2020年山东省高考数学(理)冲刺卷及答案(一)
冲刺卷02-决战2020年高考数学冲刺卷(山东专版)(解析版)

冲刺卷02-决战2020年高考数学冲刺卷(山东专版)一、单选题 1.已知集合{}0,1,2,3,4A =,集合{}21,B x x n n A ==+∈,则A B =I( )A .{}1 B .{}1,3C .{}2,4D .{}0,1,3【答案】B 【解析】 【分析】 先根据{}0,1,2,3,4A =,化简{}{}21,13579B x x n n A ==+∈=,,,,,再求交集. 【详解】 因为{}0,1,2,3,4A =,所以{}{}21,13579B x x n n A ==+∈=,,,,, 所以A B =I {}1,3.故选:B 【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题. 2.已知i 是虚数单位,复数1111i i--+的共轭复数是( ) A .i B .i -C .1D .-1【答案】B 【解析】 【分析】先把复数化简,然后可求它的共轭复数. 【详解】因为()1i 1i 11i 1i 1i 2+---==-+, 所以共轭复数就是i -. 故选:B. 【点睛】本题主要考查复数的运算及共轭复数的求解,把复数化到最简形式是求解的关键,侧重考查数学运算的核心素养.3.命题p :对任意x R ∈,210x +>的否定是( ) A .p ⌝:存在0x R ∈,0210x +≤ B .p ⌝:存在0x R ∈,0210x +> C .p ⌝:不存在0x R ∈,0210x +≤ D .p ⌝:对任意x R ∈,210x +≤【答案】A 【解析】试题分析:所给命题是全称性命题,它的否定是一个存在性命题,即存在0x R ∈,0210x +≤. 考点:全称命题的否定4.2018年5月1日,某电视台的节目主持人手里提着一个不透明的袋子,若袋中共有10个除颜色外完全相同的球,其中有7个白球,3个红球,若从袋中任取2个球,则“取得2个球中恰有1个白球1个红球”的概率为( ) A .521B .715C .1115D .221【答案】B 【解析】 【分析】由组合数公式求出从10个球中任取2个球的取法个数,再求出有1个红球1个白球的取法个数,即可求出结论. 【详解】从10个球中任取2个球共有210C 种取法, 其中“有1个红球1个白球”的情况有1137C C (种),所以所求概率1113277C 15p C C ==. 故选:B. 【点睛】本题考查利用组合数公式求古典概型的概率,属于基础题.5.已知在ABC ∆内有一点P ,满足0PA PB PC ++=u u u r u u u r u u u r r,过点P 作直线l 分别交边AB 、AC 于M 、N ,若AM mAB =u u u u r u u u r ,()0,0AN nAC m n =>>u u ur u u u r ,则mn 的最小值为( )A .49B .53C .43D .3【答案】A 【解析】根据在ABC ∆内有一点,0PA PB PC ++=u u u r u u u r u u u r r,点P 为重心,有()13AP AB AC =+u u u r u u u r u u u r ,再根据,,M N P 共线,有()1AM AN AP λλ+-=u u u u r u u u r u u u r ,得到11313m n+=,然后用基本不等式求解. 【详解】因为在ABC ∆内有一点P ,满足0PA PB PC++=u u u r u u u r u u u rr,且,PB PA AB PC PA AC =+=+u u u r u u u r u u u r u u u r u u u r u u u r ,所以30PA AB AC ++=u u u r u u u r u u u r()13AP AB AC =+u u u r u u u r u u u r , 因为,,M N P 共线,所以()1AM AN AP λλ+-=u u u u r u u u r u u u r ,又因为AM mAB =u u u u r u u u r ,()0,0AN nAC m n =>>u u ur u u u r , 所以()1nAC mAB AP λλ+-=u u u u r u u r u u u r,所以()1,1133n m λλ==-, 所以11313m n+=,所以11133m n =+≥=, 所以49mn ≥,当且仅当1133m n =,11313m n +=,即23m n ==时,取等号. 故选:A 【点睛】本题主要考查平面向量和基本不等式的应用,还考查了运算求解的能力,属于中档题.6.在数列{}n a 中,12a =,1212n n na a a ++=()*n ∈N ,若对*n N ∈,不等式2122312n n a a a a a a m m ++++<-+L 恒成立,则实数m 的取值范围是( )A .(,1)(2,)-∞-+∞UB .(,1][2,)-∞-+∞UC .(,2)(1,)-∞-+∞UD .(,2][1,)-∞-+∞U【答案】B 【解析】先利用递推公式求出数列的通项公式,进一步利用裂项相消和放缩求出数列的和,最后再利用恒成立问题和不等式进行求解。
专题20 2020年全国普通高等学校统一招生考试数学冲刺试卷(全国I卷)(理)(解析版)

第I 卷 选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,1,2,3,4,5}A =-,{|(1)(5)0}B x x x =∈--<N ,则AB =( ).A .{3}B .{2,3}C .{2,3,5}D .{1,1,5}-【答案】D 【解析】{|(1)(5)0}{2,3,4}B x x x =∈--<=N ,所以{1,1,5}A B =-.故选:D.2.设i 为虚数单位,复数z 满足()25z i -=,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】因为()25z i -=,所以()()()5252222i z i i i i +===----+, 由共轭复数的定义知,2z i =-+,由复数的几何意义可知,z 在复平面对应的点为()2,1-,位于第二象限. 故选:B3.某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).①35.6%的客户认为态度良好影响他们的满意度; ②156位客户认为使用礼貌用语影响他们的满意度; ③最影响客户满意度的因素是电话接起快速;④不超过10%的客户认为工单派发准确影响他们的满意度. A .1 B .2C .3D .4【答案】C 【解析】①认为态度良好影响他们满意度的客户比例为35.6%18.35%17.25%-=,故错误; ②156位客户认为使用礼貌用语影响他们的满意度,故正确; ③影响客户满意度的因素是电话接起快速,故正确;④认为工单派发准确影响他们满意度的客户比例为100%98.85% 1.15%-=,故正确. 故选:C . 4.函数()()1ln 1xxe xf x e -=+的部分图像大致为( )A .B .C .D .【答案】B 【解析】()()1ln 1xxe xf x e -=+,其定义域为:(,0)(0,)-∞+∞,又()()()1ln 1ln ()11x xx xe x e xf x f x e e ------===-++,所以()f x 为奇函数,故排除A,C 选项,又当12x =时,1(1)ln 12()021e f e ⨯=<+, 所以排除D 选项, 故选:B.5.惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为q ,这两个相距为R 的惰性气体原子组成体系的能量中有静电相互作用能221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中c k 为静电常量,1x ,2x 分别表示两个原子负电中心相对各自原子核的位移,且1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,则U 的近似值为( )A .21232c k q x x RB .21232c k q x x R - C .2123c k q x x R D .2123c k q x x R- 【答案】B 【解析】根据题意,221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭21212c k q R R R R R R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭212121111111c k q x x x x R R R R⎛⎫⎪=+--⎪- ⎪++-⎝⎭, 因为1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,所以212121111111c k q x x x x R R R R⎛⎫⎪+--⎪- ⎪++-⎝⎭222212121122221111+c k q x x x x x x x x R R R R R R R ⎡⎤⎛⎫⎛⎫--⎛⎫≈+-+--+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦()222212121122222c x x k q x x x x x x RR R R R R R ⎡⎤--≈-++---⎢⎥⎢⎥⎣⎦21232c k q x x R ≈-, 故选:B6.若曲线()xf x mx e n =⋅+在点()()1,1f 处的切线方程为y ex =,则m n +的值为( )A .12e + B .12e - C .12D .2e 【答案】A 【解析】()x f x mx e n =⋅+,则()()'1x f x m x e =+⋅,故()1f e =,()1f e '=,()11me n e m e e +=⎧∴⎨+=⎩,解得122m e n ⎧=⎪⎪⎨⎪=⎪⎩,所以12e m n ++=. 故选:A .7.据《九章算术》记载,商高是我国西周时期的数学家,曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯早500年.如图,现有ABC 满足“勾3股4弦5”,其中3AC =,4BC =,点D 是CB 延长线上的一点,则AC AD ⋅=( )A .3B .4C .9D .不能确定【答案】C 【解析】因为3,4,5AC CB AB ===,所以222AC CB AB +=, 所以AC CB ⊥,所以0AC CB ⋅=,所以0AC CD ⋅=, 所以2()AC AD AC AC CD AC AC CD ⋅=⋅+=+⋅909=+=. 故选:C8.一个球体被挖去一个圆锥,所得几何体的三视图如图所示,则该几何体的体积为( )A .403πB .56πC .1843πD .104π【答案】C 【解析】由题意可知该几何体是球体被挖去一个圆锥,圆锥底面半径为332=6, 设球的半径为R ,可得(()22236R R =+-,解得4R =,所以该几何体的体积为(2341184236333R π⨯π⨯-⨯⨯π=. 故选:C .9.为响应国家“节能减排,开发清洁能源”的号召,小华制作了一个太阳灶,如图所示.集光板由抛物面(抛物线绕对称轴旋转得到)形的反光镜构成,已知镜口圆的直径为2m ,镜深0.25m ,为达到最佳吸收太阳光的效果,容器灶圈应距离集光板顶点( )A .0.5米B .1米C .1.5米D .2米【答案】B 【解析】若使吸收太阳光的效果最好,容器灶圈应在抛物面对应轴截面的抛物线的焦点处, 如图,画出抛物面的轴截面,并建立坐标系,设抛物线方程22x py = 集光板端点()1,0.25A ,代入抛物线方程可得24p =, 所以抛物线方程24x y =, 故焦点坐标是()0,1F.所以容器灶圈应距离集光板顶点1m . 故选:B10.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21 B .63C .13D .84【答案】B 【解析】因为130S =,3421a a +=,所以111313602521a d a d +⨯=⎧⎨+=⎩,解可得,3d =-,118a =,则7171876(3)632S =⨯+⨯⨯⨯-=.故选:B .11.已知函数()14sin cos f x x x =-,现有下述四个结论: ①()f x 的最小正周期为π;②曲线()y f x =关于直线4πx =-对称; ③()f x 在5,412ππ⎛⎫⎪⎝⎭上单调递增;④方程()2f x =在[],ππ-上有4个不同的实根. 其中所有正确结论的编号是( ) A .②④ B .①③④C .②③④D .①②④【答案】D 【解析】()112sin 2,sin 2214sin cos 12sin 212sin 21,sin 22x x f x x x x x x ⎧-<⎪⎪=-=-=⎨⎪-≥⎪⎩, 作出()f x 在[],ππ-上的图象(先作出2sin 2y x =-的图象,再利用平移变换和翻折变换得到12sin 2y x =-的图象),如图所示,由图可知①②④正确,③错误.故所有正确结论的编号是①②④.故选:D.12.三棱锥P ABC -中,,,PA PB PC 互相垂直,1PA PB ==,M 是线段BC 上一动点,若直线AM 与平面PBC 6P ABC -的外接球的体积是( ) A .2π B .4πC .83πD .43π 【答案】D 【解析】M是线段BC上一动点,连接PM,PA PB PC,,互相垂直,AMP∴∠就是直线AM与平面PBC所成角,当PM最短时,即PM BC⊥时直线AM与平面PBC所成角的正切的最大.此时6 APPM=,6PM=,在直角PBC中,2612PB PC BC PM PC PC PC⋅=⋅⇒=+⨯⇒=. 三棱锥P ABC-扩充为长方体,则长方体的对角线长为1122++=.∴三棱锥P ABC-的外接球的半径为1R=,∴三棱锥P ABC-的外接球的体积为34433Rππ=.故选:D.第II卷非选择题部分(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.若x,y满足约束条件24010220x yx yx y-+≥⎧⎪++≥⎨⎪+-≤⎩,则3z x y=+的最大值为______.【答案】5【解析】由题意,作出约束条件所表示的平面区域,如图所示:目标函数3z x y =+,可化为直线3y x z =-+, 当3y x z =-+经过点A 时,直线在y 轴上的截距最大. 此时目标函数取得最大值,又由10220x y x y ++=⎧⎨+-=⎩,解得3x =,4y =-,即()3,4A -,所以目标函数的最大值为3345z =⨯-=. 故答案为:514.设n S 是等比数列{}n a 的前n 项和,425S S =,则此数列的公比q =____________. 【答案】1-或2± 【解析】设等比数列{}n a 的首项为10a ≠,公比为q ,425S S =,∴1q ≠, ∴()()421115111a q a q qq--=--,化简可得()()22140qq--=,解得1q =-或2q =±. 故答案为:1-或2±.15.2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为______.【答案】13【解析】根据题意,要求甲、乙、丙3名志愿者每名志愿者至少辅导1门学科, 每门学科由1名志愿者辅导,则必有1人辅导2门学科;则有23436636C A =⨯=种情况,若甲辅导数学,有2212323212C A C A +=种情况, 则数学学科恰好由甲辅导的概率为13, 故答案为:13. 16.过双曲线2221(0)x y a a -=>上一点M 作直线l ,与双曲线的两条渐近线分别交于,P Q ,且M 为线段PQ 的中点,若POQ △(O 为坐标原点)的面积为2,则双曲线的离心率为______.【解析】由题意知,双曲线2221(0)x y a a-=>的两条渐近线方程为1y x a =±,设112211,,,P x x Q x x a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则()12121,22x x M x x a +⎛⎫- ⎪⎝⎭,根据点M 在双曲线2221x y a -=上,得()()22121222144x x x x a a +--=,得212x x a =,由双曲线的两条渐近线方程得1tan2POQ a∠= 222sin cos 22sin =2sin cos 22sin cos 22POQ POQ POQ POQ POQ POQ POQ ∠∠∠∠∠=∠∠+ 22212tan2tan 211POQPOQ a a∠==∠++ ,所以21222211121POQ a aS POQ x x a a a∆+=∠=⨯⨯⨯=+,而2POQS=,所以2a =,又1b =,所以5c =,离心率5e =.故答案为:5 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.平面四边形ABCD ,点,,A B C 均在半径为2的圆上,且6BAC π∠=.(1)求BC 的长;(2)若3BD =,2DBC BCD ∠=∠,求BCD ∆的面积. 【答案】(1)2;(2)352【解析】(1)设外接圆半径为2R =, 在ABC 中,6BAC π∠=,由正弦定理得12sin 422BC R BAC =∠=⨯=, 即2BC =; (2)在BCD 中,2DBC BCD ∠=∠,sin sin 22sin cos DBC BCD BCD BCD ∴∠=∠=∠∠则由正弦定理可得2cos CD BD BCD =⋅∠,又由余弦定理知222cos 2BC CD BD BCD BC CD +-∠=⋅,222()BD BC CD BD CD BC CD+-∴=⋅,又2BC =,3BD =, 解得215CD =,由余弦定理2222232151cos 22326BD BC CD CBD BD BC +-+-∠===-⋅⨯⨯,则35sin 6CBD ∠=, BCD ∴△的面积135sin 22BCDSBC BD CBD =⋅⋅∠=. 18.如图1,在多边形ABCDEF 中,四边形ABCD 为等腰梯形,//BC AD ,1AB AF BC ===,2AD DE ==,四边形ADEF 为直角梯形,//AF DE ,90DAF ∠=︒.以AD 为折痕把等腰梯形ABCD 折起,使得平面ABCD ⊥平面ADEF ,如图2所示.(1)证明:AC ⊥平面CDE .(2)求直线CF 与平面EAC 所成角的正切值. 【答案】(1)详见解析;(2)1919. 【解析】(1)证明:取AD 的中点M ,连接CM ,如下图所示:1AB AF BC ===,//BC AM ,由四边形ABCM 为菱形,可知12AM AD =, 在ACD 中,在90ACD ∠=︒, 所以AC DC ⊥.又平面ABCD ⊥平面ADEF ,平面ABCD 平面ADEF AD =,//AF DE ,90DAF ∠=︒,所以DE AD ⊥,DE ⊂平面ADEF ,所以DE ⊥平面ABCD ,AC ⊂平面ABCD , 所以DE AC ⊥,又因为DE DC D ⋂=, 所以AC ⊥平面CDE .(2)由平面ABCD ⊥平面ADEF ,如图取AD 的中点为O ,以O 为原点,以OA 为x 轴,其中y 轴,z 轴分别在平面ADEF 平面ABCD 中,且与AD 垂直,垂足为O 建立空间直角坐际系O xyz -.因为()1,1,0F ,13,0,22C ⎛⎫- ⎪ ⎪⎝⎭,()1,2,0E -,()1,0,0A ,33,0,22CA ⎛=- ⎝⎭,()2,2,0AE =-,33,1,2CF ⎛= ⎝⎭. 设平面CAE 的法向量(),,n x y z =,则00CA n AE n ⎧⋅=⎨⋅=⎩,即330220x z x y ⎧=⎪⎨-+=⎪⎩,不妨令1x =,得(1,1,3n =.设直线CF 与平面EAC 所成的角为θ,则331522sin 1045CF n CF nθ+-⋅===⨯⋅, 所以19tan θ=.19.在平面直角坐标系xOy中,设椭圆22221x ya b+=(0ab>>)的离心率是e,定义直线bye=±为椭圆的“类准线”,已知椭圆C的“类准线”方程为23y=±,长轴长为4.(1)求椭圆C的方程;(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:223x y+=的切线l,过点O且垂直于OP的直线l交于点A,问点A是否在椭圆C上?证明你的结论.【答案】(1)22143x y+=;(2)在,证明见解析.【解析】(1)由题意得:23b abe c==,24a=,又222a b c=+,联立以上可得:24a=,23b=,21c=.∴椭圆C的方程为22143x y+=;(2)如图,由(1)可知,椭圆的类准线方程为23y=±,不妨取23y=,设(),23P x(x≠),则23OPk=,∴过原点且与OP垂直的直线方程为023y x=,当3=x时,过P点的圆的切线方程为3x=过原点且与OP垂直的直线方程为12y x=-,联立312xy x⎧=⎪⎨=-⎪⎩,解得:33,2A⎫-⎪⎪⎭,代入椭圆方程成立;同理可得,当0x =时,点A 在椭圆上;当0x ≠时,联立223412y x x y ⎧=⎪⎨⎪+=⎩,解得1A ⎛⎫,2A ⎛⎫⎝, 1PA所在直线方程为()()20060x x y --=.此时原点O 到该直线的距离d ==∴说明A 点在椭圆C 上;同理说明另一种情况的A 也在椭圆C 上. 综上可得,点A 在椭圆C 上.20.已知函数()()2ln 1f x x a x =+-.(1)讨论函数()f x 的单调性;(2)设函数()()0g x kx b k =+>,当0a =时,若对任意的()0,x ∈+∞,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立,求k 的最小值.【答案】(1)详见解析;(2)2. 【解析】(1)()()212120ax f x ax x x x+'=+=>,当0a ≥时,()0f x '≥在()0,∞+上恒成立, 所以函数()f x 在()0,∞+上单调递增; 当0a<时,若()0f x '>,解得0x <<若()0f x '<,解得x >所以函数()f x 在区间⎛ ⎝上单调递增,在区间⎫+∞⎪⎪⎭上单调递减. (2)因为()2g x x ≤,所以20x kx b --≥,0k >,故240k b ∆=+≤,即24k b ≤-,又因为()()21ef x g x -≤,所以2ln 10e x kx b ---≤. 设()2ln 10x e x kx b ϕ=---≤,()2ex k xϕ'=-, 当20,e x k ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,()x ϕ单调递增, 当2,e x k ⎛⎫∈+∞⎪⎝⎭时,()0x ϕ'<,()x ϕ单调递减. 故()max 2222ln 212ln 10e ex e e b e b k k k ϕϕ⎛⎫==---=--≤ ⎪⎝⎭,所以22ln 1e b k -≤,所以有222ln 14k e b k -≤≤-. 由题知,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立的充要条件是不等式222ln 14k e k -≤-有解,将该不等式化为222ln 104k e k--+≥,令2kt =,则22ln 10t e t -++≥有解. 设()22ln 1h t t e t =-++,()22e h t t t'=-+,可知()h t 在区间(上单调递增,在区间)+∞单调递减,又()10h =,10h=>,()2210h e e e =-++<,所以()22ln 1h x t e t =-++在区间)e 内存在唯一零点0t,故不等式22ln 10t e t -++≥的解集为01t t ≤≤,即012kt ≤≤,故k 的最小值为2. 21.11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求,,p p p 123;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中,,p p p 123的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式. 【答案】(1)分布列见解析;(2)①1231743,,636216p p p ===;②116177i i i p p p +-=+,11156n np ⎛⎫=- ⎪⎝⎭. 【解析】(1)记一轮投球,甲命中为事件A ,乙命中为事件B ,,A B 相互独立,由题意1()2P A =,2()3P B =,甲的得分X 的取值为1,0,1-,(1)()P X P AB =-=121()()(1)233P A P B ==-⨯=, (0)()()()()()()P X P AB P AB P A P B P A P B ==+=+12121(1)(1)23232=⨯+-⨯-=, 121(1)()()()(1)236P X P AB P A P B ====⨯-=,∴X 的分布列为:(2)由(1)16p =, 2(0)(1)(1)((0)(1))p P X P X P X P X P X ==⋅=+==+=111117()2662636=⨯+⨯+=,同理,经过2轮投球,甲的得分Y 取值2,1,0,1,2--:记(1)P X x =-=,(0)P X y ==,(1)P X z ==,则2(2)P Y x =-=,(1)P Y xy yx =-=+,2(0)P Y xz zx y ==++,(1)P Y yz zy ==+,2(2)P Y z ==由此得甲的得分Y 的分布列为:∴3()()3362636636636216p =⨯+⨯++⨯++=, ∵11(1)i i i i p ap bp cp b +-=++≠,00p =,∴1212321p ap bp p ap bp cp =+⎧⎨=++⎩,71136664371721636636a b a b c ⎧+=⎪⎪⎨⎪++=⎪⎩,∴6(1)717b a b c -⎧=⎪⎪⎨-⎪=⎪⎩,代入11(1)i i i i p ap bp cp b +-=++≠得:116177i i i p p p +-=+, ∴111()6i i i i p p p p +--=-, ∴数列1{}n n p p --是等比数列,公比为16q =,首项为1016p p -=, ∴11()6nn n p p --=.∴11210()()()n n n n n p p p p p p p ---=-+-++-111111()()(1)66656n n n -=+++=-. (二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l 的参数方程为12112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程2cos ρθ=. (Ⅰ)求直线l 的极坐标方程和曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于M ,N 两点,求MON ∠的大小.【答案】(Ⅰ)直线l 的极坐标方程为(cos )1ρθθ=+曲线C 的直角坐标方程为222x y x +=;(Ⅱ)6MON π∠=.【解析】(Ⅰ)由1112x y t ⎧=⎪⎪⎨⎪=+⎪⎩,,得直线l的普通方程为1x += 又因为cos ,sin ,x y ρθρθ=⎧⎨=⎩所以直线l的极坐标方程为(cos )1ρθθ+=+曲线C 的极坐标方程为2cos ρθ=,22cos ρρθ∴=,222x y x ∴+=,即曲线C 的直角坐标方程为222x y x +=.(Ⅱ)设M ,N 的极坐标分别为()11,ρθ,()22,ρθ, 则12MON θθ∠=-,由(cos )12cos ,ρθθρθ⎧=+⎪⎨=⎪⎩消去ρ得2cos (cos )1θθθ+=+,化为cos 22θθ+=sin 26πθ⎛⎫+= ⎪⎝⎭ 不妨设0,2πθ⎛⎫∈ ⎪⎝⎭,即72,666πππθ⎛⎫+∈ ⎪⎝⎭, 所以263ππθ+=,或2263ππθ+=, 即12,12,4πθπθ⎧=⎪⎪⎨⎪=⎪⎩或12412πθπθ⎧=⎪⎪⎨⎪=⎪⎩,, 所以126MON πθθ∠=-=.23.已知函数()|4||4|f x x x =++-. (Ⅰ)求不等式()3f x x >的解集;(Ⅱ)设函数()f x 的最小值为z ,正实数m ,n 满足2mn m n z --=,求证:2103m n ++. 【答案】(Ⅰ)8|3x x ⎧⎫<⎨⎬⎩⎭;(Ⅱ)详见解析. 【解析】(Ⅰ)()3f x x >,即|4||4|3x x x ++->.当4x <-时,不等式可化为443x x x --+->,解得4x <-; 当44x -时,不等式可化为443x x x ++->,解得843x -<; 当4x >时,不等式可化为443x x x ++->,无解. 综上,原不等式的解集为8|3x x ⎧⎫<⎨⎬⎩⎭.(Ⅱ)由绝对值不等式性质得,|4||4||44|8x x x x ++-+-+=,8z ∴=,即28mn m n --=,所以(1)(2)10m n --=,所以(1)(2)32103m n m n +=-+-++,当且仅当1m =,2n =时取“=”, 原不等式得证.。
2020年高考数学金榜冲刺卷(山东专用)(一)含答案

2020年高考金榜冲刺卷(一)数学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.复数21i+(i 为虚数单位)的共轭复数是( ) A .i 1-+B .1i -C .1i +D .i 1--2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}23.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .344.曲线ln y x x =⋅在点(1,0)处的切线的方程为( )A .2+10x y -=B .210x y --=C .+10x y -=D .10x y --=5.圆2240x y +-=与圆2244120x y x y +-+-=的公共弦长为( )ABC .D .6.已知ABC ∆是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .22a -B .232a -C .243a -D .2a -7.(2019·江西南昌十中高三期中(文))已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则,,a b c 的大小关系为( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.点,,,A B C D 在同一个球的球面上,AB BC AC ===,若四面体ABCD 这个球的表面积为( ) A .28916πB .8πC .16916πD .2516π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下表是某电器销售公司2019年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是( )A .该公司2019年度冰箱类电器销售亏损B .该公司2019年度小家电类电器营业收入和净利润相同C .该公司2019年度净利润主要由空调类电器销售提供D .剔除冰箱类电器销售数据后,该公司2019年度空调类电器销售净利润占比将会降低 10.下列叙述中不正确的是( )A .“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件B .若,,a b c ∈R ,则“22ab cb >”的充要条件是“a c >”C .“1a >”是“11a<”的充分不必要条件 D .若,,a b c ∈R ,则“20ax bx c ++≥”的充要条件是“240b ac -≤”11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论正确的是( ) A .实数a 的值为1B .()()11,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称 C .21x x -的最大值为π D .12x x +的最小值为23π 12.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知A ED '∆是ADE ∆绕DE 旋转过程中的一个图形,下列命题中,正确的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面AGF '⊥平面BCDEC .三棱锥A EFD '-的体积有最大值D .旋转过程中二面角A DE C '--的平面角始终为A GF '∠ 三、填空题:本题共4小题,每小题5分,共20分.13.若双曲线221y x k-=的焦点到渐近线的距离为,则实数k 的值为_________.14.若4()(2)ax y x y -+的展开式中23x y 的系数为8,则a =_________.15.已知数列{}n a 的通项公式21021n a n n =-+-,前n 项和为n S ,若>n m ,则n m S S -的最大值是_________.16.已知函数[]()11,2,0()2(2),0,x x f x f x x ⎧-+∈-⎪=⎨-∈+∞⎪⎩,则()3f =;若方程()f x x a =+在区间[]2,4-有三个不等实根,实数a 的取值范围为_________.(本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知ABC ∆内接于单位圆,且()()1tan 1tan 2A B ++=, (1)求角C ;(2)求ABC ∆面积的最大值.18.(12分)已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,,28b =,1334b b -=,是否存在正整数k ,使得数列1{}nS 的前k 项和1516k T >,若存在,求出k 的最小值;若不存在,说明理由. 从①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充到上面问题中并作答.(注:如果选择多个条件分别解答,按第一个解答计分.)19.(12分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =2PA =,E 是PC 上的一点,2PE EC =.(1)证明PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.20.(12分)某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.(1)根据以上数据完成22⨯列联表,并判断是否有95%的把握认为购买金额是否少于60元与性别有关.(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为p (每次抽奖互不影响,且p 的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数X (元)的分布列并求其数学期望.附:参考公式和数据:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.附表:21.(12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,其右顶点为A ,下顶点为B ,定点()0,2C ,ABC ∆的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于,P Q 两点,直线,BP BQ 分别与x 轴交于,M N 两点.(1)求椭圆C 的方程;(2)试探究,M N 的横坐标的乘积是否为定值,说明理由.22.(12分)已知函数2()ln (21)(1)f x x ax a x a =+-+++.(1)若12a =,分析()f x 的单调性. (2)若对1x ∀>,都有()0f x >恒成立,求a 的取值范围;(3)证明:2222222212n n n k n nn n n n++++⋅⋅⋯⋅⋅⋯⋅>对任意正整数n 均成立,其中e 为自然对数的底数.参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1. C 2. D 3. C 4. D 5. C 6. B 7. C 8. A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9. ACD 10. AB 11. ACD 12. ABCD三、填空题:本题共4小题,每小题5分,共20分. 13. 8 14. 1 15. 1016. 4{}()12,0⋃-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(1)()()112tanA tanB ++=Q ,1tanA tanB tanA tanB ∴+=-⋅,()11tanA tanB tanC tan A B tanAtanB +∴=-+=-=--,()3C 0,4C ππ∈∴=Q .(2)ABC ∆的外接圆为单位圆,∴其半径1R =,由正弦定理可得2c RsinC ==2222c a b abcosC =+-,代入数据可得222a b =+(22ab ab ≥=,当且仅当a=b时,“=”成立,ab ∴≤ABC V ∴的面积11222S absinC =≤=,ABC ∆面积的最大值为12. 18.设等比数列{}n b 的公比为q (0q >),则18b q =,38b q =,于是8384q q-⨯=,即2620q q +-=,解得12q =,23q =-(舍去). 若选①:则142a b ==,41434202S a d ⨯=+=,解得2d =,所以2(1)222n n n S n n n -=+⨯=+, 1111(1)1n S n n n n ==-++,于是12111111111+(1)()()122311k k T S S S k k k =++=-+-++-=-++L L 令1151116k ->+,解得15k >,因为k 为正整数,所以k 的最小值为16. 若选②:则142a b ==,113232(2)2a d a d ⨯+=+,解得12a d ==. 下同①.若选③:则142a b ==,113(2)(3)8a d a d +-+=,解得43d =. 于是2(1)42422333n n n S n n n -=+⨯=+, 131311()2(2)42n S n n n n =⨯=-++, 于是31111111[(1)()()()]4324112k T k k k k =-+-++-+--++L 3111(1)4212k k =+--++ 9311()8412k k =-+++,令1516k T >,得111124k k +<++, 注意到k 为正整数,解得7k ≥,所以k 的最小值为7.19.(1)以A 为坐标原点,建立如图空间直角坐标系A xyz -,设),0Db ,则()0C ,,()002P ,,,23E ⎫⎪⎪⎝⎭,)0B b -,,∴()2PC =-u u u r ,,2 ,3BE b ⎫=⎪⎪⎝⎭u u u r,2 3DE b ⎫=-⎪⎪⎝⎭u u u r ,,∴44 033PC BE ⋅=-=u u u r u u u r ,0PC DE ⋅=u u u r u u u r ,∴PC BE ⊥,PC DE ⊥,BE DE E ⋂=,∴PC ⊥平面BED .(2)() 002AP =u u u r,,,),0AB b =-u u u r ,设平面PAB 的法向量为() ,,x y z m =u r ,则20m AP z m AB by ⎧⋅==⎪⎨⋅=-=⎪⎩u u u v v u u u vv ,取()b m =u r ,设平面PBC 的法向量为() ,,p n q r =r,则202023n PC r n BE p bq r ⎧⋅=-=⎪⎨⋅=++=⎪⎩u u u v v u u u v v ,取 1,b n ⎛=- ⎝r ,∵平面PAB ⊥平面PBC ,∴ 20m n b b =-=⋅u r r,故b =∴( 1,n =-r,()DP =u u u r ,∴1cos ,2n DP DP n n DP ⋅==⋅r u u u ru u u r r r u u u r ,设PD 与平面PBC 所成角为θ,02⎡⎤∈⎢⎥⎣⎦,πθ,则1sin 2θ=,∴30θ=︒, ∴PD 与平面PBC 所成角的大小为30°.20.(1)22⨯列联表如下:()22901220401814405 3.84130605238247K ⨯⨯-⨯==>>⨯⨯⨯,因此有95%的把握认为购买金额是否少于60元与性别有关. (2)X 可能取值为65,70,75,80,且10201903p +==. ()3331165327P X C ⎛⎫=== ⎪⎝⎭,()22312270339P X C ⎛⎫==⨯= ⎪⎝⎭, ()21312475339P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()3032880327P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为:6570758075279927EX =⨯+⨯+⨯+⨯=. 21.(1)由已知,A B 的坐标分别是()(),0,0,A a B b -由于ABC ∆的面积为3,1(2)32b a ∴+=,又由e =得2a b =,解得:=1b ,或=3b -(舍去),2,=1a b ∴=,∴椭圆方程为2214xy +=.(2)设直线PQ 的方程为2y kx =+,,P Q 的坐标分别为()()1122,,,P x y Q x y , 则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+, 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N xx y =+, 1212(1)(1)M N x x x x y y ∴⋅=++1212(3)(3)x x kx kx =++12212123()9x x k x x k x x =+++,把直线2y kx =+代入椭圆2214x y +=得22(14)16120k x kx +++=,由韦达定理得1221214x x k =+,1221614k x x k +=-+,∴222221214124891414M N k x x k k k k +==-+++22212412489363k k k =-++,是定值.22. (1)12a =,213()ln 222f x x x x =+-+,2(1)()x f x x-'=,(0,)x ∈+∞, 故()0f x '>在(0,)+∞上恒成立,所以()f x 的单调增区间为(0,)+∞,无减区间. (2)1()2(21)f x ax a x '=+-+22(21)1(21)(1)ax a x ax x x x -++--==. ∵1x >,∴10x ->,故:①当0a ≤时,()0f x '≤,()f x 在(1,)+∞上单调递减,而(1)0f =,∴()0f x <,不符合题意;②当12a ≥时,即112a≤,()f x 在(1,)+∞上单调递增,而()(1)0f x f >=,∴符合题意; ③当102a <<时,11,2x a ⎛⎫∈ ⎪⎝⎭,()0f x '<,()f x 在11,2a ⎛⎫ ⎪⎝⎭上单调递减,而(1)0f =,∴此时()0f x <,不符合题意;综上所述,a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.(3)证明:要证明2222222212n n n k n n n n n n++++⋅⋅⋯⋅⋅⋯⋅>, 等价于证明22222222121ln ln ln ln 2n n n k n n n n n n ++++++⋅⋅⋅++⋅⋅⋅+>, 由(1)可得1ln (1)1(1)2x x x ⎡⎤>---⎢⎥⎣⎦在(1,)+∞恒成立, 令21k x n =+,1,2,3,,k n =⋅⋅⋅,则221k n ≤,∴2224221ln 122k k k k n n nn n ⎛⎫+>-≥- ⎪⎝⎭, ∴2222222212ln ln ln ln n n n k n n n n n n ++++++⋅⋅⋅++⋅⋅⋅+22121122n n n n ++⋅⋅⋅+>-⨯= ∴22222222121ln ln ln ln 2n n n k n n n n n n ++++++⋅⋅⋅++⋅⋅⋅+>成立,∴()()()()22222123n n n n n n n +⋅+⋅+⋅⋯⋅+>成立.。
金考卷—百校联盟—领航高考冲刺卷(理数答案)

平”的原则.
〃答案速查
镶2 静
4
鳞
辩
拱″
慧鳞
~ ~
酗ii!10
~|~~~|~
B|[
∩
\
D|B
B
A~{C~|[〕
】
■
■ [考查目标] 本题考查集合的并运算`简单指数不等式和一元二次
辩
11
辫
刁
·
′
●
[考查目标]
蕊
嚣霹撼嗡慧霉 ″
∏
/I∏+2 | 了
四
4
2
′
气
‖
勺
烂
本题考查三角恒等变换`三角函数的图象和性质’考
第
14垫[考查目标] 本题主要; α厕ˉl≠0,所以α″ˉα″ˉ|=1,又易知αl=1 ’故数列{α鹏}是首项和公
本题主要考 查双曲线的离心率,考查了分析
一
差都为l的等差数列,故α,="`s"=÷″(″+l) ’则b"= 2
模
问题和解决问题的能力。
(—]),警二(—])馏(←击) ,则数列|h鹏|的煎2022项和
考生的逻辑椎理能力以及运算求解能力,考查的核心素养是逻辑椎
面积,再利用几何概型的概率计算公式求解即可。
≤沪 [解析] 如图所示,设AB=α,连接CF,根据
题意可知乙CEF=90°’乙CFE=45°,EF=
\.~
÷』则cF=粤α;正八边形的面积为α2+4×
理`数学运算。 [解题思路] 分公比是否为l进行讨论,再利用等比数列的前门项 和公式及定义求解即可。 [解析] 设等比数列{α′』 }的公比为q’当q=1时,S"_2α| =nαl
司
∩■
』
|三
乙
γ 几
2020年高考数学(理)金榜冲刺卷(一)含答案

2020年高考金榜冲刺卷(一)数学(理)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21i+(i 为虚数单位)的共轭复数是()A .i 1-+B .1i-C .1i+D .i1--2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于()A .{}1,2,3B .{}2,3C .{}1,2D .{}23.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A .13B .12C .23D .344.若等差数列{}n a 和等比数列{}n b 满足11443,24a b a b ==-==,则22a b=()A .-1B .1C .-4D .45.如图所示的程序框图,该算法的功能是.如图所示的程序框图,该算法的功能是( ) ( )A .计算012(12)(22)(32)++++++L (12)nn +++的值的值 B .计算123(12)(22)(32)++++++L (2)nn ++的值的值 C .计算(123+++L )n +012(222++++L 12)n -+的值的值D .计算[123+++L (1)]n +-012(222++++L 2)n+的值的值6.已知ABC V 是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( ))A .22a -B .232a -C .243a -D .2a -7.已知函数()222cos sin 2f x x x =-+,则,则( ) ( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为48.已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数上是增函数..若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为大小关系为( ) ( ) A .a b c <<B .c b a <<C .b a c <<D .b c a <<9.已知正方体1111ABCD A B C D -的棱长为2,直线1AC ⊥平面α.平面α截此正方体所得截面有如下四个结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;④截面面积最大值为33.则正确的是().则正确的是()A .①②.①②B B .①③.①③C C .①②④.①②④D D D.①③④.①③④.①③④1010..已知数列{}n a 的通项公式21021na n n =-+-,前n 项和为n S ,若>n m ,则n m S S -的最大值是( ))A .5B .10C .15D .201111.椭圆.椭圆2222:1(0)x y C a b ab+=>>的左右焦点分别为12,F F ,O 为坐标原点,点A 在椭圆上,且160AOF ∠=︒,'A 与A 关于原点O 对称,且22·'0F A F A =u u u u v u u u u v,则椭圆离心率为(,则椭圆离心率为()) A .31-B .32C .312- D .423-1212.不等式.不等式3ln 1xx e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围(的取值范围( )) A .(,1]e -∞- B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-二、填空题:本题共4小题,每小题5分,共20分.1313.若双曲线.若双曲线221y x k-=的焦点到渐近线的距离为22,则实数k 的值为的值为__________. __________.1414.若函数.若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是.的取值范围是.1515.据气象部门预报,在距离某码头南偏东.据气象部门预报,在距离某码头南偏东4545°方向°方向600km 的A 处的热带风暴中心正以20km /h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,则从现在起经过小时该码头将受到热带风暴影响暴影响. .1616.在三棱锥.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -的体积的最大值为64时,其外接球的表面积为时,其外接球的表面积为____________. ____________. 三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 1717..(12分)已知ABC∆内接于单位圆,且()()1tan 1tan 2A B ++=,(1)求角C ;(2)求ABC ∆面积的最大值.面积的最大值.1818..(12分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,22AC =,2PA =,E 是PC 上的一点,2PE EC =.(1)证明PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小所成角的大小. .1919..(12分)已知抛物线22y x =,过点(1,1)P 分别作斜率为1k ,2k 的抛物线的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点.的中点.(1)若P 为线段AB 的中点,求直线AB 的方程;的方程;(2)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.恒过定点,并求出定点坐标.2020..(12分)有人收集了10年中某城市的居民年收入年中某城市的居民年收入((即此城市所有居民在一年内的收入的总和即此城市所有居民在一年内的收入的总和))与某种商品的销售额的有关数据:品的销售额的有关数据: 第n 年 1 2 3 4 5 6 7 8 9 10年收入亿元(x ) 32.031.033.036.037.038.039.043.045.010x 商品销售额万元(y ) 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.010y且已知101380.0i i x ==∑(1)求第10年的年收入10x ;(2)若该城市该城市居民收入与该种商品的销售额之间满足线性回归方程363ˆˆ254y x a =+,①求第10年的销售额10y ;②如果这座城市居民的年收入达到40亿元,估计这种商品的销售额是多少?(精确到0.010.01))附:(1)在线性回归方程ˆˆˆy bx a =+中,1221ˆˆˆ,ni i i ni i x y nx y ba y bx x nx==-==--∑∑. (2)1022110254.0i i x x =-=∑,91125875.0i i i x y ==∑,91340.0i i y ==∑.2121..(12分)设函数()e cos ,()xf x xg x =为()f x 的导函数的导函数. .(1)求()f x 的单调区间;的单调区间;(2)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭…; (3)设nx 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++ ⎪⎝⎭内的零点,其中n N ∈,证明证明::20022sin cos n n n x x ex πππ-+-<-.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 2222..【极坐标与参数方程】(10分)分)A 为椭圆1C :221424x y +=上任意一点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为210cos 240ρρθ-+=,B 为2C 上任意一点上任意一点. . (1)写出1C 参数方程和2C 普通方程;普通方程; (2)求AB 最大值和最小值最大值和最小值. . 2323..【选修4-54-5:不等式选讲】:不等式选讲】(10分)分)已知函数()2f x x a =-+,()4g x x =+,a R ∈. (1)解不等式()()f x g x a <+;(2)任意x ∈R ,2()()f x g x a +>恒成立,求a 的取值范围的取值范围. .参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. C 2. D.3. C.4. B.5. C .6. B.7. B.8. C .9. D.1010.. B.1111.. A.1212.. D . 二、填空题:本题共4小题,每小题5分,共20分. 1313.. 8. 1414.. [2,)+∞ 1515.. 15 1616.. 6π提示:如图,设球心O 在平面ABC 内的射影为1O ,在平面BCD 内的射影为2O则二面角A BC D --的平面角为AMD ∠,点A 在截面圆1O 上运动,点D 在截面圆2O 上运动,由图知,当AB AC =,BD CD =时,三棱锥A BCD -的体积最大,此时ABC ∆与BDC ∆是等边三角形, 设BC a =,则32AM DM a ==,234BCD S a ∆=.6sin()3h AM AMD a π=-∠=,31263124A BCD DBC V S h a -∆=⋅== 解得3a =,所以32DM =,21DO =,212O M =,设2AMD θ∠=则21cos 22cos 13θθ=-=-,解得tan 2θ=,∴222tan 2OO O M θ==,球O 的半径222262R DO OO =+=,所求外接球的表面积为246S R ππ==.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 1717..(1)(()()())112tanA tanB ++=Q ,1tanA tanB tanA tanB ∴+=-⋅,()11tanA tanB tanC tan A B tanAtanB +∴=-+=-=--,()3C 0,4C ππ∈∴=Q .(2)ABC ∆的外接圆为单位圆,∴其半径1R=,由正弦定理可得22c RsinC ==,由余弦定理可得2222c a b abcosC =+-,代入数据可得2222a b ab =++()2222ab ab ab ≥+=+,当且仅当a=b时,“=”成立,222ab ∴≤+,ABC V ∴的面积1122122222S absinC -=≤⋅=+,ABC∆面积的最大值为212-.1818..(1)以A 为坐标原点,建立如图空间直角坐标系A xyz -,设()2,,0Db ,则()2200C ,,,()002P ,,,422,0,33E ⎛⎫⎪⎝⎭,()20B b -,,,∴()2202PC =-u u u r,,,22 ,,33BE b ⎛⎫= ⎪⎝⎭u u u r,22 33DE b ⎛⎫=- ⎪⎝⎭u u u r,,,∴44 033PC BE ⋅=-=u u u r u u u r ,0PC DE ⋅=u u u r u u u r ,∴PC BE ⊥,PC DE ⊥,BE DE E ⋂=,∴PC ⊥平面BED .(2)() 002AP =u u u r ,,,()2,,0AB b =-u u u r ,设平面PAB 的法向量为() ,,x y z m =u r ,则2020m AP z m AB x by ⎧⋅==⎪⎨⋅=-=⎪⎩u u u v v u u u v v ,取()20b m =u r ,,,设平面PBC 的法向量为() ,,p n q r =r,则222032023n PC p r n BE p bq r ⎧⋅=-=⎪⎨⋅=++=⎪⎩u u u v v u u u v v , 取21,,2b n ⎛⎫=- ⎪ ⎪⎝⎭r ,∵平面PAB ⊥平面PBC ,∴ 20m n b b =-=⋅u r r ,故2b =, ∴() 1,1,2n =-r ,()222DP =--u u u r,,,∴1cos ,2n DP DP n n DP ⋅==⋅r u u u ru u u r r r u u u r , 设PD 与平面PBC 所成角为θ,02⎡⎤∈⎢⎥⎣⎦,πθ,则1sin 2θ=,∴30θ=︒, ∴PD 与平面PBC 所成角的大小为30°.1919..(1)设()11,A x y ,()22,B x y,则2112y x =①,2222y x =②.①-②,得 ()()()1212122y y y y x x -+=- .又因为()1,1P 是线段AB 的中点,所以122y y +=,所以,21121212=1y y k x x y y -==-+. 又直线AB 过()1,1P ,所以直线AB 的方程为y x =.(2)依题设(),M M M x y ,直线AB 的方程为()111y k x -=-,即111y k x k =+-,亦即12y k x k=+,代入抛物线方程并化简得 ()2221122220k x k k x k +-+=.所以,12121222112222k k k k x x k k --+=-=,于是,12211M k k x k -=,12121221111M M k k y k x k k k k k -=⋅+=⋅+=. 同理,12221N k k x k -=,21N y k =.易知120k k ≠,所以直线MN 的斜率21211M N M N y y k k k x x k k -==--. 故直线MN的方程为211221211111k k k k y x k k k k⎛⎫--=-⎪-⎝⎭,即212111k k y x k k=+-.此时直线过定点()0,1.故直线MN 恒过定点()0,1.2020..(1)依题意101380.0i i x ==∑,则10323133363738394345380x +++++++++=,解得1046x =. (2)①由居民收入x 与该种商品的销售额y 之间满足线性回归方程$y =363254x a +知363254b =,即101102211036325410i i i i i x y x y b x x==-==-∑∑,即10103401287546103836310254254y y ++-⋅⋅=, 解之得:1051y =. ②易得38x =,39.1y =,代入$363254y x a =+得:36339.138254a =⨯+,解得15.21a ≈-,所以$36315.21254y x =-,当40x =时,3634015.2141.96254y =⨯-≈故若该城市居民收入达到40.0亿元,估计这种商品的销售额是41.96万元. 2121..(1)由已知,有()()'e cos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 单调递减; 当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 单调递增. 所以,()f x 的单调递增区间为()32,244k k k Z ππππ⎛⎫-+∈⎪⎝⎭, ()f x 的单调递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.(2)记()()()2h x f x g x x π⎛⎫-=⎝+⎪⎭.依题意及(1)有:()()cos sin xg x e x x =-,从而'()2sin xg x e x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,故'()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭….所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭….(3)依题意,()()10nnu xf x =-=,即e cos 1nx n x =.记2n n y x n π=-,则,42n y ππ⎛⎫∈ ⎪⎝⎭. 且()e cos ny n n f y y ==()()22ecos 2e n x n n n x n n N πππ---∈=.由()()20e1n nf y f y π-==…及(Ⅰ)得0n y y ….由(2)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭….又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+- ⎪⎝⎭…,故: ()()()2e 2n n n n n f y y g y g y ππ---=-…()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--…. 所以200e22sin cos n n n x x x πππ-+--<.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 2222..(1)由题意可得1C 的参数方程为:2cos ,26sin ,x y αα=⎧⎪⎨=⎪⎩(α为参数),又∵210cos 240ρρθ-+=,且222x y ρ=+,cos x ρθ=, ∴2C 的普通方程为2210240x y x +-+=,即()2251x y -+=.(2)由(1)得,设()2cos ,26sin A αα,圆2C 的圆心()5,0M ,则()()22||2cos 526sin AM αα=-+220cos 20cos 49αα=--+2120cos 542α⎛⎫=-++⎪⎝⎭,∵[]cos 1,1α∈-,∴当1cos 2α=-时,max ||36AM =; 当cos 1α=时,min ||3AM =.当1cos 2α=-时,max max ||||1361AB AM =+=+;当cos 1α=时,min min ||||12AB AM =-=. 2323..【选修4-54-5:不等式选讲】:不等式选讲】(10分)分)(1)不等式()()f xg x a <+即24x x -<+,两边平方得2244816x x x x -+<++,解得1x >-,所以原不等式的解集为()1,-+∞.(2)不等式()()2f x g x a +>可化为224a a x x -<-++, 又()()24246x x x x -++≥--+=,所以26a a -<,解得23a -<<, 所以a 的取值范围为()2,3-.。
2020年高考数学冲刺逆袭必备卷(山东、海南专用)(解析版)

2020年高考数学冲刺逆袭必备卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.若集合{|12}A x x =-<≤,则A =R ð( ) A .{|1x x <-或2}x > B .{|1x x ≤-或2}x > C .{|1x x <-或2}x ≥ D .{|1x x ≤-或2}x ≥【答案】B 【解析】 【分析】根据补集的定义,即可求得A 的补集. 【详解】∵{|12}A x x =-<≤,∴A =R ð{|1x x ≤-或2}x >, 故选:B 【点睛】本小题主要考查补集的概念和运算,属于基础题. 2.设3i12iz -=+,则z =A .2 BCD .1【答案】C 【解析】 【分析】先由复数的除法运算(分母实数化),求得z ,再求z . 【详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.3.“方程221 71x ym m+=--表示的曲线为椭圆”是“17m<<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据方程表示椭圆的条件列不等式组,解不等式组求得m的取值范围,由此判断充分、必要条件. 【详解】由于方程22171x ym m+=--表示的曲线为椭圆,所以701071mmm m->⎧⎪->⎨⎪-≠-⎩,解得17m<<且4m≠.所以“方程22171x ym m+=--表示的曲线为椭圆”是“17m<<”的充分不必要条件.故选:A【点睛】本小题主要考查方程表示椭圆的条件,考查充分、必要条件的判断,属于基础题.4.若函数()f x的导函数()f x'的图象如右图所示,则函数()y xf x'=的图象可能是()A.B.C.D.【答案】D【解析】【分析】根据导函数()f x'的零点和函数值的符号,判断出()y xf x'=的图象.由于()f x '的图象可知2x =-是()f x '的零点,所以()y xf x '=的零点为0和2-.当2x <-时,()'0f x >,所以()'0xf x <;当20x -<<时,()'0f x <,所以()'0xf x >;当0x >时,()'0f x <,所以()'0xf x <.由此可知正确的()y xf x '=的图象为D.故选:D 【点睛】本小题主要考查主要考查导函数图象的运用,属于基础题. 5.若sin 12πα⎛⎫-=⎪⎝⎭,则2sin 23πα⎛⎫-=⎪⎝⎭( ) A .12 B .12-C.2D. 【答案】A 【解析】 【分析】根据条件和二倍角公式,先计算出cos 26πα⎛⎫-⎪⎝⎭的值,再将所要求的2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,根据诱导公式进行化简,得到答案. 【详解】因为sin 122πα⎛⎫-=⎪⎝⎭,所以2cos 2126πα⎛⎫-=-⨯ ⎪⎝⎭⎝⎭12=- 2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ cos 26πα⎛⎫=-- ⎪⎝⎭cos 26πα⎛⎫=-- ⎪⎝⎭12=. 故选:A. 【点睛】本题考查三角函数中的给值求值,二倍角公式,诱导公式化简,属于中档题.6.已知双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线均与圆222()4b x a y -+=相切,则双曲线C 的离心率为( ) AB .2C .3D .4【答案】B 【解析】 【分析】先得到双曲线C 的渐近线,然后根据渐近线与圆相切,利用点到直线的距离等于半径,得到a 和c 的关系,求出离心率,得到答案. 【详解】双曲线2222:1x y C a b-=的渐近线为b y x a =±因为两条渐近线均与圆222()4b x a y -+=相切,所以点(,0)a 到直线b y x a =的距离等于半径2b即2ab b d c ===,又因为222c a b =+ 整理得到2c a =, 故双曲线C 的离心率为2ce a==. 故选:B. 【点睛】本题考查求双曲线渐近线,根据直线与圆相切求参数关系,求双曲线的离心率,属于简单题. 7.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 是棱AB 的中点,F 是侧面AA 1D 1D 内一点,若EF∥平面BB 1D 1D ,则EF 长度的范围为()A .[2,3]B .[2,5]C .[2,6]D .[2,7]【答案】C 【解析】 【分析】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,根据线面垂直关系和勾股定理可知222EF AE AF =+;由,//EF FG 平面11BDD B 可证得面面平行关系,利用面面平行性质可证得G 为AD 中点,从而得到AF 最小值为,F G 重合,最大值为,F H 重合,计算可得结果. 【详解】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,则FG ⊥底面ABCD2222222221EF EG FG AE AG FG AE AF AF ∴=+=++=+=+//EF Q 平面11BDD B ,//FG 平面11BDD B ,EF FG F ⋂=∴平面//EFG 平面11BDD B ,又GE Ì平面EFG //GE ∴平面11BDD B又平面ABCD I 平面11BDD B BD =,GE Ì平面ABCD //GE BD ∴E Q 为AB 中点 G ∴为AD 中点,则H 为11A D 中点即F 在线段GH 上min 1AF AG ∴==,max AF AH ==min EF ∴==max EF ==则线段EF 长度的取值范围为:本题正确选项:C 【点睛】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.8.若直线2x y m =-+与曲线y =m 的取值范围是( )A .B .11)C .(11)+D .1) 【答案】A 【解析】试题分析:由题意知,曲线y =的图象由椭圆的上一部分与双曲线的上部分组成,故直线2x y m =-+与曲线y =恰有三个公共点的临界直线有:当直线2xy m =-+过点()2,0时,即01m =-+,故1m =;当直线2xy m =-+与椭圆的上部分相切,即'12y ==-,即x y ==时,此时m =,故实数m 的取值范围是,选项A 为正确答案.考点:1、直线与圆锥曲线的位置关系;2、数形结合的思想.【易错点晴】本题主要考查的是直线与圆锥曲线的位置关系,属于中档题;要求满足条件:直线2x y m =-+与曲线y =恰有三个公共点,实数m 的取值范围,可以转化为直线2x y m =-+的图象与曲线y =m 的取值范围,作出两个函数的图象,通过图象观察临界直线,从而求出m 的取值范围;本题曲线y =的图象是易错点,画图时要分类讨论,知图象由椭圆的上一部分与双曲线的上部分组成.二、多选题9.甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如图所示,则关于这三家企业下列说法正确的是( )A .成本最大的企业是丙企业B .费用支出最高的企业是丙企业C .支付工资最少的企业是乙企业D .材料成本最高的企业是丙企业【答案】AB D【解析】由题意甲企业产品的成本为10000,其中材料成本1000060%6000⨯=、支付工资1000035%3500⨯=、费用支出500;乙企业产品的成本为12000,其中材料成本1200053%6360⨯=、支付工资1200030%3600⨯=、费用支出2040;丙企业产品的成本为15000,其中材料成本1500060%9000⨯=、支付工资1500025%3750⨯=、费用支出1500015%2250⨯=.所以成本最大的企业是丙企业,费用支出最高的企业是丙企业,支付工资最少的企业是甲企业,材料成本最高的企业是丙企业,A 、B 、D 选项正确,C 选项错误. 故选:AB D. 【点睛】本题主要考查扇形统计图的识图及应用,属基础题.10.关于函数()1f x cosx +=,,23x pp 骣琪Î琪桫的图象与直线y t =(t 为常数)的交点情况,下列说法正确的是( )A .当0t <或2t ≥时,有0个交点B .当0t =或322t ≤<时,有1个交点 C .当302t <≤时,有2个交点 D .当02t <<时,有2个交点【答案】AB 【解析】 【分析】直接利用函数的图象和函数的性质及参数的范围求出函数的交点的情况,进一步确定结果. 【详解】解:根据函数的解析式画出函数的图象:①对于选项A :当0t <或2t ≥时,有0个交点,故正确.②对于选项B :当0t =或322t ≤<时,有1个交点,故正确. ③对于选项C :当32t =时,只有一个交点,故错误. ④对于选项D :当322t ≤<,只有一个交点,故错误. 故选:AB【点睛】函数的图象的应用,利用函数的图象求参数的取值范围,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.11.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( ) A .若59S S =,则必有140S = B .若59S S =,则必有7S 是n S 中最大的项 C .若67S S >,则必有78S S > D .若67S S >,则必有56S S >【答案】AB C 【解析】 【分析】直接根据等差数列{}n a 的前n 项和公式()112n n n dS na -=+逐一判断. 【详解】∵等差数列{}n a 的前n 项和公式()112n n n dS na -=+, 若59S S =,则11510936a d a d +=+, ∴12130a d +=,∴1132da =-,∵10a >,∴0d <, ∴1140a a +=,∴()1141407a a S +==,A 对;∴() 112nn n dS na-=+()11322n n dnd-=-+()27492d n⎡⎤--⎣⎦=,由二次函数的性质知7S是n S 中最大的项,B对;若67S S>,则7160a a d=+<,∴16a d<-,∵10a>,∴0d<,∴615a a d=+6d d<-+0d=->,8770a a d a=+<<,∴5656S S S a<=+,7878S S S a>=+,C对,D错;故选:AB C.【点睛】本题主要考查等差数列的前n项和公式及其应用,属于中档题.12.如图,在四边形ABC D中,AB∥CD,AB⊥AD,AB=2AD=2DC,E为BC边上一点,且3BC EC=u u u r u u u r,F为AE的中点,则()A.12BC AB AD=-+u u u r u u u r u u u rB.1133AF AB AD=+u u u r u u u r u u u rC.2133BF AB AD=-+u u u r u u u r u u u rD.1263CF AB AD=-u u u r u u u r u u u r【答案】AB C【解析】【分析】利用向量加法的三角形法则、数乘运算及平面向量基本定理进行解题.【详解】解:∵AB∥CD,AB⊥AD,AB=2AD=2DC,由向量加法的三角形法则得BC BA AD DC =++u u u v u u u v u u u v u u u v 12AB AD AB =-++u u u v u u u v u u u v 12AB AD =-+u u uv u u u v ,A 对;∵3BC EC =u u u r u u u r ,∴23BE BC =u u u r u u u r 1233AB AD =-+u u uv u u u v ,∴AE AB BE =+u u u r u u u r u u u r 1233AB AB AD ⎛⎫=+-+ ⎪⎝⎭u u uv u u u v u u u v 2233AB AD =+u u u v u u u v ,又F 为AE 的中点,∴12AF AE =u u u v u u u v 1133AB AD =+u u u v u u u v,B 对;∴BF BA AF =+u u u v u u u v u u u v 1133AB AB AD =-++u u u v u u u v u u u v 2133AB AD =-+u u uv u u u v ,C 对;∴CF CB BF =+u u u v u u u v u u u v BF BC =-u u u v u u u v 2133AB AD =-+u u u v u u u v 12AB AD ⎛⎫--+ ⎪⎝⎭u u u v u u u v 1263AB AD =--u u uv u u u v ,D 错;故选:AB C . 【点睛】本题主要考查向量加法的三角形法则、数乘运算,考查平面向量基本定理,属于基础题.第II 卷(非选择题)三、填空题13.曲线C :2()ln f x x x =+在点(1,(1))f 处的切线方程为__________. 【答案】320x y --= 【解析】分析:根据切线方程的求解步骤即可,先求导,求出切线斜率,再根据直线方程写法求出即可. 详解:由题可得:1'()2f x x x=+(),1f =1,'(1)3,f ∴=∴切线方程为:y -1=3(x -1) 即320x y --=,故答案为:320x y --=点睛:考查导数的几何意义切线方程的求法,属于基础题. 14.已知向量a r、b r满足|a r|=2,且b r 与b a rr-的夹角等于6π,则|b r |的最大值为_____. 【答案】4 【解析】 【分析】在OAB V 中,令,OA a OB b ==u u u r u u u r r r ,可得6π∠=OBA ,可得点B 在半径为R 的圆上,22sin R A=,可得R ,进而可得||b u u r的最大值. 【详解】∵向量a r 、b r 满足|a r |=2,且b r 与b a -r r 的夹角等于6π,如图在OAB V 中,令OA a =uu u r r ,OB b =uuu r r ,可得6π∠=OBA可得点B 在半径为R 的圆上,2R 2sinA==4,R =2. 则|b r|的最大值为2R =4【点睛】本题考查了向量的夹角、模的运算,属于中档题.15.设a 为()sin 3cos x x x R ∈的最大值,则二项式6a x x ⎛ ⎝展开式中含2x 项的系数是_____. 【答案】192-【解析】由题意设a 为()sin 3cos x x x R ∈的最大值,则二项式6a x x ⎛ ⎝展开式中含2x 项的系数是.因为a 为()sin 3cos x x x R ∈的最大值 所以2a =代入到二项式6a x x ⎛⎝中,得62x x ⎛⎝,其第1r +项为(616rrr r T C-+⎛= ⎝()63612rr rr C x --=-⋅⋅⋅含2x 项,则1r =其系数是()151612192C -⋅⋅=-【点睛】本题考查三角函数化简,二项式展开式中指定项的系数.16.已知a b ,为正实数,直线y x a =-与曲线1ln()y x b y x b '⎛⎫=+=⎪+⎝⎭相切于点()00x y ,,则11a b+的最小值是______. 【答案】4 【解析】 【分析】利用切点和斜率列方程组,化简求得,a b 的关系式,进而利用基本不等式求得11a b+的最小值. 【详解】依题意令11y x b '==+,解得01x b =-,所以()00001ln ln10y x a b a y x b =-=--⎧⎨=+==⎩,所以10b a --=,所以1a b +=,所以()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭224b a a b =++≥+=,当且仅当12a b ==时等号成立,所以11a b+的最小值为4. 故答案为:4【点睛】本小题主要考查导数与切线有关的计算问题,考查利用基本不等式求最小值,属于中档题.四、解答题17.若向量,0)(cos ,sin )(0)m x n x x ωωωω==->r r,在函数()()f x m m n t =⋅++r r r 的图象中,对称中心到对称轴的最小距离为,4π且当[0,],()3x f x π∈时的最大值为1.(I )求函数()f x 的解析式; (II )求函数()f x 的单调递增区间.【解析】(I )由题意得()()f x m m n t =⋅++r r r2m m n =+⋅r r r23sin cos 33cos 2sin 22223)32x x x t x x t x tωωωωωπω=+⋅+=-++=-++ ∵对称中心到对称轴的最小距离为4π ()f x ∴的最小正周期为T π=2,12ππωω∴=∴=. 3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时2,()333x x f x πππ∴-==即时取得最大值3t +max ()1,31,21()).32f x t t f x x π=∴+=∴=-∴=--Q (II )222,232k x k k Z πππππ-≤-≤+∈.55222,2612125()[,]()1212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈函数的单调递增区为18.定义:对于任意*n N ∈,满足条件212n n n a a a +++≤且n a M ≤(M 是与n 无关的常数)的无穷数列{}n a 称为T 数列. (1)若()2*8n a n n n =-+∈N,证明:数列{}na 是T 数列;(2)设数列{}n b 的通项为502n b n =- ⎪⎝⎭,且数列{}n b 是T 数列,求常数M 的取值范围; (3)设数列()*1,12n pc n p n=-∈<<N ,若数列{}n c 是T 数列,求p 的取值范围. 【答案】(1)证明见解析;(2)1236002M ⎛⎫≥- ⎪⎝⎭;(3)615p <≤. 【解析】 【分析】(1)根据题中的新定义代入即可证出.(2)设1n n b b +≥, 1n n b b -≥,2n ≥,代入通项3502nn b n ⎛⎫=- ⎪⎝⎭解不等式组,使()max n M b ≥即可求解.(3)首先根据12p <<可求1n =时,11c p =-,当2n ≥时,1n pc n=-,根据题中新定义求出13220c c c +-≤成立,可得615p <≤,再验证2120n n n c c c +++-<恒成立即可求解. 【详解】(1)Q ()22841616n a n n n =-+=--+≤,且()()()()22221282822116120n n n a a a n n n n n n +++-=-+-+++++-+=-<, 则满足212n n n a a a +++≤,则数列{}n a 是T 数列. 综上所述,结论是:数列{}n a 是T 数列. (2)设1n n b b +≥, 1n n b b -≥,2n ≥则()()11335050122335050122n n n n n n n n +-⎧⎛⎫⎛⎫-≥+-⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-≥-- ⎪ ⎪⎪⎝⎭⎝⎭⎩, 得3322log 1001log 100n ≤≤+,n N *∈Q ,12n ∴=,则数列{}n b 的最大值为126002b =- ⎪⎝⎭, 则1236002M ⎛⎫≥- ⎪⎝⎭(3)Q 12p <<112n pc ∴=-<, 当1n =时,11c p =- 当2n ≥时,1n p c n=-, 由132521122033p p c c c p p +-=-+--+=-+≤,得615p <≤, 当2n ≥时,()()2122211202112n n n p p p pc c c n n n n n n ++-+-=-+--+=<++++恒成立, 则要使数列{}n c 是T 数列,则p 的取值范围为615p <≤. 【点睛】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.19.如图,三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,12AA AC CB ==,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若1A A 与平面ABC 所成的线面角为60︒,求二面角11C AB C --的余弦值.【答案】(1)见解析;(2)34. 【解析】(1)因为平面11ACC A ⊥平面ABC ,平面11ACC A I 平面ABC AC =,BC ⊂平面ABC ,90ACB ∠=︒,所以BC ⊥平面11ACC A ,因为1AC ⊂平面11ACC A ,所以1BC A C ⊥. 因为11B C BC ∥,所以111AC B C ⊥. 因为11ACC A 是平行四边形,且1AA AC =, 所以四边形11ACC A 是菱形,则11A C AC ⊥. 因为1111AC B C C =I ,所以1A C ⊥平面11AB C .又1AC ⊂平面11A B C ,所以平面11AB C ⊥平面11A B C . (2)如图,取AC 的中点M ,连接1A M , 因为四边形11ACC A 是菱形,160A AC ∠=︒, 所以1△ACA 是正三角形,所以1A M AC ⊥,且132A M AC =. 令122AA AC CB ===,则13A M =.以C 为坐标原点,以CA 所在直线为x 轴,CB 所在直线为y 轴,过点C 且平行于1A M 的直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0C ,()2,0,0A ,()11,0,3C -,()0,1,0B,()11,0,3A ,()2,0,0CA =u u u r,()()111111,0,30,1,0CB CC C B CC CB =+=+=-+u u u r u u u u r u u u u r u u u u r u u u r ()1,1,3=-,()11,0,3CA =u u u r.设平面1ACB 的法向量为(),,x y z =n ,则100CA CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ,所以2030x x y z =⎧⎪⎨-++=⎪⎩,得0x =,令1z =,则3y =-,所以()0,3,1=-n .由(1)知1A C ⊥平面11AB C ,所以()11,0,3CA =u u u r是平面11AB C 的一个法向量,所以111cos ,CA CA CA ⋅<>=⋅u u u ru u u r u u u r n n n 3341331==+⨯+. 所以二面角11C AB C --的余弦值为34. 20.某纺织厂为了生产一种高端布料,准备从A 农场购进一批优质棉花,厂方技术人员从A 农场存储的优质棉花中随机抽取了100朵棉花,分别测量了其纤维长度(单位:cm )的均值,收集到100个样本数据,并制成如下频数分布表:(1)求这100个样本数据的平均数和样本方差(同一组数据用该区间的中点值作代表); (2)将收集到的数据绘制成直方图可以认为这批棉花的纤维长度()2~,X N μσ,其中22,x s ≈≈μσ.①利用正态分布,求()2P X >-μσ;②纺织厂将A 农场送来的这批优质棉进行二次检验,从中随机抽取20朵测量其纤维均值()1,2,,20y i =L 的数据如下:若20个样本中纤维均值2Y >-μσ的频率不低于①中()2P X >-μσ,即可判断该批优质棉花合格,否则认为农场运送是掺杂了次品,判断该批棉花不合格.按照此依据判断A 农场送来的这批棉花是否为合格的优质棉花,并说明理由. 附:若()2~,Z N μσ,则()0.6827,P Z -<<+=μσμσ()220.9543.P Z -<<+=μσμσ12.28 3.504≈.【答案】(1)平均数为31,方差为12.28;(2)①0.97715;②该批优质棉花合格,理由见解析.【解析】(1)1(4249261628100x =⨯⨯+⨯+⨯2430183214341036+⨯+⨯+⨯+⨯538)31+⨯=, 22221(4795163241100s =⨯⨯+⨯+⨯+⨯22218114310557)12.28+⨯+⨯+⨯+⨯=.(2)棉花的纤维长度()2~,X N μσ,其中31,12.28 3.504=≈≈μσ,①利用正态分布,则()()12110.95432P X >-=-⨯-μσ0.97715=. ②因为2312 3.50423.992-=-⨯≈μσ, 故()()223.9921P Y P Y >-=>=μσ>0.97715, 故满足条件,所以认为该批优质棉花合格.21.如图,已知抛物线2:8C y x =的焦点是F ,准线是l .(Ⅰ)写出焦点F 的坐标和准线l 的方程;(Ⅱ)已知点()8,8P ,若过点F 的直线交抛物线C 于不同的两点A 、B (均与P 不重合),直线PA 、PB 分别交l 于点M 、N 求证:MF NF ⊥.【答案】(Ⅰ)()2,0F ,准线l 的方程为2x =-;(Ⅱ)见解析.【解析】 【分析】(Ⅰ)根据抛物线C 的标准方程可得出焦点F 的坐标和准线l 的方程;(Ⅱ)设直线AB 的方程为2x my =+,设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,求出点M 、N 的坐标,计算出0MF NF ⋅=u u u r u u u r,即可证明出MF NF ⊥. 【详解】(I )抛物线C 的焦点为()2,0F ,准线l 的方程为:2x =-;(Ⅱ)设直线AB 的方程为:()2x my m R =+∈,令()11,A x y ,()22,B x y , 联立直线AB 的方程与抛物线C 的方程228x my y x=+⎧⎨=⎩,消去x 得28160y my --=, 由根与系数的关系得:1216y y =-.直线PB 方程为:228888y x y x --=--,()2222288888888y y xy x y y -+=-+=+-, 当2x =-时,228168y y y -=+,228162,8y N y ⎛⎫-∴- ⎪+⎝⎭,同理得:118162,8y M y ⎛⎫-- ⎪+⎝⎭.228164,8y FN y ⎛⎫-∴=- ⎪+⎝⎭u u u r ,118164,8y FM y ⎛⎫-=- ⎪+⎝⎭u u u u r ,()()()()()()21212121211688816816816816168888y y y y y y FN FM y y y y +++----∴⋅=+⨯=++++u u u r u u u u r ()()()()()()122121801680161608888y y y y y y +-+===++++,FN FM ∴⊥u u u r u u u u r,MF NF ∴⊥.【点睛】本题考查利用抛物线方程求焦点坐标和准线方程,同时也考查了直线与抛物线的综合问题,涉及到两直线垂直的证明,一般转化为两向量数量积为零来处理,考查计算能力,属于中等题. 22.已知1()ln mf x x m x x-=+-,m ∈R . (1)讨论()f x 的单调区间;(2)当202e m <≤时,证明:2()1x e x xf x m >-+-.【答案】(1)()f x 在(1,1)m -上单调递减;在(0,1)和(1,)m -+∞上单调递增.(2)见解析 【解析】 【分析】(1)先求函数的定义域,再进行求导得2(1)[(1)]()x x m f x x---'=,对m 分成1m £,12m <<,2m =三种情况讨论,求得单调区间;(2)要证由2()1xe x xf x m >-+-,等价于证明ln x e mx x >,再对x 分01x <≤,1x >两种情况讨论;证明当1x >时,不等式成立,可先利用放缩法将参数m 消去,转化成证明不等式2ln 2xe e x x >成立,再利用构造函数22()ln x e g x x x -=-,利用导数证明其最小值大于0即可。
2020年山东省高考数学试卷试卷及解析(26页)

2020年山东省高考数学试卷试卷及解析(26页)一、选择题(每小题5分,共50分)1. 设集合A={x|x^25x+6=0},B={x|x^23x+2=0},则A∩B=()A. {1}B. {2}C. {1,2}D. { }2. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最大值为M,则M的取值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 54. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√35. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i6. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为()A. 0B. 1C. 2D. 37. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最小值为n,则n的取值为()A. 0B. 1C. 2D. 38. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 59. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√310. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i二、填空题(每小题5分,共20分)11. 若log2(3x2)=1,则x的值为_________。
12. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为_________。
13. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为_________。
2020年普通高等学校招生全国统一考试数学理试题精品解析(山东卷)

2020年高考山东卷理数试题解析(精编版)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填 写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改 动,用橡皮擦干净后,再选涂其他答案标号.答案卸载试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应 的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能 使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)【2020高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =I ( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】C【解析】因为{}{}243013A x x x x x =-+<=<<, 所以{}{}{}132423A B x x x x x x =<<<<=<<I I .故选:C.【考点定位】1、一元二次不等式;2、集合的运算.【名师点睛】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交集,本题属基础题,要求学生最基本的算运求解能力. (2)【2020高考山东,理2】若复数z 满足1zi i=-,其中i 为虚数为单位,则z =( )(A )1i - (B )1i + (C )1i -- (D )1i -+ 【答案】A【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.(3)【2020高考山东,理3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.(4)【2020高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=o,则BD CD ⋅=u u u r u u u r( )(A )232a - (B )234a - (C ) 234a (D ) 232a【答案】D【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题. (5)【2020高考山东,理5】不等式152x x ---<的解集是( )(A )(-,4) (B )(-,1)(C )(1,4) (D )(1,5) 【答案】A【考点定位】含绝对值的不等式的解法.【名师点睛】本题考查了含绝对值的不等式的解法,重点考查学生利用绝对值的意义将含绝对值的不等式转化为不含绝对值的不等式(组)从而求解的能力,本题属中档题.(6)【2020高考山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )2 (C )-2 (D )-3 【答案】B【解析】不等式组020x y x y y -≥⎧⎪+≤⎨⎪≥⎩在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y =+的最大值为4,则最优解可能为1,1x y == 或2,0x y == ,经检验,2,0x y ==是最优解,此时2a = ;1,1x y ==不是最优解.故选B. 【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数a 的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力. (7)【2020高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B )43π (C )53π(D )2π 【答案】C【考点定位】1、空间几何体的结构特征;2、空间几何体的体积.【名师点睛】本题考查了空间几何体的结构特征及空间几何体的体积的计算,重点考查了圆柱、圆锥的结构特征和体积的计算,体现了对学生空间想象能力以及基本运算能力的考查,此题属中档题.(8)【2020高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( ) (附:若随机变量ξ服从正态分布()2,Nμσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型A1、复数5(3)z i i i =-+(i 为虚数单位),则复数z 的共轭复数为( ) A .2i - B .2i + C .4i -D .4i +2、若[-1,1]{}2|1x x tx t ⊆-+≤,则实数t 的取值范围是( ) A .[-1,0]B .[222-C .(,2]-∞-D .[222-222+]3、已知()2,M m 是抛物线()220y px p =>上一点,则“1p ≥”是“点M 到抛物线焦点的距离不少于3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4、若m 是2和8的等比中项,则圆锥曲线221yx m+=的离心率是( ) A 3B 5C 35D 355、在ABC ∆中,若0120,2==A b ,三角形的面积3=S ,则三角形外接圆的半径为( ) A 3B .2C .23D .46、某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( ) A .3π B .π4 C .π2D .π257、定义,max{,},a a b a b b a b ≥⎧=⎨<⎩,设实数,x y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则max{4,3}z x y x y =+-的取值范围是( )A .[8,10]-B .[7,10]-C .[6,8]-D .[7,8]-8、函数log (3)1(0,1)a y x a a =+->≠且的图象恒过定点A ,若点A 在直 线10mx ny ++=上,其中m ,n 均大于0,则nm 21+的最小值为( ) A .2B .4C .8D .169、已知△ABC 中,内角C B A 、、所对的边分别为c b a ,,且b c C a =+23cos ,若123,1=-=b c a ,则角B 为( )A .4πB .6π C .3πD .12π10、设定义在D 上的函数)(x h y =在点))(,(00x h x P 处的切线方程为)(:x g y l =,当0x x ≠时,若0)()(0>--x x x g x h 在D 内恒成立,则称P 为函数)(x h y =的“类对称点”,则x x x x f ln 46)(2+-=的“类对称点”的横坐标是( )A .1B .2C .eD .3第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11、已知函数a a x x f +-=|2|)(.若不等式6)(≤x f 的解集为{}32|≤≤-x x ,则实数a 的值为 .12、已知点A ()2,0抛物线C :24x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N13、已知函数()11,1x x f x e x -≤≤=>⎪⎩ 则⎰-21d )(x x f = .14、把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为: .(用数字作答)15、已知函数x xe x f =)(,记)()(0x f x f '=,)()(01x f x f '=,…,)()(1x f x f n n -'=且12x x >,对于下列命题:①函数)(x f 存在平行于x 轴的切线;②0)()(2121>--x x x f x f ;③x x e xe x f 2014)(2012+='; ④1221)()(x x f x x f +<+.其中正确的命题序号是_______________(写出所有满足题目条件的序号). 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16、(本小题满分12分)已知函数)3sin(2sin 2)(π-+=x x x f .(Ⅰ)求f (x )的单调递增区间;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别为a,b ,c .已知b a A f 3,3)(==,证明:B C 3=2020年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1 的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2) (Ⅰ)求证:A 1E⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (Ⅲ)求二面角B -A 1P -F 的余弦值.数列}{n a 中,,11=a 当2≥n 时,其前n 项和为n S ,满足).21(2-=n n n S a S(Ⅰ)求n S 的表达式; (Ⅱ)设,12+=n S b n n 数列}{n b 的前n 项和为n T ,不等式21(5)18n T m m ≥-对所有的*n N ∈恒成立,求正整数m 的最大值.在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为1(1,0)F -, P 为椭圆G 的上顶点,且145PFO ∠=︒. (Ⅰ)求椭圆G 的标准方程;(Ⅱ)已知直线1l :1y kx m =+与椭圆G 交于A ,B 两点,直线2l :2y kx m =+(12m m ≠)与椭圆G 交于C ,D 两点,且||||AB CD =,如图所示.(1)证明:120m m +=;(Ⅲ)求四边形ABCD 的面积S 的最大值.已知函数2()ln(1)f x a x ax x =+--.(Ⅰ)若1x =为函数()f x 的极值点,求a 的值; (Ⅱ)讨论()f x 在定义域上的单调性; (Ⅲ)证明:对任意正整数n ,222134232)1ln(n n n +++++<+Λ.17、解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率.283566581312==⋅=C C C P …4分 (Ⅱ)10,8,6,4ξ的取值为;2895618)()6(;5631)()()8(;283)10(5833233312232213582322332312132223581312==⋅+⋅+⋅===+⋅+⋅+⋅===⋅==C C C C C C C C P C C C C C C C C C P C C C P ξξξ.561)4(583322=⋅==C C C P ξ ………8分 ξ 10864P2835631289561-5.75642854562482830=+++=ξE ………12分18、解析:不妨设正三角形ABC 的边长为 3 .(1)在图1中,取BE 的中点D ,连结DF . ∵AE :EB=CF :FA=1:2,∴AF=AD=2,而∠A=600,∴△ADF 是正三角形, 又AE=DE=1,∴EF⊥AD在图2中,A1E⊥E F ,BE⊥EF,∴∠A1EB 为二面角A1-EF-B 的平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.……………………….3分 又BE∩EF=E,∴A1E⊥平面BEF ,即A1E⊥平面BEP …………………….4分 (2)建立分别以ED 、EF 、EA 为x 轴、y 轴、z 轴的空间直角坐标系,则E (0,0,0),A (0,0,1),B (2,0,0),F (0, ,0), P (1, ,0),则(0,0,1)AE =-u u u r,(2,0,1),(AB BP =-=-u u u r .设平面ABP 的法向量1111(,,)n x y z =u r, 由1n ⊥u r 平面ABP 知,11,n AB n BP ⊥⊥u r u u u r u r u u u r,即111120,0.x z x -=⎧⎪⎨-=⎪⎩令1x =111,y z ==1n =u r.111cos ,||||AE n AE n AE n ⋅<>===⋅u u u r u ru u u r u r u u u r u r , 1,120AE n <>=o u u u r u r, 所以直线A1E 与平面A1BP 所成的角为600…………8分(3)1),(1,0,0)AF PF =-=-u u u r u u u r,设平面AFP 的法向量为2222(,,)n x y z =u u r . 由2n ⊥u u r 平面AFP 知,22,n AF n PF ⊥⊥u u r u u u r u u r u u u r,即22220,0.x z -=⎧⎪-=令21y =,得220,x z ==2n =u u r .1211127cos ,8||||n n n n n n ⋅<>===⋅u r u u ru r u r u r u u r , 所以二面角B-A1P-F 的余弦值是78-………………………………12分19、解:(1)因为)2(),21(12≥-=-=-n S S a S a S n n n n n n ,所以).21)((12--=-nn n n S S S S 即n n n n S S S S -=⋅--112 ① 由题意,01≠⋅-n n S S 故①式两边同除以,1n n S S ⋅-得2111=--n n S S ,所以数列}1{n S 是首项为,11111==a S 公差为2的等差数列.故,12)1(211-=-+=n n S n 所以;121-=n S n(2)),121121(21)12)(12(112+--=+-=+=n n n n n S b n n )121121()5131()311((2121+--++-+-=+++=n n b b b T n n ΛΛ)1211(21+-=n ≥13又∵ 不等式≥n T 21(5)18m m -对所有的*n N ∈恒成立∴13≥21(5)18m m -,2m。