常用集成电路型号及引脚图
555芯片引脚图及引脚描述

555芯片引脚图及引脚描述555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。
1脚为地。
2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。
当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。
6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。
3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。
4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。
5脚是控制端。
7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。
555集成电路管脚,工作原理,特点及典型应用电路介绍.1 555集成电路的框图及工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
2. 555芯片管脚介绍555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
常用PCB封装图解

常用集成电路芯片封装图doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
PCB 元件库命名规则2.1 集成电路(直插)用DIP-引脚数量+尾缀来表示双列直插封装尾缀有N 和W 两种,用来表示器件的体宽N 为体窄的封装,体宽300mil,引脚间距2.54mm W 为体宽的封装, 体宽600mil,引脚间距 2.54mm 如:DIP-16N 表示的是体宽300mil,引脚间距2.54mm 的16 引脚窄体双列直插封装 2.2 集成电路(贴片)用SO-引脚数量+尾缀表示小外形贴片封装尾缀有N、M 和W 三种,用来表示器件的体宽N为体窄的封装,体宽150mil,引脚间距 1.27mm M 为介于N 和W 之间的封装,体宽208mil,引脚间距1.27mm W 为体宽的封装, 体宽300mil,引脚间距 1.27mm 如:SO-16N 表示的是体宽150mil,引脚间距1.27mm 的16 引脚的小外形贴片封装若SO 前面跟M 则表示为微形封装,体宽118mil,引脚间距0.65mm 2.3 电阻 2.3.1 SMD 贴片电阻命名方法为:封装+R 如:1812R 表示封装大小为1812 的电阻封装2.3.2 碳膜电阻命名方法为:R-封装如:R-AXIAL0.6 表示焊盘间距为0.6 英寸的电阻封装 2.3.3 水泥电阻命名方法为:R-型号如:R-SQP5W 表示功率为5W 的水泥电阻封装 2.4 电容 2.4.1 无极性电容和钽电容命名方法为:封装+C 如:6032C 表示封装为6032 的电容封装 2.4.2 SMT 独石电容命名方法为:RAD+引脚间距如:RAD0.2 表示的是引脚间距为200mil 的SMT 独石电容封装 2.4.3 电解电容命名方法为:RB+引脚间距/外径如:RB.2/.4 表示引脚间距为200mil, 外径为400mil 的电解电容封装 2.5 二极管整流器件命名方法按照元件实际封装,其中BAT54 和1N4148 封装为1N4148 2.6 晶体管命名方法按照元件实际封装,其中SOT-23Q 封装的加了Q 以区别集成电路的SOT-23 封装,另外几个场效应管为了调用元件不致出错用元件名作为封装名 2.7 晶振HC-49S,HC-49U 为表贴封装,AT26,AT38 为圆柱封装,数字表规格尺寸如:AT26 表示外径为2mm,长度为8mm 的圆柱封装 2.8 电感、变压器件电感封封装采用TDK 公司封装 2.9 光电器件 2.9.1 贴片发光二极管命名方法为封装+D 来表示如:0805D 表示封装为0805 的发光二极管 2.9.2 直插发光二极管表示为LED-外径如LED-5 表示外径为5mm 的直插发光二极管2.9.3 数码管使用器件自有名称命名 2.10 接插件 2.10.1 SIP+针脚数目+针脚间距来表示单排插针,引脚间距为两种:2mm,2.54mm 如:SIP7-2.54 表示针脚间距为 2.54mm 的7 针脚单排插针 2.10.2 DIP+针脚数目+针脚间距来表示双排插针,引脚间距为两种:2mm,2.54mm 如:DIP10-2.54 表示针脚间距为2.54mm 的10 针脚双排插针 2.10.3 其他接插件均按E3 命名 2.11 其他元器件详见《Protel99se 元件库清单》3 SCH 元件库命名规则3.1 单片机、集成电路、二极管、晶体管、光电器件按照器件自有名称命名 3.2 TTL74 系列和COMS 系列是从网上找的元件库,封装和编码需要在画原理图时重新设定 3.3 电阻 3.3.1 SMD 电阻用阻值命名,后缀加-F 表示1%精度,如果一种阻值有不同的封装,则在名称后面加上封装如:3.3-F-1812 表示的是精度为1%,封装为1812,阻值为 3.3 欧的电阻 3.3.2 碳膜电阻命名方法为:CR+功率-阻值如:CR2W-150 表示的是功率为2W,阻值为150 欧的碳膜电阻 3.3.3 水泥电阻命名方法为:R+型号-阻值如:R-SQP5W-100 表示的是功率为5W,阻值为100 欧的水泥电阻 3.3.4 保险丝命名方法为:FUSE-规格型号,规格型号后面加G 则表示保险管如:FUSE-60V/0.5A 表示的是60V,0.5A 的保险丝 3.4 电容3.4.1 无极性电容用容值来命名,如果一种容值有不同的封装,则在容值后面加上封装。
主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294

LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用摘要:一.6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA9293和TDA7294,它们的标称输出功率在30~100W范围内,适用于家用高保真音频功率放大器。
采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。
JeffRowland 的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。
关键词:音频功率放大器功率IC TDA7294 TDA7293应用LM1875 LM4766 LM3886一、6片IC简介本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。
采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。
JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。
虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。
很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。
本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。
1、LM1875LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。
74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表优先编码器是当多个输入端同时有信号时,电路只对其中优先级别最高的输入信号进行编码。
常用的集成优先编码器IC有10线-4线、8线-3线两种。
10线-4线优先编码器常见的型号为54/74147、54/74LS147,8线-3线优先编码器常见的型号为54/74148、54/74LS148。
下面我们以TTL中规模集成电路74LS147为例介绍8421→BCD码优先编码器的功能。
10线-4线8421 BCD码优先编码器74LS147的真值表见表3.5。
74LS147的引脚图如图3.5所示,其中第9脚NC为空。
74LS147优先编码器有9个输入端和4个输出端。
某个输入端为0,代表输入某一个十进制数。
当9个输入端全为1时,代表输入的是十进制数0。
4个输出端反映输入十进制数的BCD 码编码输出。
74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。
当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输出。
表3.5 74LS147的真值表数字电路CD4511的原理(引脚及功能)CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。
可直接驱动LED显示器。
CD4511 是一片 CMOS BCD—锁存/7 段译码/驱动器,引脚排列如图 2 所示。
其中a b c d 为 BCD 码输入,a为最低位。
LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。
BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平。
另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。
74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表优先编码器是当多个输入端同时有信号时,电路只对其中优先级别最高的输入信号进行编码。
常用的集成优先编码器IC有10线-4线、8线-3线两种。
10线-4线优先编码器常见的型号为54/74147、54/74LS147,8线-3线优先编码器常见的型号为54/74148、54/74LS148。
下面我们以TTL中规模集成电路74LS147为例介绍8421→BCD码优先编码器的功能。
10线-4线8421 BCD码优先编码器74LS147的真值表见表3.5。
74LS147的引脚图如图3.5所示,其中第9脚NC为空。
74LS147优先编码器有9个输入端和4个输出端。
某个输入端为0,代表输入某一个十进制数。
当9个输入端全为1时,代表输入的是十进制数0。
4个输出端反映输入十进制数的BCD 码编码输出。
74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。
当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输出。
表3.5 74LS147的真值表数字电路CD4511的原理(引脚及功能)CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。
可直接驱动LED显示器。
CD4511 是一片 CMOS BCD—锁存/7 段译码/驱动器,引脚排列如图 2 所示。
其中a b c d 为 BCD 码输入,a为最低位。
LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。
BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平。
另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。
74LS系列主要芯片引脚及参数

<74LS00引脚图>74l s00 是常用的2输入四与非门集成电路,他的作用很简单顾名思义就是实现一个与非门。
Vcc 4B 4A 4Y 3B 3A 3Y┌┴—┴—┴—┴—┴—┴—┴┐__ │14 13 12 11 10 9 8│Y = AB )│ 2输入四正与非门 74LS00│ 1 2 3 4 5 6 7│└┬—┬—┬—┬—┬—┬—┬┘1A 1B 1Y 2A 2B 2Y GND74LS00真值表:A=1 B=1 Y=0A=0 B=1 Y=1A=1 B=0 Y=1A=0 B=0 Y=174HC138基本功能74LS138 为3 线-8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其74LS138工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
74LS138的作用:利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS138图74ls138译码器内部电路3线-8线译码器74LS138的功能表备注:这里的输入端的三个A0~1有的原理图中也用A B C表示(如74H138.pdf中所示,试用于普中科技的HC-6800 V2.2单片机开发板)。
<74ls138功能表>74LS138逻辑图无论从逻辑图还是功能表我们都可以看到74LS138的八个输出管脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出管脚全为高电平1。
如果出现两个输出管脚在同一个时间为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出74ls138逻辑图由上式可以看出,在同一个时间又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
78L05引脚图及电路原理图详解

78L05引脚图及电路原理图详解7805引脚图7805是常⽤的三端稳压器,⼀般使⽤的是TO-220封装,能提供DC 5V的输出电压,应⽤范围⼴,内含过流和过载保护电路。
带散热⽚时能持续提供1A的电流,如果使⽤外围器件,它还能提供不通的电压和电流。
7805是常⽤的三端稳压器件,顾名思义05就是输出电压为5v,还可以微调,7805输出波纹很⼩。
(1) 集成三端稳压器根据稳定电压的正、负极性分为78×××,79×××系列。
附图给出了正、负稳压的典型电路。
〈正、负稳压7805电路〉(2) 三端稳压器的型号规格和管脚分布。
例如:78M05三端稳压器可输出+5 V、0.5 A的稳定电压;7912三端稳压器可输出 12V、1A的稳定电压。
(3) 外形及管脚分布,如附图1-25所⽰。
由7805,7905,7812组成的特殊的线性稳压电源如图所⽰为⼀种特殊的电源电路。
该电路虽然简单,但可以从两个相同的次级绕组中产⽣出三组直流电压:+5V、-5V和+12V。
其特点是:D2、D3跨接在E2、E3这两组交流电源之间,起着全波整流的作⽤。
7805可调稳压电源电路图7800系列三端稳压集成电路⼴泛⽤于各种电⼦电器电路中⽤作电源稳压,它的输出电压是固定的,但如果对外围电路稍作改动就可以是⼀个不错的连续可调稳压电源,⽤作实验检修之⽤完全可⾏。
制作之前需了解:7800系列三端稳压器按输出电流区分有三种系列,分别是78L00系列最⼤输出电流0.1A;78M00系列最⼤输出电流0.5A;7800系列最⼤输出电流1.5A。
三端稳压器输⼊输出压差要⼤于2V。
7805-7818的最⾼输⼊电压不能超过35V,7820-7824最⾼输⼊电压不能超过40V。
7805制作的5V-12V连续可调稳压电源这⾥选⽤7805制作了⼀个5V~12V连续可调的直流稳压电源实例。
图中R1、R2的取值决定了输出电压的可调范围,按照图⽰取值可在5~12V稳压范围内实现输出电压连续可调。
常用集成电路外部引脚图

附录B 常用集成电路外部引脚图(1) 74LS00四2输入正“与非”门74LS00 皿VCC484A4Y383A3Y[1] LU12J LU 111IZJ1A1B 1Y2A2B 2YCWD(3) 74LS04六反相器74LS04 gLU I2J LU LU L1J 回 LU1A 1Y 2A 2Y 3A SY GND(2) 74LS02四2输入正“或非”门74LS02 Y “.BVcc 4Y 48 4A SY 3B 3A(4) 74LS08四2输入正“与”门74LS08 Y ,ASV<X 4B 4A 4Y 38 5A 3Y而冋耳冋冋回ITd 自3 4 ©⑼31A IB 1Y 2A 28 2Y GhO(5) 74LS10三3输入正“与非”门74LS10 Y-A8C(6) 74LS14六反相施密特触发器Y = AVO : 6A 6Y 5A 5Y 4A 4Y质」 申?护卩 山山山山山山Ld1A l¥ 2A 2Y M 3Y GKD(7) 74LS20双4输入正“与非"门74LS20 Y =ABCOVbc 2D X NC 28 2A 2Y1.1A IB NC 1C 10 IV GHD(8) 74LS32 四 2^A^nY = A + Bva 4B 4A 4Y 3B M 3T(9) 74LS47 BCD到七段译码器/驱动器 (有效低、0C门、15V)74LS47Vcc f g a b c d e冋冋向冋/LLJ'・~ -*15枪入tA tAji LU ill i< 1^1 Ld iejB C LT BI RBO RW D A GHC(10) 74LS48 BCD到七段码译码/驱动器(有上拉电阻)I.T REO/R】IR1 D A GXDY = AB + CDE + FGH + IJ(13) 74LS74双D型触发器(带预置和清除、正沿触发)Vco XLR 20 2OK 2PR 20 2Q而回丽0回目国74LS74丄[£J向21㈢空也1CLR 10 1CK 1PR 1O 1O GKO(15) 74LS86四2输入异或门74LS86 Y=A«$6=AS=ABVcc 4B 4A 4Y 38 3A 3Y[iT fol 12] (Til Ro] [¥] [Tl(14) 74LS76双JK触发器(带预置和清除、负沿触发)IK IQ 1Q GNO 2K 2Q 2Q 2J74LS76Ji >: <:■n [:. <:■E L II1J3L L L£J⑥山直1CK 1PR 1CLR 1J Vcc 2CK 2PR 2CLR(16) 74LS125四总线缓冲门Y = A(带三态输出、C高时输出关断,即禁止)74LS125 zVcc 4C 4A <r X 3A 3Y 而冋冋而同回国m^n^rHTWKPT1C 1A 1Y 2C 2A 2Y GN0(11) 74LS51 2-3输入“与或非"门(12) 74LS54与或非门2丫• :2A・26)■ :2C・2D)74LS511Y- 1A- 16 - 1C' ♦r1D- im(17) 74LS138 3线-8线译码器 (多路转换器)驱 YO Y1 Y2 Y3 Y4 Y$ Yfl 応屁而冋叼而応冋74LS1383发・8纯话哥寥,$0转萩耳L L LL12JU J 1JL 6J I 11S JABC O2A G2B G1 Y7 GNOVoc eO GS 32 1 0 AO丽:[ii] 冋卑厄 M 冋叵]74LS148 8ft-3^ A 进创优先廉垮比4567 El A2 A1 ONC(19) 74LS151 8选1数据选择器 (多路转换器)497 A U C[?& 同而而壬]而同可(20) 74LS153 4选1数据选择器(多路转换器)ra a A 2C32C2 XI 2(» 2Y冋冋冋冋冈冋而[7]74LS151 LU LU 2J Li ±l 1 IzJ ±J3 210 Y W S GHD74LS153UlLdUJLiJlAJLLlLJLiJTc B ICS IC2 IC) ICO IT CKD(21) 74LSI60同步4位计数器(十进制,直接清除)(22) 74LS161同步4位计数器(二进制,直接清除)74LS160E 步凶使计fts ・i (柚斤陰》I1J l±] UJ L 4' HJ l± L1J l£CLR CLK AB C 0 EP CND(23) 74LS194 4位双向通用移位寄存器(24) CD4060B 二进制计数器和振荡器(分频器,14级进位)CLR $R A 8 C 0 SI GNDQ】2 Q13 QM Q6Q7 Q4 VSS(18) 74LS148 8线-3线八进制编码器VCC CO QA 06 QC QD ET 1031 CU A B C D »? ©©(25) NE555多谐振荡器(26) "741运算放大器(27) ADC0804八位模/数转换器(28) DAC0832八位数/模转换器吃CLKI DM DB1 D© 063 DM D65 DB6 C67ADC0804LdLjLJLiJLJLdLJLBJLdkJ誌药55 cum T5TTI um U1&- MKD Ur©f/2 DO©(29)七段显示数码管(示意图)DP G COM F EHill£... 、a af JA B COMC D岡冋冋回冋网冋冋网冋VCC (IE WW2 OTR M 05 «07 Uttll I<»t2网冋冋冋冋网冋冋冋冋MC0832L2JS 丽I 临D D3 D2 01 BO Uref Rfb MMD附录C常用门逻辑符号对照表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用集成电路型号及引脚图
电路名称及符号 引脚图 注释
六反向器
TTL 74LS04 CMOS MC14069 A:输入 Y:输出
四两输入与非门
TTL 74LS00 CMOS MC14069 7401(OC) A、B:输入 Y:输出
双四输入与非门 TTL 74LS20 CMOS MC14012 NC 为空脚
A、B、C、D 输入 Y 输出
双进位保留全加器
74LS183
NC 为空脚
四两输入异或门 74LS86 A、B:输入 Y 输出
与门输入主从
单 JK 触发器
74H72
上升沿触发
二—五—十进制
异步计数器
74LS290
双 D 型触发器
74LS74
上升沿触发
错误!文档中没有指定样式的文字。
221
556
双 JK 触发器 74LS112
负沿触发
四总线缓冲器 74125(三态低有效) 74126(三态高有效)
555
四线—十线译码器 74LS42
十线—四线优先 编码器 74LS147
双四选一数据 选择器 74LS153
同步可逆十进制 计数器 74LS192
CP+=1 CP =↑减法 CP+=↓CP =1 加法
ADC 0809。