六年级分数的应用题及详细答案完整版
六年级分数应用题50题及答案

六年级分数应用题50题及答案(1) 一艘客轮从甲港开出到乙港有27的乘客下船,又有45人上船,这时乘客人数相当于从甲港开出时的2021,这时客轮上有多少人?(2) 有甲、乙两个仓库,甲仓库有货物80吨,运走53吨,乙仓库运走25,这时乙仓库剩下的货物是甲仓库剩下的2倍,乙仓库原有货物多少吨?(3) 六年级三个班的学生共同植树,一班植树80棵,二班植树的棵数是一班的89,三班植树的棵数比二班的97还多7棵,三班植树多少棵?(4) 甲、乙两队同时从两端挖一条水渠,挖通时,甲、乙两队挖的长度比是4:5,已知甲队每天挖25米,乙队单独挖这条水渠要36天,这条水渠全长多少米?(5) 两桶油,甲桶油重120千克,从甲桶油取出13,乙桶取出45,这样甲桶油剩下的油是乙桶油剩下的4倍,乙桶油原来有油多少千克?(6) 客车从甲地开往乙地,货车同时从乙地开往甲地,客车行完全程的713时与货车相遇,如果客车每小时行56千米,货车9小时可以行完全程,甲、乙两地相距多少千米?(7) 一杯糖水200克,其中糖占水的241。
如果再放入8克糖,那么这时糖与水的比是多少?(8) 一项工程,两人合做了1天完成全部工程的16,甲、乙两人的工效之比是3:2,照这样余下的工程由乙独做,还要几天完成?(9) 果园里有桃树80棵,是梨树的 45 ,梨树又是苹果树的 23 ,果园里有苹果树多少棵?(10) 甲、乙两人共同加工200个零件,甲先做了5小时,再与乙一起做了4小时完成了任务,已知甲每小时比乙每小时多加工2个零件,甲、乙每小时各加工多少个零件?(11) 甲、乙两城相距560千米,一列客车从甲城开往乙城,每小时行55千米,1小时后一列货车从乙城开往甲城,速度是客车的911,客车开出后几小时与货车还相距55千米?(12) 有一桶油,第一次取出25,第二次取出的重量比第一次少12千克,这时桶里还剩油28千克,全桶油重多少千克?(13) 一根电线剪去15米后,剩下的比原来长度的811还少3米,剩下的电线长多少米?(14) 甲、乙两船分别从A 、B 两港同时出发相向而行,当甲船行了全程的80%,乙船行了全程的90%,两船相距350千米,A 、B 两港相距多少千米?(15) 一本小说,小刚第一天看了全书的12,第二天看了余下的13,第三天看了余下的14,这时还剩下120页,这本小说共有多少页?(16) 有48千米道路需要施工,甲施工队独立做,要60天完成;乙施工队独立做,要40天完成。
六年级上册分数应用题练习100题附答案

六年级上册分数应用题练习100题附答案(1) 六年级有男生22人,女生比男生少211 ,全班有多少人?(2) 一堆化肥的重量等于这堆化肥的87再加上87吨,这堆化肥有多少吨?(3) 小华看一本132页的书,第一天看了全书的31,第二天看了第一天的41,小华第二天看了多少页?(4) 学校六(3)班有学生56人,女生人数是男生人数的53,男生多少人?(用两种方法解答)(5) 一份稿件,小敏9小时才能打完,为了提前完成任务,她的工作效率提高了31,那么她现在需多少小时可以完成任务?(6) 乐乐从甲地步行去乙地,第1小时行了全程的41,第二小时行了全程的20%,这时离两地的中点还有2千米,甲乙两地相距多少千米?(7) 一批零件共有5040个,王师傅6小时做了全部的43,以这样的速度,还需几小时才能全部做完?(8) 学校六(1)班有学生48人,其中女生比男生的53多8人,六(1)班男、女生各有多少人?(9) 六年级三个班的学生共同植树,一班植树80棵,二班植树的棵数是一班的89,三班植树的棵数比二班的97还多7棵,三班植树多少棵?(10) 某粮店有大米560吨,面粉350吨,运走多少吨大米,可以使剩下的大米吨数相当于面粉的107? (11) 男生25人,比女生的34 少2人,全班多少人?(12) 一堆水果,梨是苹果的45 ,桔子比梨多38 ,桃比桔子少211 ,已知苹果80千克,桃多少千克?(13) 一堆煤,第一天运走的吨数与总吨数的比是1:4,第二天运走4.5吨后,两天正好运走了总数的13 ,这堆煤有多少吨?(14) 妈妈今年40岁,儿子的年龄是妈妈的41 ,又正好是外婆年龄的61。
外婆今年几岁?(15) 六(2)班有男生25人,是女生人数的75,全班有多少人? (16) 一些水果,其中苹果20筐,梨的筐数是苹果的43,同时又是橘子的53。
商店运来橘子多少筐?(17) 一项工程,甲单独完成需要24天,是乙单独完成天数的54,两人合作,几天可以完成这项工程?(18) 一根绳子用去了32米,正好是剩下的81,这根绳子原来有多少米? (19) 学校食堂买来一些土豆,已经吃了 34 ,还剩90千克,这些土豆有多少千克?(20) 南京长江大桥约长6800米,武汉长江大桥相当于它的41,武汉长江大桥约长多少米?(21) 一块长方形的铁板长6米,宽是长的31。
六年级数学分数应用题试题答案及解析

六年级数学分数应用题试题答案及解析1.(1分)(2011•商州区)把米长的铁丝锯成相等的4段,每段是原长的()A.米B.米C.D.【答案】C【解析】把米长的铁丝锯成相等的4段,就是把米长的铁丝看作单位“1”,平均分为4份,求每段是原长的几分之几,用1÷4解答.解:把米长的铁丝锯成相等的4段,每段是原长的:1÷4=;故选:C.点评:本题主要考查分数的意义,注意找准单位“1”,分析平均分了几份.2.(1分)一根绳长米,剪去它的,还剩这根绳的()A.B.米C.D.米【答案】A【解析】还剩这根绳的几分之几,用1﹣来解答.解:1﹣=.答;还剩这根绳子的.故选:A.点评:把这根绳子看作单位“1”,还剩它的几分之几,用1减去.3.(2009年五中小升初入学测试题)工厂原有职工128人,男工人数占总数的,后来又调入男职工若干人,调入后男工人数占总人数的,这时工厂共有职工()人.【答案】160【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为人,调入后女职工占总人数的,所以现在工厂共有职工人.4.有甲、乙两桶油,甲桶油的质量是乙桶的倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的倍,乙桶中原有油()千克.【答案】10【解析】原来甲桶油的质量是两桶油总质量的,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的,由于总质量不变,所以两桶油的总质量为千克,乙桶中原有油千克.5.把个人分成四队,一队人数是二队人数的倍,一队人数是三队人数的倍,那么四队有多少个人?【答案】49人【解析】方法一:设一队的人数是“”,那么二队人数是:,三队的人数是:,,因此,一、二、三队之和是:一队人数,因为人数是整数,一队人数一定是的整数倍,而三个队的人数之和是(某一整数),因为这是以内的数,这个整数只能是.所以三个队共有人,其中一、二、三队各有,,人.而四队有:(人).方法二:设二队有份,则一队有份;设三队有份,则一队有份.为统一一队所以设一队有份,则二队有份,三队有份,所以三个队之和为份,而四个队的份数之和必须是的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有(人).6.小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数,他今天比昨天多读了页,这时已经读完的页数是还没读的页数的,问题是,这本书共有多少页?”【答案】280【解析】首先,可以直接运算得出,第一天小明读了全书的,而前二天小明一共读了全书的,所以第二天比第一天多读的页对应全书的。
完整版)六年级分数、百分数应用题专项训练及答案

完整版)六年级分数、百分数应用题专项训练及答案1、一桶油第一次取出总数的10%,第二次取出剩下的20%,两次共取出28升。
这桶油共有多少升?假设这桶油共有x升,则第一次取出0.1x升,剩下0.9x 升;第二次取出0.2(0.9x)升,剩下0.8(0.9x)升。
根据题意可得:0.1x + 0.2(0.9x) = 28解得x = 350,因此这桶油共有350升。
2、一桶柴油,第一次用了全桶的20%,第二次用去20千克,第三次用了前两次的和,这时桶里还剩8千克油。
问这桶油有多少千克?假设这桶油共有x千克,则第一次用去0.2x千克,剩下0.8x千克;第二次用去20千克,剩下0.8x-20千克;第三次用去0.2x+(0.8x-20)千克,剩下8千克。
根据题意可得:0.6x = 48解得x = 80,因此这桶油共有80千克。
3、服装厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间是156人,这个服装厂全厂共有多少人?假设全厂人数为x人,则一车间人数为0.25x人,二车间人数为(1-1/5)×0.25x=0.2x人,三车间人数为(1+3/10)×0.2x=0.26x人。
根据题意可得:0.26x = 156解得x = 600,因此这个服装厂全厂共有600人。
4、加工一批零件,甲乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的4/5没完成。
已知甲每天比乙少加工4个,这批零件共有多少个?假设这批零件共有x个,则甲每天加工量为y个,乙每天加工量为y-4个。
根据题意可得:3y + 2(y-4) = (1-4/5)x化简得5y = x又因为甲乙二人合作需12天完成,因此可得:12(y+y-4) = x化简得x = 16y将x = 16y代入5y = x中,得到y = 20,因此这批零件共有x = 320个。
5、某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?赚多少,亏多少?设赚钱的商品售出x件,亏本的商品售出y件,则可得:60x + 60y = (1+0.2)x×60 + (1-0.2)y×60化简得y = 2x因为x+y=总销量,因此可得:3x = 总销量商店的总收入为120x元,总成本为(1+0.2)x×60+(1-0.2)2x×60=104x元,因此总利润为16x元。
六年级数学分数应用题(附答案)

六年级数学分数应用题(附答案)1、把甲乙丙三根木棒插入水池中,三根木棒的长度和为360 厘米,甲有3/4 在水外,乙有4/7在水外,丙有2/5 在水外。
水有多深?【答案】设水深x厘米,则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm 深2、小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?【答案】考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的 2 本书加上 3 本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3) ÷(1-1/2 )=10 (本),小明未借之前有:(10+2)÷(1-1/2 )=24 (本),小刚原有书:(24+1)÷(1-1/2 )=50 (本).答:小明原有书50 本.故答案为:50.3、甲数比乙数多1/3,乙数比甲数少几分之几?【答案】乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/44、有梨和苹果若干个,梨的个数是全体的5/3 少17 个,苹果的个数是全体的7/4 少31 个,那么梨和苹果的个数共多少?【答案】解:设总数有35X 个那么梨有35X*3/5-17=21X-17 个苹果有35X*4/7-31=20X-31 个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109 个,苹果有20×6-31=89个。
5、有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9 分之7,这个分数是多少?【答案】设分子为X ,分母为X+4,则(X+9)/(X+13)=7/9;解之,得X=5答:该分子为5/96、把一根绳分别折成 5 股和 6 股, 5 股比 6 股长20 厘米,这根绳子长多少米?【答案】这根绳子长20÷(1/5-1/6)=600cm7、小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24 岁。
六年级分数应用题带答案

六年级分数应用题带答案题目1:小华有一本书,第一天看了全书的1/3,第二天看了全书的1/4,两天一共看了全书的几分之几?答案:首先,我们需要计算两天看的部分的总和。
第一天看了全书的1/3,第二天看了全书的1/4。
1/3 + 1/4 = 4/12 + 3/12 = 7/12所以,小华两天一共看了全书的7/12。
题目2:一个班级有48名学生,其中男生占全班人数的3/5,女生占全班人数的2/5。
请问男生和女生各有多少人?答案:首先,我们需要计算男生和女生的人数。
男生人数 = 48 × 3/5 = 28.8,但人数必须是整数,所以男生人数为29人。
女生人数= 48 × 2/5 = 19.2,同样,人数必须是整数,所以女生人数为19人。
所以,男生有29人,女生有19人。
题目3:一个长方形的长是宽的2/3,如果长是30米,那么宽是多少米?答案:首先,我们知道长是宽的2/3,设宽为x米。
30 = x × 2/3为了求出宽,我们需要解这个方程:x = 30 ÷ (2/3) = 30 × (3/2) = 45所以,宽是45米。
题目4:一个工厂生产了500个零件,其中有1/5是次品。
那么合格的零件有多少个?答案:首先,我们需要计算次品的数量。
次品数量= 500 × 1/5 = 100然后,我们用总数量减去次品数量,得到合格零件的数量:合格零件数量 = 500 - 100 = 400所以,合格的零件有400个。
题目5:一个果园有苹果树和梨树共120棵,苹果树的数量是梨树的3/4。
请问苹果树和梨树各有多少棵?答案:首先,设梨树的数量为x棵,那么苹果树的数量就是3/4x棵。
x + 3/4x = 120解这个方程,我们得到:7/4x = 120x = 120 × 4/7 = 70.57由于树的数量必须是整数,我们可以取70棵梨树,那么苹果树的数量就是:苹果树数量 = 120 - 70 = 50所以,苹果树有50棵,梨树有70棵。
六年级数学分数应用题试题答案及解析

六年级数学分数应用题试题答案及解析1.(5分)某校六年级学生有180人,占全校人数的20%,五年级人数比全校总人数少,五年级有学生多少人?【答案】216人.【解析】先求出全校有多少人:180÷20%=900(人).然后把全校人数看作单位“1”,五年级的人数是全校人数的1﹣=.求五年级有多少人,用900×即可.解;180÷20%×(1﹣)=900×=216(人)答:五年级有216人.点评:本题须先用除法求出单位“1”是多少,然后根据分数的乘法的意义求出五年级的人数.2.(3分)在一个盒子中有10个红球、8个绿球和一些黑球.每次从里面拿出一个球,结果拿出绿球的可能性小于,那么至少有多少个黑球?【答案】7个【解析】假设摸出绿球的可能性等于,即盒子中球的总个数的是绿球的个数,根据已知一个数的几分之几是多少,求这个数,用除法求出盒子中球的总个数,然后减去盒子中红球和绿球的个数,即盒子中黑球个数;因为拿出绿球的可能性小于,所以用求出的黑球个数加1即可.解:8÷=24(个),24﹣10﹣8+1,=6+1,=7(个);答:至少有7个黑球.点评:解答此题用到的知识点:先进行假设,进而根据已知一个数的几分之几是多少,求这个数,用除法求出盒子中球的总个数,然后求出当摸出绿球的可能性等于时黑球的个数,然后加1即可.3.(2分)(2011•成都模拟)某班男生和女生人数的比是4:5,则男生占全班人数的,女生占全班人数的.【答案】;.【解析】根据题意,男生占4份,女生占5份,全班4+5=9份,把全班人数看作单位“1”,求男生占全班的几分之几,用除法计算,求女生占全班的几分之几,用女生的除以全班的,据此解答即可.解:男生4份,女生5份,全班的份数:4+5=9(份),男生占全班的:4÷9=,女生占全班的:5÷9=;故答案为:,.点评:此题考查分数除法应用题,求一个数是另一个数的几分之几,用一个数除以另一个数.4.光明小学有学生人,其中女生的与男生的参加了课外活动小组,剩下的人没有参加.这所小学有男、女生各多少人?【答案】480,420【解析】(用假设法)假设男生、女生都有的人参加了课外活动小组,那么共有(人),比现在多出了(人),这多出的人即为女生的,所以女生人数为(人),男生人数为(人).5.养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的倍.鸭比鸡少几分之几?【答案】【解析】方法一:把鸭看成单位“”,那么鸡就是,鸭比鸡少:(此时的单位“1”是鸡的只数).方法二:设鸭有份,则鸡有份,所以鸭比鸡少.6. (迎春杯决赛)小刚给王奶奶运蜂窝煤,第一次运了全部的,第二次运了块,这时已运来的恰好是没运来的.问还有多少块蜂窝煤没有运来?【答案】700【解析】方法一:运完第一次后,还剩下没运,再运来块后,已运来的恰好是没运来的,也就是说没运来的占全部的,所以,第二次运来的块占全部的:,全部蜂窝煤有:(块),没运来的有:(块).方法二:根据题意可以设全部为份,因为已运来的恰好是没运来的,所以可以设全部为份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有份,则已运来应是份,没运来的份,第一次运来份,所以第二次运来是份恰好是块,因此没运来的蜂窝煤有(块).7.小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少;如果小刚给小莉24个,则小刚的玻璃球比小莉少,小莉和小刚原来共有玻璃球多少个?【答案】132【解析】小莉给小刚24个时,小莉是小刚的 (=1一),即两人球数和的;小刚给小莉24个时,小莉是两人球数和的(=),因此24+24是两人球数和的-=.从而,和是(24+24) ÷=132(个).8.水结成冰后体积增大它的. 问:冰化成水后体积减少它的几分之几?【答案】【解析】设水的体积是份,则结成冰后体积为份,冰化成水后比冰减少.9.学校派出60名选手参加2008年“华罗庚金杯小学数学邀请赛”,其中女选手占.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数的.正式参赛的女选手有多少名?【答案】10【解析】因为女选手人数有变化,男选手人数未变,所以抓住男选手人数不变求解.把总人数视为“1”,男选手人数是60×(1-)=45(人),男选手人数占正式参赛选手总数的1-,所以正式参赛选手总数是:45÷(1-)=55(人),正式参赛的女选手人数是55×=10(人)。
六年级分数除法应用题及答案

六年级分数除法应用题及答案1. 题目:小明有3/4个苹果,他把苹果平均分给了4个朋友,每个朋友分得多少苹果?答案:小明有3/4个苹果,他把苹果平均分给了4个朋友,那么每个朋友分得的苹果是3/4 ÷ 4 = 3/16个苹果。
2. 题目:一个班级有30名学生,其中2/3的学生是女生,这个班级有多少名女生?答案:班级有30名学生,其中2/3的学生是女生,所以女生的人数是30 × 2/3 = 20名。
3. 题目:一个长方形的长是8/5米,宽是2/3米,求长方形的面积。
答案:长方形的面积可以通过长乘以宽来计算,所以面积是(8/5) × (2/3) = 16/15平方米。
4. 题目:一个工厂生产了120个零件,其中有1/4是次品,求次品零件有多少个?答案:工厂生产了120个零件,其中有1/4是次品,那么次品零件的数量是120 × 1/4 = 30个。
5. 题目:一个游泳池的容积是1/2立方米,如果每小时可以注水1/3立方米,那么需要多少小时才能注满游泳池?答案:游泳池的容积是1/2立方米,每小时可以注水1/3立方米,所以需要的时间是1/2 ÷ 1/3 = 3/2小时。
6. 题目:一个蛋糕被切成了8块,小华吃了其中的3/4,小华吃了多少块蛋糕?答案:蛋糕被切成了8块,小华吃了其中的3/4,那么小华吃了8 ×3/4 = 6块蛋糕。
7. 题目:一个果园有60棵苹果树,其中1/5的苹果树是新种植的,求新种植的苹果树有多少棵?答案:果园有60棵苹果树,其中1/5的苹果树是新种植的,那么新种植的苹果树的数量是60 × 1/5 = 12棵。
8. 题目:一袋大米重40千克,如果每千克大米的价格是1/2元,那么这袋大米的价格是多少?答案:一袋大米重40千克,每千克大米的价格是1/2元,那么这袋大米的价格是40 × 1/2 = 20元。
9. 题目:一个学校有240名学生,其中3/4的学生参加了运动会,求参加运动会的学生有多少名?答案:学校有240名学生,其中3/4的学生参加了运动会,那么参加运动会的学生有240 × 3/4 = 180名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级分数的应用题及
详细答案
集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]
六年级分数的应用题
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米还剩下多少米
分数应用题的答案:
1、分析:用去1/2和5桶,还剩30%,可以理解为,5桶所占的分率为1-1/
2-30% (从单位1中去掉1/2和30%),当然,也可以画线段图来理解。
所以列式为:5÷(1-1/2-30%)
2、分析:第一次截去它的7/10,第二次又截去余下的1/3(题中的7/10的
单位1为“它”也就是一根钢管10米,1/3的单位1是第一次截去后余下的钢管的长度,两个分数的单位1不相同,所以要统一单位1,即都转化为这根钢管的几分之几),显然,“第一次截去它的7/10”不用再转化了,重点是“第二次又截去余下的1/3”转化为第二次截去了这根钢管的几分之几,解决了这个问题,就迎刃而解了。
第二次截去了余下(就是1-7/10)的1/3,就是第二次截去了1×(1-7/10)×1/3,就是第二次截去了这根钢管的(1-7/10)×1/3=1/10 所以10对应的分率为
单位1减去第一次截去了单位1的几分之几再减去第二次借去了单位的几分之几
列式为:(1-7/10)×1/3=1/10
10÷(1-7/10-1/10)
=省略自己计算
3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
分析:由题中的“完成了全长的2/3后,离中点16.5千米”条件可知道,2/3已经超过了中点1/2,画线段图可以理解,16.5千米对应的分率为2/3-1/2
所以列式为16.5÷(2/3-1/2)
4、师徒两人合做一批零件,徒弟做了,比师傅少做21个,这批零件有多少
个?
分析:由题意“徒弟做了总数的2/7,比师傅少做21个”意味着,师傅做了徒弟做的数量(总数的2/7)再加上21个,
徒弟(总数的2/7)和师傅(总数的2/7再加上21个)共做了这批零件就是单位1
可以理解为,21个零件所占的分率为1-2/7-2/7
所以列式为21÷(1-2/7-2/7)
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12
袋,这时仓库里还剩24袋,两次共取出多少袋?
分析:要想求出两次共取出多少袋必须先知道单位1也就是总数是多少所以先求单位1这批化肥总数是多少
由题意分析,找准已经量和其所对应的分率各式多少就很容易求出单位1了。
第一次(总数的2/5),第二次(总数的1/3少12袋),剩下24袋,
这意味着,12袋和24袋对应的分率为单位1中去掉2/5再去掉1/3
所以列式(12+24)÷(1-2/5-1/3)但这是求的单位1这批化肥的总数结果为135袋
再求两次共取出多少袋?
135×2/5+135×1/3-12=87(袋)(大家要写详细过程)
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
分析:由题意想到数量关系:总路程÷速度和=相遇时间
总路程已经知道为1152千米
速度和为货车和客车的速度和,货车已知为每小时行72千米,先求客车的速度是解决这个问题的重要点(在这句话”货车每小时行72千米,比客车快 2/7”中,客车的速度为单位1,求单位1所以客车的速度为72÷(1+2/7)可以画线段图来理解)
所以列式客车的速度72÷(1+2/7)=56千米/ 时
1152÷(72+56)=9(小时)
这个题很经典,必须弄明白。
7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?
分析:这类问题有很多种解法,只要合理答案符合就可。
我们把这类问题转化成比的思想来解答。
由“裤子的价格是上衣的3/5”,可以知道上衣的价格与裤子的价格的比为5:3,一件上衣比裤子贵160元,也就是160元对应的份数为(5-3)份,所以先求一份再求裤子所对应的3份
列式为160÷(5-3)×3=240(元)
当然这类的问题也可以用分数的思想,列方程来解决
解:设上衣的价格为x元(最后我解释为什么设上衣的价格,而不设问题中所问的一条裤子的价格为x元呢)
根据数量关系:一件上衣的价格-一条裤子的价格=160 列出方程
X - 3/5x =160
解出x=400
裤子的价格为3/5x=400×3/5=240(注意这里不带单位,为什么?我们常常讲这里不解释了)
可能还有别的思路,希望能拿来和大家分享,合理就是对的。
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
答案:72只。
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米还剩下多少米
答案:两天共挖:60米
还剩:20米。
后面两题很简单,自己写过程。
上面如有笔误,请qq联系我,我们再次修正。