设固定成本为常数,并
在线性规划的模型中不必明显列出。但有些固定费用(固定成本)的问题不能用一般线
性规划来描述,但可改变为混合整数规划来解决,见下例。 例 5 某工厂为了生产某种产品,有几种不同的生产方式可供选择,如选定的生产
2x1 + 4x2 = 5, x1 ≥ 0, x2 ≥ 0
其最优实数解为:
x1
=
0, x2
=
5 4
, min
z
=
5 4
。
③有可行解(当然就存在最优解),但最优解值变差。
例 2 原线性规划为
min z = x1 + x2
2x1 + 4x2 = 6, x1 ≥ 0, x2 ≥ 0
其最优实数解为:
x1
=
0,
停止。
(c) B 有最优解,但不符合问题 A 的整数条件,记它的目标函数值为 z 。 (ii)用观察法找问题 A 的一个整数可行解,一般可取 x j = 0, j = 1,L, n ,试探,
求得其目标函数值,并记作 z 。以 z* 表示问题 A 的最优目标函数值;这时有
z ≤ z* ≤ z
进行迭代。
5x1 + 4x2 ≤ 24 或 7x1 + 3x2 ≤ 45 。 为了统一在一个问题中,引入 0 − 1 变量 y ,则上述约束条件可改写为:
⎪⎨⎧57xx11
+ +
4x2 3x2
≤ ≤
24 45
+ +
yM (1 −
y)M
⎪⎩ y = 0或1
其中 M 是充分大的数。
约束条件
可改写为
x1 = 0 或 500 ≤ x1 ≤ 800
第二章 整数规划
§1 概论
1.1 定义
规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,
变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适
用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。
1.2 整数规划的分类
如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类:
ai1x1 + L + ain xn ≤ bi + yiM i = 1,2,L, m
(1)
y1 + L + ym = m −1
(2)
就合于上述的要求。这是因为,由于(2), m 个 yi 中只有一个能取 0 值,设 yi* = 0 ,
代入(1),就只有 i = i* 的约束条件起作用,而别的式子都是多余的。
. 当不采用第j种生产方式,即x j = 0时
(3)
min z = (k1 y1 + c1x1 ) + (k2 y2 + c2 x2 ) + (k3 y3 + c3 x3 )
(3)式这个规定可表为下述 3 个线性约束条件:
y jε ≤ x j ≤ y j M , j = 1,2,3
(4)
其中 ε 是一个充分小的正常数,M 是个充分大的正常数。(4)式说明,当 x j > 0 时 y j
必须为 1;当 x j = 0 时只有 y j 为 0 时才有意义,所以(4)式完全可以代替(3)式。
3.2 0 −1型整数规划解法之一(过滤隐枚举法) 解 0 −1型整数规划最容易想到的方法,和一般整数规划的情形一样,就是穷举法,
即检查变量取值为 0 或 1 的每一种组合,比较目标函数值以求得最优解,这就需要检查
在西区。由 A4 , A5 两个点中至少选一个;
在南区,由 A6 , A7 两个点中至少选一个。
如选用 Ai 点,设备投资估计为 bi 元,每年可获利润估计为 ci 元,但投资总额不能 超过 B 元。问应选择哪几个点可使年利润为最大?
解题时先引入 0 −1 变量 xi (i = 1,2,L,7)
令
xi
第一步:分枝,在 B 的最优解中任选一个不符合整数条件的变量 x j ,其值为 bj ,
以[bj ] 表示小于 bj 的最大整数。构造两个约束条件
x j ≤ [bj ] 和 x j ≥ [bj ] + 1
将这两个约束条件,分别加入问题 B ,求两个后继规划问题 B1 和 B2 。不考虑整数条件
求解这两个后继问题。 定界,以每个后继问题为一分枝标明求解的结果,与其它问题的解的结果中,找出
-16-
这样,许多子集可不予考虑,这称剪枝。这就是分枝定界法的主要思路。
分枝定界法可用于解纯整数或混合的整数规划问题。在本世纪六十年代初由 Land Doig 和 Dakin 等人提出的。由于这方法灵活且便于用计算机求解,所以现在它已是解 整数规划的重要方法。目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂
①过滤隐枚举法;
②分枝隐枚举法。
(iv)匈牙利法—解决指派问题(“0-1”规划特殊情形)。
(v)蒙特卡洛法—求解各种类型规划。
下面将简要介绍常用的几种求解整数规划的方法。
§2 分枝定界法 对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系
统搜索,这就是分枝与定界内容。通常,把全部可行解空间反复地分割为越来越小的子 集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称 为定界。在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,
为了说明成本的特点,暂不考虑其它约束条件。采用各种生产方式的总成本分别为
Pj
=
⎪⎧k j ⎪⎩⎨0,
+ cjxj,
当x j > 0 当x j = 0
j = 1,2,3.
在构成目标函数时,为了统一在一个问题中讨论,现引入 0 −1变量 y j ,令
yj
=
⎪⎧1, ⎪⎩⎨0,
于是目标函数
当采用第j种生产方式,即x j > 0时,
=
⎧1, ⎩⎨0,
当Ai点被选中,
当Ai点没被选中.
i = 1,2,L,7 .
于是问题可列写成:
7
∑ Max z = ci xi i=1
∑ ⎧
⎪
7
bi xi
≤B
⎪⎪ ⎨
i =1
x1
+
x2
+
x3
≤
2
⎪ ⎪
x4
+
x5
≥
1
⎪⎩x6 + x7 ≥ 1, xi = 0或1
3.1.2 相互排斥的约束条件
有两个相互排斥的约束条件
选址问题、背包问题及分配问题等。
设有最大化的整数规划问题 A ,与它相应的线性规划为问题 B ,从解问题 B 开始,