红外热成像技术在安防监控领域中的应用
红外热成像摄像机原理分析以及应用

红外热成像摄像机原理分析以及应用随着技术的进步,监控系统已经在各个领域得到了广泛的应用。
目前的视频监控系统主要采用可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护,但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安防系统在夜间或恶劣天气条件下的防范能力大打折扣。
同时,由于现在的视频监控系统仍然依托于人工监视,安保人员需要对监控画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能,而更多的只是事发后取证的作用。
从整体上来说,目前的视频监控系统还处于在半天时、半天候和半自动状态。
在伊拉克战争中,美军平均每个士兵拥有1.7台红外热像仪产品一项统计数据表明,世界上47%的暴力犯罪案件发生在晚6点到早6点之间。
原因很简单,在夜幕的笼罩下,犯罪分子容易隐蔽,犯罪场面也不容易被看见——黑暗掩盖了犯罪行为。
即使安装了一般的视频监控系统,也有可能让犯罪分子逃之夭夭。
因此,如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,成为安防系统当成亟待解决的难题之一。
在这种情况下,红外热成像技术以其作用距离远、穿透能力强、能识别隐蔽目标等优势被引入安防领域,成为监控领域的一份子。
热成像摄像机的监控原理在自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。
红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。
热成像摄像机(又叫热像仪)就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号,经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。
利用这种原理制成的仪器为热成像摄像机。
它通过探测微小的温度差别,将温度差异转换成实时的视频图像,显示在监视器上。
红外技术及其在安防领域中应用

浅谈红外技术及其在安防领域中的应用【摘要】随着我国电子技术的进步,红外技术的应用也越来越广泛。
红外技术是研究红外辐射的产出、传输、转换探测及应用的一种高新技术,其在军事装备中得到了广泛的应用。
近些年,由于红外技术的独特功能,军用红外技术已逐步实现了向民用部门的转化。
红外成像、红外测试、红外检测、红外报警、红外侦查、红外夜视等已是各行各业争相选用的先进技术。
基于此,本文对红外技术及其在安防领域中的应用进行了研究。
【关键词】红外技术原理安防领域应用中图分类号:f407.63 文献标识码:a 文章编号:红外技术是研究红外辐射的产出、传输、转换探测及应用的一种高新技术,其在军事装备中得到了广泛的应用。
近些年,由于红外技术的独特功能,军用红外技术已逐步实现了向民用部门的转化,这也使红外技术得到了广泛的应用。
与此同时,红外技术的应用也给人们的生活带来了便利。
红外技术红外技术是研究红外辐射的产出、传输、转换探测及应用的一种高新技术。
任何物体的红外辐射包含介于可见光与微波之间的电磁波段。
通常人们又把红外辐射称为红外光。
红外线波段是波长约在0.75微米到1000微米的电磁波。
通常人们将其划分为近、中、远红外三部分。
近红外指波长为0.75到3.0微米;中红外波长为3.0到20微米;远红外则指波长为20到1000微米。
在光谱学中,波段的划分方法并不统一,也有人将0.75到3.0微米,3.0到40 微米和40到1000微米作为近红外、中红外和远红外波段。
另外,由于大气对红外辐射的吸收,只留下三个重要的“窗口”区,即1到3微米、3到5微米和8到13微米可让红外辐射通过,因而在军事应用上,又分为将这三个波段称为近红外、中红外和远红外。
8到13 微米还称为热波段。
红外技术在安防领域中的应用在安防电视监控系统中,随着人们安全防范意识的提高,对重要场所需要24小时连续监控,这就是要用到夜视技术设备。
在夜视监视系统中,常规的办法是利用可见光照明,但这种方式存在不能隐蔽、容易暴露监控目标等缺点,因此使用较少。
安防监控系统的夜视功能解析

安防监控系统的夜视功能解析现代社会中,安全问题备受重视。
为了更好地保护人们的生命财产安全,安防监控系统广泛应用于各种场所。
其中,夜视功能作为重要的技术之一,在保障夜间监控效果方面发挥着不可替代的作用。
本文将对安防监控系统的夜视功能进行解析,旨在让读者对夜视技术有更深入的了解。
一、夜视功能的原理及类型夜视功能是利用红外光、低照度图像传感器等技术实现对低光环境下的监控和拍摄。
基于工作原理的不同,夜视功能分为红外夜视和低照度夜视两种类型。
1. 红外夜视红外夜视技术是通过发射和接收红外光来实现对夜间场景的观察和监控。
它利用波长较长的红外光不受人眼识别,可以在完全黑暗的环境下进行观察。
在监控系统中,红外夜视摄像机通过发射红外光源,利用其照射到的物体反射的红外光进行拍摄和传输,从而实现对夜间场景的监控。
2. 低照度夜视低照度夜视技术是通过采用高感光度图像传感器来实现对夜间场景的观察和监控。
它利用感光元件对光线的敏感性,能够在极低照度条件下拍摄出清晰的图像。
在监控系统中,低照度夜视摄像机通过提高图像传感器的感光度和降低图像传感器的噪声水平,实现对夜间场景的清晰拍摄。
二、夜视功能的应用场景夜视功能广泛应用于各个领域,特别是对夜间安全监控要求较高的场所。
以下是几个常见的应用场景:1. 公共安全领域:夜间巡逻、街道监控、交通监控等,通过安装夜视功能的监控系统,可以提高夜间的安全防护水平。
2. 商业场所:商场、超市、银行等需要24小时监控的场所,夜视功能可实现对盗窃、抢劫等违法行为的预防和打击。
3. 工业领域:工厂、仓库等需要对生产过程、设备运行状态进行监控的场所,夜视功能可确保工作安全,发现并解决潜在的问题。
4. 住宅小区:夜视功能在小区的入口、道路和公共区域的监控上发挥着重要的作用,帮助居民提高安全感并防范入侵等不法行为。
三、夜视功能的发展与研究趋势近年来,随着科技的不断进步和需求的增加,夜视功能也得到了迅速的发展。
红外热成像技术有什么应用

红外热成像设备今年突然走入了大众的视线,特别是热成像测温,那么除了测温,红外热成像技术还能用来做什么呢?
1、在夜间、低照度环境下,传统监控往往使用主动光源补充的设备来达到监控效果。
红外热像仪属于被动成像设备,不需要任何光源照射就可以准确成像,可以不受光线影响,提高夜间安防监控打击力度;由于红外线波长较长,所以具有的“透烟透雾”特性。
红外热像仪能更好地实现恶劣环境下的监控和识别,可实现网络化、远距离监控,24小时全天候监控。
另外,产品能提供高对比度的图像,提高视频分析的可靠性。
红外安防监控系统可实现智能化自动分析,将可见光监控的智能分析功能使用在红外热像仪视频上。
2、火灾预防报警和户外搜救
火场火灾被扑灭时,容易死灰复燃,热成像仪能够显示物体温度场,通过对
温度场的监控可即时发现温度异常,预防由于温度异常引发的二次起火。
户外搜救远距离探测和搜索被困人员,热像仪在数公里范围内,能非常容易发现被困人员、掉到深沟悬崖中的出事车辆。
另外,配备视频和红外热像仪的无人机,无人机也能在火灾等事故中执行有效的搜索和救援任务。
3、预警监测水坝、湖泊、山体的险情
红外热像仪可以对水库堤坝的情况实现在雨、雪、烟、雾、霾等恶劣天气下实现全天候监控,监控渗漏点、监控开裂塌方、监控水流的大小。
因为水温比环境温度低,同时水的辐射率与周围物体的辐射率有区别,因此即使是同一温度也能分辨出水来。
也可远距离监控监控山体滑坡情况,并做出预警。
以上就是红外热成像技术的应用了,目前来看用在监控领域比较常见,如果大家对红外热成像监控感兴趣的话,成都慧翼科技建议大家找专业人士咨询一下。
主动红外热成像技术和被动红外热成像技术

主动红外热成像技术和被动红外热成像技术主动红外热成像技术和被动红外热成像技术是两种常见的红外热成像技术。
它们在不同的应用领域中发挥着重要的作用。
主动红外热成像技术是指通过主动辐射红外光源,利用物体对红外辐射的反射或散射来获取热图像。
这种技术可以在完全黑暗的环境下工作,并且对于远距离目标的探测具有较好的效果。
主动红外热成像技术广泛应用于军事、安防、消防等领域。
例如,在军事领域,主动红外热成像技术可以用于探测敌方目标,提供战场情报,指导作战决策。
在安防领域,主动红外热成像技术可以用于夜间监控,提高安全性。
在消防领域,主动红外热成像技术可以用于探测火灾,帮助消防人员快速定位火源,提高灭火效率。
被动红外热成像技术是指利用物体自身的红外辐射来获取热图像。
物体的温度越高,辐射的红外能量越强,因此可以通过测量物体的红外辐射来获取其温度分布。
被动红外热成像技术广泛应用于医学、工业、建筑等领域。
例如,在医学领域,被动红外热成像技术可以用于检测人体的体温分布,帮助医生诊断疾病。
在工业领域,被动红外热成像技术可以用于检测设备的热量分布,及时发现故障,提高生产效率。
在建筑领域,被动红外热成像技术可以用于检测建筑物的热漏点,提高能源利用效率。
主动红外热成像技术和被动红外热成像技术各有其优势和适用场景。
主动红外热成像技术可以主动辐射红外光源,适用于远距离目标的探测;而被动红外热成像技术则可以利用物体自身的红外辐射,适用于近距离目标的探测。
此外,主动红外热成像技术对环境光的依赖较小,适用于黑暗环境;而被动红外热成像技术对环境光的依赖较大,适用于光照充足的环境。
总之,主动红外热成像技术和被动红外热成像技术在不同的应用领域中发挥着重要的作用。
它们通过获取物体的红外辐射来获取热图像,帮助人们了解物体的温度分布,提供有价值的信息。
随着科技的不断进步,这两种技术将会得到更广泛的应用,并在各个领域中发挥更大的作用。
视频监控施工方案红外热成像技术在安防监控中的应用

视频监控施工方案红外热成像技术在安防监控中的应用在安防监控领域,随着科技的发展,红外热成像技术逐渐应用于视频监控中。
本文将就红外热成像技术在视频监控施工方案中的应用进行论述。
一、红外热成像技术的基本原理红外热成像技术是利用物体自身的热辐射进行成像和测温的技术。
物体的温度越高,热辐射的强度就越大。
红外热成像仪通过接收物体发射的红外辐射,将红外信号转化为可视图像,从而实现对物体温度的测量和图像显示。
二、红外热成像技术在安防监控中的应用1. 夜间监控:传统的监控摄像机在夜间光线不足的情况下往往无法捕捉到清晰的图像。
而红外热成像技术能够利用物体本身的热辐射进行成像,不受光线影响,能够在黑暗环境下提供清晰的监控图像。
2. 隐蔽性监控:传统监控摄像机往往容易被人发现,从而增加了监控系统遭到破坏的风险。
而红外热成像技术可以远距离进行监控,不需要安装在明显的位置,能够更好地保护监控系统的安全。
3. 温度检测:红外热成像技术不仅可以进行图像显示,还能对物体的温度进行测量。
在监控系统中,可以利用红外热成像仪对设备运行状态进行实时监测,及时发现异常情况,提高安全性。
4. 运动侦测:红外热成像技术可以通过对物体温度的变化进行监测和识别。
当有人或物体进入监控区域时,红外热成像仪会自动触发警报系统,提醒安保人员及时采取相应措施,保障安全。
5. 大范围监控:红外热成像技术可以实现对大范围区域的监控。
与传统摄像机相比,红外热成像仪能够同时监控更广阔的区域,提高了监控的效率和覆盖范围。
三、红外热成像技术在视频监控施工方案中的应用案例以一个企业厂区为例,通过红外热成像技术来加强安防监控。
首先,在厂区的关键区域和重要出入口,安装红外热成像摄像机,实现对夜间和光线较差环境下的24小时监控。
其次,利用红外热成像技术进行温度监测,及时发现异常情况,避免设备故障或火灾等安全隐患。
同时,通过红外热成像技术的运动侦测功能,实现对厂区内人员和车辆的监控和识别。
热成像的应用及分析

热成像的应用及分析热成像技术是一种利用物体发出的红外辐射来显示物体表面温度分布的技术。
热成像技术广泛应用于各个领域,包括军事、工业、医疗、安防等。
以下将分别介绍热成像在各个领域的应用及分析。
在军事方面,热成像技术被广泛应用于夜视设备和目标探测。
夜视设备利用热成像技术可以在夜间或恶劣的天气条件下检测和识别目标,使军事人员能够在暗夜中作战。
热成像技术可以帮助军方探测敌方人员、车辆和设备,提高战场的监控能力和作战效果。
此外,热成像技术还可以用于识别隐藏在被掩盖物后的目标,使军事人员能够更好地了解敌方动态,做好战略部署。
在工业方面,热成像技术可以用于设备检测与维护。
通过对设备表面进行热成像扫描,可以实时监测设备温度分布,检测设备是否存在异常。
通过早期发现和处理设备故障,可以减少设备损坏和停机时间,提高生产效率和降低维护成本。
此外,热成像技术还可以用于检测电路板等电子产品的散热效果,优化散热设计,提高产品性能和可靠性。
在医疗领域,热成像技术可以用于体温检测和医学诊断。
通过对人体进行热成像扫描,可以实时监测和记录人体各个部位的温度分布,帮助医生诊断疾病和评估治疗效果。
例如,热成像技术可以辅助肿瘤早期诊断,通过检测肿瘤区域的高温异常来判断肿瘤位置和大小。
另外,热成像技术还可以用于检测乳房癌、静脉血栓等疾病,提高早期诊断率和治疗效果。
在安防领域,热成像技术可以应用于监控和防盗系统。
与传统摄像头相比,热成像摄像头可以通过检测物体的红外辐射来进行无光夜视,不受光线条件的限制。
热成像技术可以用于远距离监控和目标识别,提高安防系统的监控范围和效果。
另外,热成像还可以用于人体活动检测和入侵报警,通过检测人体的温度变化来判断是否有人进入禁区或发生异常事件,提高安防系统的准确性和响应速度。
在环境领域,热成像技术可以用于气象监测和环境调查。
通过对大气温度的测量和分析,可以获取天气变化和大气污染等环境信息。
热成像技术还可以用于检测建筑物的热能损失和能源浪费,帮助改善建筑节能效果。
白光、红外、热成像、激光、微光、快球等各类摄像机选择使用及安装注意事项

在摄像机领域补光技术种类繁多,有白光、热成像、红外光、激光、蓝光、紫外光技术等白光灯摄像机又称白光摄像机,和红外摄像机类似,都是提供夜间微光摄像的摄像机,最大的特点是其夜晚成像为彩色图像。
经过研究,安德旺技术人员发明了导热环技术,并申请了国家实用新型技术专利。
白光灯:是节能环保的新型绿色照明灯具,是一种可见光,属于冷光源,广泛用于道路监控工程中卡口摄像机摄取过往卡口的机动车牌号的辅助照明工具,用于小区停车场出入口摄像机记录进出机动车牌号的辅助照明,因摄像机夜晚在白光灯的辅助照明情况下,摄取的图像是彩色的,所以也可以用于企事业单位大门口摄像机的辅助照明,特别适合同单彩摄像机配套使用。
白光灯与摄像机、镜头在搭配:要求选用低照度黑白、彩色或彩转黑摄像机,选择廉价的摄像机,有效距离将受到一定影响。
还应注意镜头的选用,要求选用自动光圈镜头,镜头的F值越大越好,CCD越大越好,选用1/2"的镜头要比使用1/3"的效果好,选用1/3"的镜头要比使用1/4"效果好。
不同档次的摄像机、镜头之间的匹配,对于同一盏白光灯发出的光线感应度相差许多倍,可视距离也相差很多。
适用场合:一般来讲,夜间监控范围在20米以内的,选用白光灯是不错的选择。
不足:摄像机隐蔽性较差,目前白光摄像机的感光度不是很灵活,容易出现闪灯现象。
产品特性白光摄像机独有的产品特性,使其他摄像机无法比拟和超越。
下面是低温白光摄像机和低温红外摄像机的效果对比:白天不偏色因为白光是可见光,所以使用的是红外截止的水晶滤光片,当然没有感红外滤光片的带来的红外线干扰,也就没有白天户外偏色的问题。
所以色彩更纯正,画面更逼真。
夜视全彩色因为白光是可见光,所以看到的景物和白天没有太大的差别,可以提供更多信息量,有利于调查取证。
绿色照明,节能环保。
大功率白光LED作为一种新型的绿色照明光源已经是全球共识,它具有节能,长寿等众多优点,很多国家都在大力推广,是未来照明的发展趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外热成像技术在安防监控领域中的应用前言随着光电信息、微电子、网络通信、数字视频、多媒体技术及传感技术的发展,安防监控技术已由传统的模拟走向高度集成的数字化、智能化、网络化。
由于数字信号具有抗干扰能力强、失真小、传输不受距离限制、存储查询便捷等优点。
因此,各种数字视频技术得到了迅速的发展,传统的安全防范系统已逐步向以图像处理为核心的融合了网络、传感、通信技术的数字视频监控系统过渡。
图像的数字化首先是将系统中所有信息流(包括视频、音频、探测器、控制等)由模拟信号转化为数字信号,数字化从根本上解决了数据压缩的问题,从而使安全防范设备能够与网络结合起来,可以利用各种网络来传输信息,打破了传统的模拟监控受区域和距离的限制。
数字视频监控系统通过开放的协议,可以将视频监控系统与安防系统中其它各子系统实现无缝连接,并在统一的操作管理平台上集中监视、存储、控制和管理,实现信息资源和软硬件资源的共享。
随着现代高新技术在安防行业的不断应用,数字视频技术的日趋成熟,互联网宽带技术的发展,视频监控系统将朝着前端一体化、视频数字化、监控网络化、系统集成化、传感设备智能化等方向发展。
当前,现代高新技术几乎在安防监控系统中都有应用或即将应用。
下面简要地介绍一下现代传感技术中发展迅速的红外热成像技术、数字化与网络化录像及远程监控技术在安全防范系统中的应用。
红外热成像技术红外热成像我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像是不同的,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
红外热成像的特点 自然界所有温度在绝对零度(-273℃)以上的物体,都会不发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。
大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。
因此,这两个波段被称为红外线的“大气窗口”。
我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。
正是由于这个特点,红外热成像技术可用在安全防范的夜间监视和森林防火监控系统中。
红外热成像仪采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。
红外热成像仪可分为致冷型和非致冷型两大类。
致冷型的热灵敏度高,结构复杂,一般用于军事用途,而非致冷型灵敏度虽低于致冷型,但其性能已可以满足多数军事用途和几乎所有的民用领域。
由于不需要配备制冷装置,因此非制冷红外热成像仪可靠性及性价比较致冷型的高。
红外热成像仪在安防的作用1、 夜间及恶劣气候条件下目标的监控夜晚,由于众所周知的原因,可见光器材已经不能正常工作,如果采用人工照明的手段,则容易暴露目标。
若采用微光夜视设备,它同样也工作在可见光波段,依然需要外界光照明。
而红外热成像仪是被动接受目标自身的红外热辐射,无论白天黑夜均可以正常工作,并且也不会暴露自己。
同样在雨、雾等恶劣的气候条件下,由于可见光的波长短,克服障碍的能力差,因而观测效果差,但红外线的波长较长,特别是工作在8~14um 的热成像仪,穿透雨、雾的能力较高,因此仍可以正常观测目标。
因此在夜间以及恶劣气候条件,采用红外热成像监控设备可以对各种目标,如人员、车辆等进行监控。
2、防火监控树林中人的热图像右小图为可见光图象 大图为热图象由于红外热成像仪是反映物体表面温度而成像的设备,因此除了夜间可以作为现场监控使用外,还可以作为有效防火报警设备,在大面积的森林中,火灾往往是由不明显的隐火引发的。
这是毁灭性火灾的根源,用现有的普通方法,很难发现这种隐性火灾苗头。
而应用红外热成像仪可以快速有效地发现这些隐火,并且可以准确判定火灾的地点和范围,透过烟雾发现着火点,做到早知道早预防,早扑灭。
3、伪装及隐蔽目标的识别普通的伪装是以防可见光观测为主。
一般犯罪分子作案通常隐蔽在草丛及树林中,由于野外环境的恶劣及人的视觉错觉,容易产生错误判断。
红外热成像装置是被动接受目标自身的热辐射,人体和车辆的温度及红外辐射一般都远大于草木的温度及红外辐射,因此不易伪装,也不容易产生错误判断。
数字化与网络化录像及远程监控技术模拟视频设备发展至今,已无法满足人们的更高要求,数字化是必由之路。
数字信号是进行压缩处理和其它图像处理的前提。
数字视频监控系统采用数字处理、编解码和网络技术,能较好地克服模拟系统的局限性,其优点表现为:首先,数字化视频可在网络中传输视、音频及控制数据,不受距离限制,信号不易受干扰,可以大幅提高图像品质和稳定性。
其次,利用计算机网络联网,网络带宽可复用,无须重复布线。
再次,数字化存储成为可能,经过压缩的视频数据可存储在磁盘阵列中或保存在光盘中,查询方便快捷。
数字视频监控的两大关键技术一是视频数据的压缩和解压缩,视频图像的信息量是巨大的。
例如,1幅640*480中分辨度的彩色图像(24bit/像素),其数据量大约为0.9MB,如果以PAL制每秒25帧的速度播放,则数据量之大,是存储、传输都无法承受的,显然,视频数据压缩技术是数字化的关键。
一般的压缩方式主要是通过减少每帧图像间时间上和空间上的冗余性和相关性信息来减少数据量。
目前,常用的压缩标准有H.263、H.264、MPEG—1、MPEG—2、MPEG—4、JPEG、小波等。
二是视频数据的实时同步传输技术。
数字视频监控系统中的视频数据属于实时数据必须实时处理,例如,实时压缩、解压缩、传输、同步。
另外,声音与视频也必须保持同步。
作为视频传输这样的特例,对时间十分敏感,因此必须确保数据的实时性和同步性。
网络型嵌入式硬盘录像机网络型嵌入式硬盘录像机是集数字化与网络化录像及远程监控技术于一体的数字视频监控设备,它集成了矩阵、画面分割器、录像机、远程控制等诸多功能,首次将网络技术引入安防监控行业。
而嵌入式硬盘录像机是指建立在嵌入式处理器和嵌入式操作系统上,面向特定的用户群所设计开发的安防监控产品,具有稳定、高效等特点。
网络型硬盘录像机的功能主要为:视音频信号的实时全硬件同步压缩、压缩数据流存储在硬盘上、实时视频和声音预览、视音频信号的切换、摄像机和云台控制、本地录像文件回放、实时网络传输、远程文件回放和下载、支持流协议(RTP/RTCP、RTSP)支持IE浏览和双向语音对讲等。
应用案例这里我们举两个应用上面两项新技术的成功案例。
案例中的数字视频监控系统采用的是浙江大立科技的DM-60数字视频监控系统,DM-60数字视频监控系统是融合了红外热成像、数字化与网络化录像及远程监控技术的监控平台,该系统集视频采集、压缩、远程传输、视频播放与检索和报警等功能于一体的数字视频监控系统。
由大立科技自主研发的红外热成像仪、网络型嵌入式硬盘录像机、网络传输设备、后端管理存储设备等部分组成。
它可以利用可见光和红外两种技术实现全天时、全天候监控,通过多种传输手段,实现监视监控,使后端监控中心能够直观、实时地掌控现场情况,即使在夜间、雾天、烟雾、树林等条件,也可以清晰地显示任何现场情况,并可在监控中心操纵前方设备,进行重点监控。
目前,该系统已广泛用于国防、公安、消防、森林防火、交通管理、重点设施保卫、海边防监控、港务监管、机场监管、堆场仓库火灾预警等领域的全天时、全天候监控。
案例一:某市森林防火监控系统随着森林保护和林业建设的不断发展,林地面积、林业蓄积量逐年增加,防火任务日益艰巨。
森林火灾是林业重要灾害之一。
森林火灾具有突发性、灾害发生的随机性、短时间内能造成巨大损失的特点。
因此一旦有火警发生,必须以极快的速度采取扑救措施,扑救是否及时,决策是否得当,大都取决于对林火行为的发现是否及时,分析是否准确合理,决策措施是否得当。
为此无论国内、国外都在预防、减少和控制森林火灾方面做了大量的工作。
为了贯彻“预防为主,积极扑救的方针”,真正做到早发现,早解决。
采用先进技术,用高科技手段来加强森林防火工作,在最短的时间内作出决策和调度,从而为森林灭火赢得宝贵时间,最大限度地减少损失是森林防火管理发展的必然趋势。
当火灾发生后,尤其是森林火灾的情况下,火焰产生的烟雾很大,往往遮盖了真正的着火点,以及火灾的蔓延趋势。
红外热像仪有很强的穿透烟雾的能力,可有效地发现真正的着火点,以及火灾的蔓延趋势,因此,可用于指挥救火,尽量减少经济、人员的损失。
而森林火灾在地面火被扑灭的情况下,在地下往往还存在地下火的情况,因此,经常会出现死灰复燃的情况。
红外热像仪可通过监控火灾后森林地表的温度,及时发现地表温度的异常,确定地下火可能存在的地点。
系统设计由两部分构成:监控前端(监控点)和监控中心。
系统设5个防火监控前端(监控点)。
在各监控点制高点架设红外热成像仪及低照度长焦距可见光摄像头各一台,覆盖半径为1-5km ,采用市电及太阳能给前端设备供电,配备室外全天候云台及红外热成像仪专用防护罩,红外热成像仪及可见光摄像头共用一个云台。
监控前端的任务就是负责各个林区视频信号采集和控制实现,包含的其它设备还有:无线图像发送设备、无线指令接收设备,数字光端机、太阳能供电设备;避雷设备等。
监控中心由监控工作站、矩阵控制主机、电视墙、硬盘录像机等设备组成,监控工作站的图像数据接入分局网络,系统采用TCP/IP 协议,网内经授权的任何一台计算机均能监控各监控点的信息,系统采用模块化结构,具有良好的可扩充性,可随时增加撤减监控点。
监控中心主要的功能就是:预警、显示、控制、录像和视频数字化、网络化。
系统结构图案例二:某边防部队监控系统 我国有上万公里的海岸线和边境线,与多个国家毗邻。
准确及时地掌握边海防区域的军主控计算微波天红外、可见光摄太阳能防雷设红外、可光端机 红外、可光端机 红外、可光端机 红外、可见光摄微波天太阳能防雷设微波接硬盘录像电视墙事情况,对于有效保卫祖国的领海和领土,在未来战争中作出快速反应、掌握战争主动权有着极其重要的意义。
建立边海防远程视频监控系统,对关键口岸、哨所和敏感地区实施监控,就能使我军情报部门直观、及时地监视边海防前线的当面情况,提高情报获取的实时性和综合处理能力,也能有效防止偷渡、出逃、走私、贩毒等非法行为。
采用先进技术,用高科技手段来加强边境、口岸监控,将人防和技防相结合,增加边境监控体系的科技含量,最大限度地减少突发事件的发生是边防视频监控系统发展的必然趋势。