九年级下第一次月考数学试卷(有答案)
湖南省长沙市湖南师大附中2022学年九年级下学期第一次月考数学试题(含答案与解析)

C.10D.16
【9题答案】
【答案】B
【解析】
【分析】由题意知,盒子中白球的个数可能是 ,计算求解即可.
【详解】解:由题意知
∴盒子中白球的个数可能是8个
故选B.
【点睛】本题考查了频率.解题的关键在于明确大量试验可以用频率估计概率.
10.在一次数学活动课上,某数学老师在4张同样的纸片上各写了一个正整数,从中随机取2张,并将它们上面的数相加,重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到,根据以上信息,下列判断正确的是()
【详解】解:A.不是中心对称图形,故本选项不符合题意;
B.不是中心对称图形,故本选项不符合题意;
C.是中心对称图形,故本选项符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 后与原图重合,掌握中心对称图形的概念是解题的关键.
14.已知扇形的圆心角为 ,半径为 ,则扇形的弧长是 .
15.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.
16.如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则tan∠BCD的值为________.
(1)参加这次调查的学生总人数为___________人;
(2)请补全条形统计图;
(3)扇形统计图中类别 所对应扇形的圆心角度数为__________ ;
(4)类别 的4名学生中有3名男生和1名女生,班主任想从这4名学生中随机选取2名学生进行访谈,请用列举法(画树状图或列表)求所选取的2名学生恰好都是男生的概率.
安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形是中心对称图形的是()A .B .C .D .2.已知a b =25,则a b b +的值为().A .25B .35C .75D .233.函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,则k 可能为()A .﹣2B .﹣1C .0D .14.已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°5.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B -两点,则下列说法正确的是()A .a<0B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =-6.如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =,4DE =,则BC 的长是()A .1B C .2D .47.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADC ∠的度数是()A .125°B .130°C .135°D .140°8.如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan2A ∠=,1tan 3ABD ∠=,则CD 的长为()A .B .3CD .29.如图,在矩形ABCD 中,6AB =,4=AD ,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH CD ∥,交BF 于点H ,则线段GH 的长度是()A .56B .1C .54D .5310.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为()A .2B .52C .3D二、填空题11.已知二次函数()211my m x -=+的图象开口向下,则m 的值是______.12.如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.13.如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ⊥x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为_____.14.在平面直角坐标系xOy 中,已知点A (-1,1)在抛物线y =x 2+2bx +c 上(1)c =______(用含b 的式子表示);(2)若将该抛物线向右平移t 个单位(t ≥32),平移后的抛物线仍经过A (-1,1),则平移后抛物线的顶点纵坐标的最大值为_______.三、解答题15()113tan 3020222π-︒⎛⎫+-- ⎪⎝⎭.16.一个二次函数,当=1x -时,函数的最小值为2,它的图象经过点()16,,求这个二次函数的解析式.17.已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.18.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 绕点O 顺时针旋转90︒得到111A B C △,请画出111A B C △,并求出点C 经过的路径长;(2)以A 为位似中心,将ABC 放大2倍得到222A B C △,请直接写出2B 的坐标.19.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近? 1.4≈ 1.7≈)20.如图,四边形ABCD 内接于圆O ,AB 是直径,点C 是 BD的中点,延长AD 交BC 的延长线于点E .(1)求证:CE CD =;(2)若3AB =,BC =,求AD 的长.21.如图,一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数()0,0my m x x=≠>的图象相交于点A ,1OB =,tan 2OBC ∠=,:1:2BC CA =.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当BDE 面积最大时,求点D 的坐标.22.如图, ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值23.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.参考答案:1.B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.【详解】解:选项A 、C 、D 都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项B 能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:B .【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2.C【分析】根据比例的性质计算即可;【详解】∵a b =25,∴52755++==a b b ;故答案选C .【点睛】本题主要考查了比例的性质应用,准确计算是解题的关键.3.A【分析】根据反比例函数的性质列出关于k 的不等式,求出k 的取值范围即可.【详解】解:∵反比例函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,∴k +1<0,解得k <﹣1.观察选项,只有选项A 符合题意.故选:A .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.A【分析】根据弧长公式即可求出扇形的圆心角度数.【详解】解:∵180n r l π=∴1801802606l n r πππ⋅===°故选:A【点睛】本题考查了弧长公式,利用弧长公式求该弧所对的圆心角,必须熟记公式,并能熟练运用.5.D【分析】根据二次函数的图象与性质即可依次判断.【详解】由图可得开口向上,故a >0,A 错误;∵解析式为2(2)y a x k =++,故对称轴为直线x =-2,D 正确∵(), 10B -∴A 点坐标为(-3,0),故B 错误;由图可知当<2x -时,y 随x 的增大而减小,故C 错误;故选D .【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.6.C【分析】由垂径定理可知,点D 是AC 的中点,则OD 是ABC 的中位线,所以12OD BC =,设OD x =,则2BC x =,则4OE x =-,82AB x =-,在Rt ABC △中,由勾股定理可得222AB AC BC =+,代入求出x 的值即可得出结论.【详解】解:AB 是O 的直径,∴90C ∠=︒,∵OD AC ⊥,∴点D 是AC 的中点,∴OD 是ABC 的中位线,∴∥OD BC ,且12OD BC =,设OD x =,则2BC x =,∵4DE =,∴4OE DE OD x =-=-,∴282AB OE x ==-,在Rt ABC △中,由勾股定理可得,222AB AC BC =+,∴()(()222822x x -=+,解得1x =.∴22BC x ==.故选:C .【点睛】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.7.B【分析】连接OA ,OB ,OC ,根据圆周角定理得出∠BOC=100°,再根据 AC BC=得到∠AOC ,从而得到∠ABC ,最后利用圆内接四边形的性质得到结果.【详解】解:连接OA ,OB ,OC ,∵50BDC ∠=︒,∴∠BOC=2∠BDC=100°,∵ AC BC=,∴∠BOC=∠AOC=100°,∴∠ABC=12∠AOC=50°,∴∠ADC=180°-∠ABC=130°.故选B.【点睛】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.8.C【分析】先根据锐角三角函数值求出AC =再由勾股定理求出5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得ADCD .【详解】解:在Rt ABC 中,90C ∠=︒,BC =,∴1tan 2BC A AC ∠==∴2AC BC ==由勾股定理得,5AB =过点D 作DE AB ⊥于点E ,如图,∵1tan 2A ∠=,1tan 3ABD ∠=,∴11,,23DE DE AE BE ==∴11,,23DE AE DE BE ==∴1123AE BE =∴32BE AE =∵5,AE BE +=∴352AE AE +=∴2,AE =∴1DE =,在R t A D E ∆中,222AD AE DE =+∴AD ==∵AD CD AC +==∴CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.9.A【分析】根据矩形的性质得出6490DC AB BC AD C ====∠=︒,,,求出132DF CF DC ===,122CE BE BC ===,求出FH BH =,根据勾股定理求出BF ,求出152FH BH ==,根据三角形的中位线求出EH ,根据相似三角形的判定得出EHG DFG ,根据相似三角形的性质得出EH GH DF FG =,再求出答案即可.【详解】解析: 四边形ABCD 是矩形,6AB =,4=AD ,6DC AB ∴==,4BC AD ==,90C ∠=︒,点E 、F 分别为BC 、CD 的中点,132DF CF DC ∴===,122CE BE BC ===,EH CD ∥ ,FH BH ∴=,BE CE = ,1322EH CF ∴==.由勾股定理得:5BF ==,1522BH FH BF ∴===,EH CD ∥ ,EHG DFG ∴ △△,EH GH DF FG∴=,32532GH GH ∴=-,解得:56GH =,故选:A .【点睛】本题考查了矩形的性质和相似三角形的性质和判定,能熟记矩形的性质是解此题的关键.10.A【分析】根据对称性得到动点M 的轨迹是在以A 圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.【详解】解:连接AM ,如图所示:∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵在矩形ABCD 中,AC 5=,AM =AB =3,∴CM =5﹣3=2,故选:A .【点睛】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.11.【分析】根据二次函数的定义可得212m -=及开口向下时10+<m 即可解答.【详解】解:根据题意得:21012m m +<⎧⎨-=⎩解得:m =故答案为【点睛】本题考查的是二次函数的定义及性质,易错点是只考虑其次数是2,没有考虑开口向下时的性质.12【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==2∵OD ⊥AB∴BD =AD =2∴AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键13.6【分析】应用k 的几何意义及中线的性质求解.【详解】解: D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.【点睛】本题考查了反比例函数中k 的几何意义,关键是利用AOB ∆的面积转化为三角形AOC 的面积.14.2b 716##0.4375【分析】(1)将点代入函数解析式求解即可;(2)根据(1)所求,将点A 和t 代入表达式得到b 、t 的关系,根据t 的取值范围,求出b 的范围,进而即可求解.【详解】解:(1)将点A (-1,1)代入y =x 2+2bx +c 得()()21121b c=-+⋅-+化简得,2c b =,故答案是:2b ;(2)由(1)222y x bx b=++平移后得,()()222y x t b x t b=-+-+将点A (-1,1)代入()()222y x t b x t b=-+-+得,()()211212t b t b=--+--+化简得,()022t t b =+-记得12220t b t =-=,(舍去)将22t b =-代入()()222y x t b x t b=-+-+得()()2222222y x b b x b b=+-++-+化简得,()24242y x b x b =+-+-∵22t b =-,t ≥32∴74b ≥∴平移后抛物线的项点纵坐标为:()()()224142421141b b b ⨯⨯---=--+⨯当74b =时,平移后抛物线的项点纵坐标有最大值为:716,故答案是:716.【点睛】本题主要考查了二次函数的应用,掌握二次函数的相关知识结合不等式并灵活应用是解题的关键.151-【分析】原式利用二次根式性质,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】解:原式3123=⨯-121=-=.【点睛】本题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.()212y x =++【分析】设抛物线顶点式,然后将()16,代入解析式求解.【详解】解:根据题意设()212y a x =++,把()16,代入()212y a x =++得642a =+,解得1a =,∴这个二次函数的解析式为()212y x =++.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法求函数解析式.17.(1)14m >-;(2)11x =,22x =-【分析】(1)根据△>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>,∴14m >-.(2)由图知20x x m +-=的一个根为1,∴2110m +-=,∴2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∴一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.18.(1)作图见解析;2;(2)(4,1).【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1的位置,即可得到111A B C △,然后求出OC ,再利用弧长公式即可求出点C 经过的路径长;(2)直接利用位似图形的性质作出222A B C △,即可得出2B 的坐标.【详解】解:(1)111A B C △如图所示:由勾股定理得:OC ==则点C 经过的路径长为:901802π⋅⋅=;(2)222A B C △如图所示,则2B 的坐标为:(4,1).【点睛】此题主要考查了旋转变换、位似变换、勾股定理以及弧长公式的应用,正确得出对应点位置是解题关键.19.(1)283DE =米;(2)经过点B 到达点D 较近.【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得DE 的长;(2)由30ABC ∠=︒,即得2400AB AC ==米,BC 的长,再分别求得AB BD +、AE DE +的长,即可得答案.【详解】(1)解:过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,∴200DF AC ==米,∵点D 在点E 的北偏东45︒,即45DEF ︒∠=,∴DEF 是等腰直角三角形,∴283DE ==≈(米);(2)解:由(1)知DEF 是等腰直角三角形,283DE =米,∴200EF DF ==米,∵点B 在点A 的北偏东30︒,即30EAB ∠=︒,∴30ABC ∠=︒,∵200AC =米,∴2400AB AC ==米,BC ==,∵100BD =米,∴经过点B 到达点D 路程为400100500AB BD +=+=(米),100)CD BC BD =+=(米),∴100)AF CD ==+(米),∴100)200100)AE AF EF =-=+-=-(米),∴经过点E 到达点D 路程为100529AE DE +=+≈(米),∵529500>,∴经过点B 到达点D 较近.【点睛】本题考查解直角三角形-方向角问题,解题的关键是掌握含30︒、45︒角的直角三角形三边的关系.20.(1)见解析(2)1【分析】(1)连接AC ,根据圆周角推论得90ACB ACE ∠=∠=︒,根据点C 是 BD的中点得CAE CAB ∠=∠,CD CB =,用ASA 证明ACE ACB ≌,即可得;(2)根据题意和全等三角形的性质得3AE AB ==,根据四边形ABCD 内接于圆O 和角之间的关系得CDE ABE ∠=∠,即可得ΔΔEDC EBA ∽,根据相似三角形的性质得DE CD BE AB=,即可得【详解】(1)证明:如图所示,连接AC,AB 为直径,90ACB ACE ∴∠=∠=︒,又 点C 是 BD的中点CAE CAB ∴∠=∠,CD CB =,在ACE △和ACB △中,ACE ACB AB AC CAE CAB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ΔΔACE ACB ASA ∴≅,CE CB ∴=,CE CD ∴=;(2)解:ΔΔACE ACB ≅ ,3AB =,3AE AB ∴==,又 四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=︒,又180ADC CDE ∠+∠=︒ ,CDE ABE ∴∠=∠,又E E ∠=∠ ,ΔΔEDC EBA ∴∽,∴DE CD BE AB=,=解得:2DE =,1AD AE DE ∴=-=.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.21.(1)()120y x x=>(2)11,2D ⎛⎫- ⎪⎝⎭【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF x ⊥轴于点F ,则ACF BCO V V ∽,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达BDE ∆的面积,根据二次函数的性质可得结论.【详解】(1)解:如图,过点A 作AF x ⊥轴于点F ,AF y ∴∥轴,ACF BCO ∴V V ∽,:::1:2BC AC OB AF OC CF ∴===.1OB = ,tan 2OBC ∠=,2OC ∴=,2AF ∴=,4CF =,6OF OC CF ∴=+=,(6,2)A ∴.点A 在反比例函数(0,0)m y m x x=≠>的图象上,2612m ∴=⨯=.∴反比例函数的表达式为:12(0)y x x =>.(2)由题意可知,(0,1)B -,∴直线AB 的解析式为:112y x =-.设点D 的横坐标为t ,则1(,1)2D t t -,12(,)E t t .12112ED t t ∴=-+.BDE ∴ 的面积为:1121(0)(1)22t t t --+211642t t =-++2125(1)44t =--+.104-< ,1t ∴=时,BDE 的面积的最大值为254,此时1(1,)2D -.【点睛】本题主要考查反比例函数与一次函数的交点,待定系数法求反比例函数解析式,三角形的面积,二次函数的性质,得出BDE 的面积与t 函数关系式是解题的关键.22.(1)证明见详解;(2)18.【分析】(1)连接OC ,根据FC 是⊙O 的切线,AE 是⊙O 的直径,可得ACF ECO Ð=Ð,利用OE OC =,得到OEC ECO Ð=Ð,根据圆周角定理可得OEC B Ð=Ð,则可证得ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,易得AFC CFB V :V ,则有28FC FB FA ==,则可得6AB BC ==,并可求得3FA BC CA FC ==g ,连接BE ,易证ACD AEB V :V ,则有AD AC AB AE =,可得18AD AE AB AC ==g g .【详解】解:(1)连接OC∵FC 是⊙O 的切线,AE 是⊙O 的直径,∴90OCF ACE Ð=Ð=o ,∴90ACF ACO ECO ACO Ð+Ð=Ð+Ð=o∴ACF ECOÐ=Ð又∵OE OC=∴OEC ECOÐ=Ð根据圆周角定理可得:OEC BÐ=Ð∴B ECO Ð=Ð,∴ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,∵AFC CFB∠=∠∴AFC CFBV :V ∴FC FA FB FC=∴2FC FB FA =,∵4FC =,2FA =,∴22482FC FB FA ===∴826AB FB AF =-=-=∴6AB BC ==又∵AFC CFB V :V 中,CA FA BC FC =∴2634FA BC CA FC ´===g ,如图示,连接BE∵ACD AEB ∠=∠,90ADC ABE Ð=Ð=o∴ACD AEBV :V ∴AD AC AB AE=∴6318AD AE AB AC ==´=g g .【点睛】本题考查了圆的性质,等腰三角形的判定与性质,圆周角定理,切线的性质,三角形相似的判定与性质等知识点,熟悉相关性质是解题的关键.23.(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②3040x ≤≤或60360x ≤≤.【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【详解】(1)由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b=+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在3040x ≤≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:3040x ≤≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.。
人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。
总分:120分。
姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。
±6.B。
6.C。
-6.D。
162.计算a^2a^4的结果是()A。
a^5.B。
a^6.C。
2a^6.D。
a^83.半径为6的圆的内接正六边形的边长是()A。
2.B。
4.C。
6.D。
84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。
2π。
B。
3π。
C。
2/3π。
D。
1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。
乘车的人数是()A。
180.B。
270.C。
150.D。
2006.函数y=(x-2)/x的自变量X的取值范围是()A。
x>2.B。
x<2.C。
x≥2.D。
x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。
一次函数。
B。
二次函数。
C。
三次函数。
D。
反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。
10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。
11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。
(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。
0)。
13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。
苏科版九年级下册月考数学试卷(附答案)

九年级(下)第一次月考数学试卷一、选择题(本大题共 8 小题,共 24 分)1、(3分) 下列计算正确的是()A.a2+a3=a5B.a6÷a3=a3C.a2•a3=a6D.(a3)2=a92、(3分) 函数y=√x−2中,自变量x的取值范围是()A.x≠2B.x≥2C.x>2D.x≥-23、(3分) 如图,空心圆柱的主视图是()A. B. C.D.4、(3分) 有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学知道自己的成绩后,要判断能否进入决赛,还需知道这9名同学成绩的()A.众数B.中位数C.平均数D.方差5、(3分) 一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π6、(3分) 如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α-β=90°7、(3分) 关于x的一元二次方程(k+1)x2-2x+1=0有两个实数根,则k的取值范围是()A.k≥0B.k≤0C.k<0且k≠-1D.k≤0且k≠-18、(3分) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c-3=0有两个不相等的实数根二、填空题(本大题共 8 小题,共 24 分)9、(3分) 因式分解:2a2-2=______.10、(3分) 当分式x−1的值为0时,x的值是______.x+211、(3分) 两个相似三角形的面积比1:4,则它们的周长之比为______.12、(3分) 如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=______°.13、(3分) 如图所示,点A是反比例函数y=k图象上一点,作AB⊥x轴,垂足为点B,若△AOBx的面积为2,则k的值是______.14、(3分) 设a、b是一元二次方程x2+2x-7=0的两个根,则a2+3a+b=______.15、(3分) 如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D在BC上,已知∠CAD=32°,则∠B=______度.16、(3分) 如图,等边△ABC中,AB=10,D为BC的中点,E为△ABC内一动点,DE=3,连接AE,将线段AE绕点A逆时针旋转60°得AF,连接DF,则线段DF的最小值为______.三、计算题(本大题共 3 小题,共 24 分)17、(6分) 计算:(3.14-π)0+|1-√3|+(-1)-1-2sin60°.418、(8分) 先化简,再求值:(1-1a+1)÷2aa −1,其中a=-2.19、(10分) 在一条笔直的公路上依次有A ,C ,B 三地,甲、乙两人同时出发,甲从A 地骑自行车去B 地,途经C 地休息1分钟,继续按原速骑行至B 地,甲到达B 地后,立即按原路原速返回A 地;乙步行从B 地前往A 地.甲、乙两人距A 地的路程y (米)与时间x (分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为______米/分,点M 的坐标为______;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A 地之前,经过多长时间两人距C 地的路程相等.四、解答题(本大题共 8 小题,共 78 分)20、(6分) 解不等式组:{4x>2x−6x−1≤x+13,并写出它的所有整数解.21、(8分) 为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C 跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.22、(8分) 某数学小组在郊外水平空地上对无人机进行测高实验,以便与遥控器显示的高度数据进行对比.如图,在E处测得无人机C的仰角∠CAB=45°,在D处测得无人机C的仰角∠CBA=30°,已知测角仪的高AE=BD=1m,E,D两处相距50m,请根据数据计算无人机C的高(结果精确到0.1m,参考数据:√2≈1.41,√3≈1.73).23、(10分) 如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,写出EF与BD的关系.(3)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.24、(10分) 某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?产品的成本单价应不超过多少元?25、(10分) 如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.,求点B到AC的距离.(2)若BC=2√5,sin∠BCP=√55(3)在第(2)的条件下,求△ACP的周长.26、(12分) 定义:对角互补且有一组邻边相等的四边形称为奇异四边形.(1)概念理解:在平行四边形、菱形、矩形、正方形中,你认为属于奇异四边形的有______;(2)性质探究:①如图1,四边形ABCD是奇异四边形,AB=AD,求证:CA平分∠BCD;②如图2,四边形ABCD是奇异四边形,AB=AD,∠BCD=2α,试说明:cosα=BC+CD;2AC(3)性质应用:如图3,四边形ABCD是奇异四边形,四条边中仅有BC=CD,且四边形ABCD的周长为6+2√10,∠BAC=45°,AC=3√2,求奇异四边形ABCD的面积.27、(14分) 已知抛物线y=-x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.九年级(下)第一次月考数学试卷【第 1 题】【答案】B【解析】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、原式=a6-3=a3,故本选项正确;C、原式=a2+3=a5,故本选项错误;D、原式=a3×2=a6,故本选项错误;故选:B.根据合并同类项的法则,同底数幂的除法法则,同底数幂的乘法法则以及幂的乘方与积的乘方法则解答.本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.【第 2 题】【答案】B【解析】解:由题意得,x-2≥0,解得x≥2.故选:B.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的取值范围,解决本题的关键是二次根式的被开方数是非负数.【第 3 题】【答案】A【解析】解:如图所示,空心圆柱体的主视图是圆环.故选:A.找到从正面,看所得到的图形即可,注意所有的棱都应表现在主视图中.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.【答案】B【解析】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.【第 5 题】【答案】C【解析】解:S扇形=12lR=12×4π×4=8π.故选:C.根据扇形的面积公式S扇形=12lR即可得出答案.本题考查了扇形面积的计算,比较简单,解答本题的关键是熟练掌握扇形面积的计算公式.【第 6 题】【答案】D解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°-∠2,∴∠α-∠β=180°-∠2-∠1=180°-∠BCD=90°,故选:D.过C作CF∥AB,根据平行线的性质得到∠1=∠β,∠2=180°-∠α,于是得到结论.本题考查了平行线的性质,熟记平行线的性质是解题的关键.【第 7 题】【答案】D【解析】解:根据题意得k+1≠0且△=(-2)2-4(k+1)≥0,解得k≤0且k≠-1.故选:D.根据一元二次方程的定义和判别式的意义得到k+1≠0且△=(-2)2-4(k+1)≥0,然后求出两个不等式的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.【第 8 题】【答案】C【解析】,得到b>0,由抛物线与y轴的交解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=-b2a点位置得到c>0,A、abc<0,错误;B、2a+b=0,错误;C、把x=1时代入y=ax2+bx+c=a+b+c,结合图象可以得出y=3,即a+b+c=3,a+c=3-b,∵2a+b=0,b>0,∴3a+c=2a+a+c=-b+3-b=3-2b<0,3a+c=2a+a+c=a-b+c,应当x=-1时,y=a-b+c<0,所以c正确;D、由图可知,抛物线y=ax2+bx+c与直线y=3有一个交点,而ax2+bx+c-3=0有一个的实数根,错误;故选:C.根据抛物线开口方向得a<0,由抛物线对称轴为直线x=-b,得到b>0,由抛物线与y轴的交2a点位置得到c>0,进而解答即可.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.【第 9 题】【答案】2(a+1)(a-1)【解析】解:原式=2(a2-1)=2(a+1)(a-1).故答案为:2(a+1)(a-1).原式提取2,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.【第 10 题】【答案】1【解析】的值为0;解:∵分式x−1x+2∴x-1=0,∴x=1,故答案为1.根据分式值为0的条件:分子为0且分母不为0进行计算即可.本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.【第 11 题】【答案】1:2【解析】解:∵两个相似三角形的面积比1:4,∴它们的相似比为:1:2,∴它们的周长之比为:1:2.故答案为:1:2.由两个相似三角形的面积比1:4,根据相似三角形的面积比等于相似比的平方,相似三角形的周长比等于相似比,即可求得答案.此题考查了相似三角形的性质.此题比较简单,注意熟记定理是解此题的关键.【第 12 题】【答案】40【解析】解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-50°=40°,∴∠ACB=∠D=40°.故答案为40.连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB的度数.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.【第 13 题】【答案】4【解析】解:∵点A是反比例函数y=k图象上一点,作AB⊥x轴,垂足为点B,x|k|=2;∴S△AOB=12又∵函数图象位于一、三象限,∴k=4,故答案为4.过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S |k|.是个定值,即S=12本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解面积为12k的几何意义.【第 14 题】【答案】5【解析】解:∵设a、b是一元二次方程x2+2x-7=0的两个根,∴a+b=-2,∵a是原方程的根,∴a2+2a-7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7-2=5,故答案为:5.根据根与系数的关系可知a+b=-2,又知a是方程的根,所以可得a2+2a-7=0,最后可将a2+3a+b变成a2+2a+a+b,最终可得答案.本题主要考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b的形式,结合根与系数的关系以及一元二次方程的解即可解答.【第 15 题】【答案】29【解析】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°利用中垂线和三角形外角性质计算.本题涉及中垂线和三角形外角性质,难度中等.【第 16 题】【答案】5√3-3【解析】解:如图,以ED为边作等边△DEG,连接AD,EF,AG,∵△ABC是等边三角形,点D是BC中点,∴BD=CD=5,AD⊥BC∴AD=√AB2−BD2=5√3,∵将线段AE绕点A逆时针旋转60°得AF,∴AE=AF,∠EAF=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵△DEG是等边三角形∴DE=EG=3,∠GED=60°=∠AEF∴∠AEG=∠FED,且AE=EF,EG=DE,∴△AEG≌△FED(SAS)∴DF=AG,∵在△ADG中,AG≥AD-DG∴当点A,点G,点D三点共线时,AG值最小,即DF值最小,∴DF最小值=AD-DG=5√3-3故答案为:5√3-3以ED为边作等边△DEG,连接AD,EF,AG,由等边三角形的性质和勾股定理可求AD=5√3,由等边三角形的性质可证△AEG≌△FED,可得DF=AG,根据三角形的三边关系,可得当点A,点G,点D三点共线时,AG值最小,即DF值最小,则可求线段DF的最小值.本题考查了旋转的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.【 第 17 题 】【 答 案 】解:原式=1+√3-1-4-√3=-4.【 解析 】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.【 第 18 题 】【 答 案 】解:原式=a+1−1a+1÷2a a −1 =a a+1•(a+1)(a−1)2a =a−12,当a=-2时,原式=−2−12=-32. 【 解析 】 先将括号中两项通分,利用同分母分式减法法则计算,再将除法转化为乘法,将式子化为最简,然后将a 的值代入计算即可.本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.【 第 19 题 】【 答 案 】解:(1)由题意得:甲的骑行速度为:1020(214−1)=240(米/分),240×(11-1)÷2=1200(米),则点M 的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN 的解析式为:y=kx+b (k≠0),∵y=kx+b (k≠0)的图象过点M (6,1200)、N (11,0),∴{6k +b =120011k +b =0, 解得{k =−240b =2640, ∴直线MN 的解析式为:y=-240x+2640;即甲返回时距A 地的路程y 与时间x 之间的函数关系式:y=-240x+2640;(3)设甲返回A 地之前,经过x 分两人距C 地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200-1020=180,分5种情况:①当0<x≤3时,1020-240x=180-60x ,x=143>3,此种情况不符合题意;②当3<x <214-1时,即3<x <174,甲、乙都在A 、C 之间,∴1020-240x=60x-180,x=4,③当214<x <6时,甲在B 、C 之间,乙在A 、C 之间,∴240x -1020=60x-180,x=143<214, 此种情况不符合题意;④当x=6时,甲到B 地,距离C 地180米,乙距C 地的距离:6×60-180=180(米),即x=6时两人距C 地的路程相等,⑤当x >6时,甲在返回途中,当甲在B 、C 之间时,180-[240(x-1)-1200]=60x-180,x=6,此种情况不符合题意,当甲在A 、C 之间时,240(x-1)-1200-180=60x-180,x=8,综上所述,在甲返回A 地之前,经过4分钟或6分钟或8分钟时两人距C 地的路程相等.【 解析 】(1)根据路程和时间可得甲的速度,根据甲去和返回时的时间共计11分,休息了一分,所以一共用了10分钟,可得M 的坐标;(2)利用待定系数法求MN 的解析式;(3)先根据总路程1200米,时间为20分,计算乙的速度,根据A ,C ,B 三地在同一直线上,计算B 、C 之间的路程,分情况讨论:设甲返回A 地之前,经过x 分两人距C 地的路程相等, ①因为乙从B 地到C 地一共需要3小时,所以第一个时间为0<x≤3,即乙在B 、C 之间时,列方程可知不符合题意;②3<x <6,根据两人距C 地的路程相等列方程可得结论;③计算甲到B 地时,符合条件;④计算乙走过C 地,即乙在A 、C 之间时,列方程,注意此时甲用了(x-1)分.本题考查一次函数的应用,解题的关键是明确题意设未知数,学会结合方程解决问题,此类题有难度,注意利用数形结合的思想解答问题.【 第 20 题 】【答案】解:{4x>2x−6①x−1≤x+13②,解不等式①,得x>-3,解不等式②,得x≤2,所以不等式组的解集:-3<x≤2,它的整数解为-2,-1,0,1,2.【解析】先求出两个不等式的解集,再求其公共解,然后写出整数解即可.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).【第 21 题】【答案】解:(1)根据题意得:15÷10%=150(名).本项调查中喜欢“跑步”的学生人数是;150-15-45-30=60(人),所占百分比是:60150×100%=40%,画图如下:(2)用A 表示女生,B 表示男生,画图如下:共有20种情况,同性别学生的情况是8种, 则刚好抽到同性别学生的概率是820=25.【 解析 】(1)用A 的人数除以所占的百分比,即可求出调查的学生数;用抽查的总人数减去A 、B 、D的人数,求出喜欢“跑步”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(2)用A 表示女生,B 表示男生,画出树形图,再根据概率公式进行计算即可.本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【 第 22 题 】【 答 案 】解:如图,过点C 作点CH⊥AB 于H .∵∠CAB=45°,∴AH=CH ,设CH=x ,则AH=x ,∵∠CBA=30°,∴BH =√3CH =√3x ,由题意知:AB=ED=50,∴x +√3x =50,解得:x =502.73≈18.3.18.3+1=19.3,答:计算得到的无人机的高约为19.3m .【 解析 】如图,过点C 作点CH⊥AB 于H .设AH=CH=x ,根据AB=50,构建方程即可解决问题.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.【 第 23 题 】【 答 案 】 解:(1)∵四边形ABCD 是平行四边形,O 是BD 中点,∴BC∥AD ,OB=OD ,∴∠OBE=∠ODF ,又∵∠BOE=∠DOF ,∴△BOE≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,根据菱形的性质可得:EF 与BD 互相垂直平分;(3)∵四边形BEDF 是矩形∴∠AFB=90°又∵∠A=60°,∴∠ABF=30°, ∴AF=12AB=12×4=2,∴Rt△ABF中,BF=2√3,又∵AD=BC=6,∴DF=6-2=4,∴矩形BEDF的面积=BF×DF=2√3×4=8√3.【解析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)根据根据菱形的性质作出判断:EF与BD互相垂直平分;(3)根据Rt△ABF的边角关系,求得BF和AF,再根据矩形的性质,求得DF的长,最后计算矩形的面积.本题主要考查了平行四边形的判定与性质,菱形、矩形的性质以及全等三角形的判定与性质,解题时注意:矩形的对边平行且相等,菱形的对角线互相垂直平分,对角线互相平分的四边形是平行四边形.【第 24 题】【答案】解:(1)根据题意得y=(70-x-50)(300+20x)=-20x2+100x+6000,∵70-x-50>0,且x≥0,∴0≤x<20;(2)∵y=-20x2+100x+6000=-20(x-2.5)2+6125,∴当x=2.5时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【解析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.【第 25 题】【答案】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC∴BD∥PC∴∠PCB=∠DBC∵BC=2√5,sin∠BCP=√55,∴sin∠BCP=sin∠DBC=DCBC =2√5=√55,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN ,∵AC 为直径,∴∠ANC=90°,∴Rt△ACN 中,AC=CN cos∠ACN =CN sin∠BCP =√5√55=5, 又CD=2,∴AD=AC -CD=5-2=3.∵BD∥CP ,∴BD CP =ADAC ,∴CP=203.在Rt△ACP 中,AP=√AC 2+CP 2=253,AC+CP+AP=5+203+253=20,∴△ACP 的周长为20.【 解析 】(1)根据∠ABC=∠ACB 且∠CAB=2∠BCP ,在△ABC 中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,从而得到∠BCP+∠BCA=90°,证得直线CP 是⊙O 的切线.(2)作BD⊥AC 于点D ,得到BD∥PC ,从而利用sin∠BCP=sin∠DBC=DC BC =2√5=√55,求得DC=2,再根据勾股定理求得点B 到AC 的距离为4.(3)先求出AC 的长度,然后利用BD∥PC 的比例线段关系求得CP 的长度,再由勾股定理求出AP 的长度,从而求得△ACP 的周长.本题考查了切线的判定与性质等知识,考查的知识点比较多,难度较大.【 第 26 题 】【 答 案 】解:(1)根据奇异四边形的定义可知:正方形是奇异四边形,故答案为正方形.(2)①过点A作AM⊥CB于M,AN⊥CD于N.∵∠ABC+∠D=180°,∠ABM+∠ABC=180°,∴∠ABM=∠D,∵∠AMB=∠AND=90°,AB=AD,∴△AMB≌△AND,∴AM=AN,∵AM⊥CB于M,AN⊥CD于N,∴CA平分∠BCD.②由①可知:∠ACD=12∠BCD=α,∵CN=CD-DN=CD-BM=CD-(CM-BC)=CD-(CN-BC),∴CN=CD+BC2,在Rt△ACN中,cosα=CNAC =BC+CD2AC.(3)如图3中,由(2)可知:cos45°=AD+AB2AC,∴AD+AB=2AC×√22=6,∵四边形ABCD 的周长为6+2√10,∴BC=CD=√10,∵∠BAC=∠DAC=45°,∴∠DAB=90°,∵四边形是奇异四边形,∴∠BCD=90°,∵AD+AB=6,∴(AD+AB )2=AD 2+2AD•AB+AB 2=36,∵AD 2+AB 2=BD 2=BC 2+CD 2=20,∴AD•AB=8,∴S 四边形ABCD =S △ADB +S △BDC =12•AD•AB+12•CD•BC=9. 【 解析 】(1)根据奇异四边形的定义即可判断;(2)①过点A 作AM⊥CB 于M ,AN⊥CD 于N .只要证明△AMB≌△AND ,推出AM=AN ,再根据角平分线的判定定理即可解决问题;②利用①中结论,解直角三角形即可解决问题;(3)根据S 四边形ABCD =S △ADB +S △BDC =12•AD•AB+12•CD•BC ,求出AD•AB ,CD•BC 即可解决问题; 本题考查四边形综合题、全等三角形的判定和性质、锐角三角函数、角平分线的判定定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.【 第 27 题 】【 答 案 】解:(1)①当m=2时,抛物线解析式为y=-x 2+2x+3,当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3,∴A (-1,0),B (3,0),当y=0时,y=-x 2+2x+3=3,则C (0,3); ②OD 交y 轴于E ,如图2,∵∠OBE=∠ACO ,∴Rt△OBE∽Rt△OCA , ∴OE OA =OB OC =33,∴OE=OA=1,∴E (0,1),设直线BE 的解析式为y=kx+b ,把B (3,0),E (0,1)代入得{3k +b =0b =1,解得{k =−13b =1, ∴直线BE 的解析式为y=-13x+1, 解方程组{y =−x 2+2x +3y =−13x +1得{x =3y =0或{x =−23y =119, ∴D 点坐标为(-23,119);③作PK⊥x 轴于K ,交BC 于F ,如图2,易得直线BC 的解析式为y=-x+3, 设P (x ,-x 2+2x+3)(0<x <3),则F (x ,-x+3), ∴PF=-x 2+2x+3-(-x+3)=-x 2+3x , ∵OB=OC=3,∴△OCB 为等腰直角三角形,∴∠KBF=45°,∴∠BFK=∠PFQ=45°,∴PQ=√22PF=-√22x 2+3√22x=-√22(x-32)2+9√28, 当x=32时,PQ 有最大值,最大值为9√28; (2)HN 的长度不变,它的长度为1.解方程-x 2+mt+m+1=0得x 1=-1,x 2=m+1,则A (-1,0),B (m+1,0),延长BH 交AM 于G ,如图3,∵∠HBA 与∠MAB 互余,∴∠BGA=90°,∵∠AMN=∠HBN ,∴Rt△BNH∽△MNA ,∴HN AN =BN MN ,设M (t ,-t 2+mt+m+1),则N (t ,0),∴HN t+1=m+1−t −t 2+mt+m+1,∴HN=−(t+1)(t−m−1)−(t+1)(t−m−1)=1,即HN 的长不发生变化.【 解析 】(1)①先解方程-x 2+2x+3=0得A 点和B 点坐标;然后计算自变量为0时的函数值得到C 点坐标;②OD 交y 轴于E ,如图2,通过证明Rt△OBE∽Rt△OCA ,利用相似比得到OE=OA=1,则E (0,1),再利用待定系数法求出直线BE 的解析式为y=-13x+1,然后解方程{y =−x 2+2x +3y =−13x +1得D 点坐标;③作PK⊥x 轴于K ,交BC 于F ,如图2,易得直线BC 的解析式为y=-x+3,设P (x ,-x 2+2x+3)(0<x <3),则F (x ,-x+3),所以PF=-x 2+3x ,再证明∠BFK=∠PFQ=45°,所以PQ=√22PF=-√22x 2+3√22x ,然后根据二次函数的性质解决问题; (2)先解方程-x 2+mt+m+1=0得A (-1,0),B (m+1,0),延长BH 交AM 于G ,如图3,证明Rt△BNH∽△MNA ,则HN AN =BN MN ,设M (t ,-t 2+mt+m+1),则N (t ,0), 所以HN t+1=m+1−t −t 2+mt+m+1,然后根据分式的运算可得到HN=1.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,通过解方程组求两函数的交点坐标;会运用相似比表示线段之间的关系;理解坐标与图形性质.。
福建省长汀四中九年级数学第一次月考试卷及答案

长汀四中九年级数学第一次月考试卷(时间:120分钟,总分:150分)班级 姓名 座号一.选择题(每题4分,共40分) 1. 一元二次方程x 2=4的解是( )A .2=xB .2-=xC .4,121==x xD .2,221-==x x 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3.抛物线y =x 2﹣9的顶点坐标是( ) A .(﹣9,0)B .(﹣3,0)C .(0,﹣9)D .(3,0)4.已知点)21(,A ,点A 关于原点的对称点是1A ,则点1A 的坐标是( ) A. )(2,1-- B. )(1,2- C. )(1,2- D . )(2,1-5.设一元二次方程两个实根为和,则下列结论正确的是( ) A. B. C D.6.若m 是方程x 2﹣x ﹣1=0的一个根,则2m 2﹣2m +2020的值为( ) A .2019B .2020C .2021D .20227.已知二次函数y=kx 2﹣5x ﹣5的图象与x 轴有交点,则k 的取值范围是( ) A .B .且k ≠0 C .D .且k ≠08.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x+48=0的一个根, 则这个三角形的周长为( )A.11B.17C.17或19D.199.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a -b+c=0,那么我们称这个方程为“蝴蝶”方程.已知关于x 的方程ax 2+bx+c=0(a ≠0)是“蝴蝶”方程,且有两个相等的实数根,则下列结论中正确的是( )A.b=cB.a=bC.a=cD. a=b=c2240x x --=1x 2x 124x x +=-122x x +=122x x ⋅=-124x x ⋅=10.如图,已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(2,0),且对称轴为直线x =,有下列结论:①abc >0;②a +b >0;③4a +2b +3c <0;④无论a ,b ,c 取何值,抛物线一定经过(,0);⑤4am 2+4bm ﹣b ≥0.其中正确结论有( )A .1个B .2个C .3个D .4个二.填空题(每题4分,共24分)11.抛物线1422--=x x y 的对称轴是 .12.如图是二次函数y =ax 2+bx +c 的部分图象,由图象可知方程ax 2+bx +c =0的解是13.如图,在一块长15m 、宽10m 的矩形空地上,修建两条同样宽的相互垂直的道路,剩余部分栽种花草,要使绿化面积为126m 2,则修建的路宽应为 米.14.如图,三个边长均为2的正方形重叠在一起,O 1,O 2是其中两个正方形的对角线交点,若把这样的n 个小正方形按如图所示方式摆放,则重叠部分的面积为 .15.某种植物主干长出若干数目的分支,每个分支长出相同数目的小分支,若主干、分支、小分支的总数为31,则每个分支长出小分支的数目为 .16.如图,在平面直角坐标xOy 中,抛物线c 1的顶点为A (-1,-4),且过点B (-3,0) 将抛物线c 1向右平移2个单位得抛物线c 2,则阴影部分的面积s=_____________.三.解答题(共86分)17.解方程(每题4分,共8分)(1) (x +1)2=4; (2)x 2﹣3x ﹣4=0;18(6分).如图,△ABC 和△DEF 关于某点成中心对称. 若AC =6,AB =5,BC =4,求△DEF 的周长;19.(8分)已知抛物线的顶点为(1,4),与y 轴交点为(0,3)求抛物线的解析式20(9分).如图,已知A (-2,3),B (-3,2),C (-1,1). (1)画出△ABC 关于原点O 对称的△A 1B 1C 1;(2)画出△ABC 绕原点O 逆时针方向旋转90°后得到的△A 2B 2C 2。
九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。
九年级数学第一次月考试卷
九年级数学第一次月考试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 二次函数y = x^2+2x - 3的顶点坐标是()A. ( - 1,-4)B. (1,-4)C. ( - 1,4)D. (1,4)3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆。
4. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 05. 抛物线y=(x - 1)^2+2的对称轴是()A. 直线x=-1B. 直线x = 1C. 直线x=-2D. 直线x = 26. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x - 2)^2+1B. y = 3(x + 2)^2-1C. y = 3(x - 2)^2-1D. y = 3(x + 2)^2+17. 若关于x的一元二次方程x^2-kx - 6 = 0的一个根为x = 3,则实数k的值为()A. 1B. -1C. 2D. -28. 二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论正确的是()(此处可插入一个二次函数图象,顶点在第二象限,开口向下,与x轴有两个交点)A. a < 0,b < 0,c > 0,b^2-4ac > 0B. a < 0,b < 0,c < 0,b^2-4ac > 0C. a < 0,b > 0,c > 0,b^2-4ac < 0D. a < 0,b > 0,c > 0,b^2-4ac > 09. 已知二次函数y = kx^2-7x - 7的图象和x轴有交点,则k的取值范围是()A. k>-(7)/(4)B. k≥slant-(7)/(4)且k≠0C. k≥slant-(7)/(4)D. k > -(7)/(4)且k≠010. 某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A. 200(1 + a%)^2=148B. 200(1 - a%)^2=148C. 200(1 - 2a%) = 148D. 200(1 - a^2%)=148二、填空题(每题3分,共18分)11. 方程(x - 1)^2=4的解为___。
初三数学第一次月考试题及答案
初三数学第一次调研测试试卷(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上;答案写在试卷上无效.3.作图必须用2B 铅笔;并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小题;每小题3分;共18分.在每小题所给出的四个选项中;恰有一项是符合题目要求的;请将正确选项的字母代号填涂在答题卡...相应位置....上) 1.13的相反数是 A .31- B .13C .-3D . 3 2.下列运算中;正确的是 A .xy y x 222=+ B .32)(1)(xy xy xy =÷ C .54232)(y x y x = D .xy yx xy =-323.口袋中装有形状、大小与质地都相同的红球2个;黄球1个;下列事件为随机事件的是A .随机摸出1个球;是白球B .随机摸出1个球;是红球C .随机摸出1个球;是红球或黄球D .随机摸出2个球;都是黄球4.如图;在⊙O 中;弦AC ∥半径OB ;若∠BOC =50°;则∠B 的大小为A .25°B .30°C .50°D .60° 5.一元二次方程2x 2+3x +1=0的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.如图;将正六边形ABCDEF 放入平面直角坐标系后;若点A 、B 、E的坐标分别为(a ;b )、(3;1)、(a ;-b );则点D 的坐标为 A .(1;3) B .(3;-1) C .(-1;-3) D .(-3;1)第二部分 非选择题(共132分)二、填空题(本大题共有10小题;每小题3分;共30分.请把答案直接填写在答题卡相应.....位置..上) 7. 9的平方根是 ▲ .8. 分解因式2x 2+4x +2= ▲ .(第4题图)A F BE (第6题图)D C A B A B C DEF M 9. 11233-等于 ▲ . 10.若关于x 的方程x 2+mx +5=0有一个根为1;则该方程的另一根为 ▲ .11.一组数据2、-2、4、1、0的极差是 ▲ .12.某圆锥体的底面周长为4π;母线长为3;则该圆锥体的侧面积是 ▲ .13.如图;⊙O 的内接四边形ABCD 中;∠A =105°;则∠BOD 等于 ▲ .14.如图;在□ABCD 中;E 、F 分别是AD 、CD 的中点;EF 与BD 相交于点M ;若△DEM的面积为1;则□ABCD 的面积为 ▲ .15.如图;Rt △ABC 中;∠ACB =90°;CD ⊥AB ;垂足为点D ;若AD =BC =1;则sin ∠A = ▲ .16.平面直角坐标系中;点A 、B 、C 的坐标分别为(1;0)、(3;4)、(m -1;2m +2);则△ABC 的面积为 ▲ .三、解答题(本大题共有10小题;共102分.请在答题卡指定区域内作答;解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)计算或解不等式(1)21()3tan 301(3)2π--+︒---︒; (2)不等式31+x —21-x ≥1;并把它 的解集在数轴上表示出来.18.(本题满分8分)化简求值412212-÷⎪⎭⎫ ⎝⎛+-x x ;其中x 是方程04212=--x x 的解. 19.(本题满分8分)为了了解我校九年级学生的跳绳成绩;体育老师随机调查了该年级体育模拟考试中部分同学的跳绳成绩;并绘制成了如图所示的条形统计图和扇形统计图.请你根据图中提供的信息完成下列各题:(第13题图) (第14题图) (第15题图)O CB A D(1)被调查同学跳绳成绩的中位数是 ▲ ;并补全上面的条形统计图;(2)如果我校初三年级共有学生1800人;估计跳绳成绩能得8分的学生约有多少人?20.(本题满分8分)在一个不透明袋子中有1个红球和3个白球;这些球除颜色外都相同.(1)从袋中任意摸出2个球;用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x 个白球后;进行如下实验:从袋中随机摸出1个球;记录下颜色后放回袋子中并搅匀.经大量试验;发现摸到白球的频率稳定在0.9左右;求x 的值21.(本题满分10分)学校准备添置一批课桌椅;原计划订购60套;每套100元。
沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)
2019—2020学年度第二学期九年级质量检测试卷(一)数学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分。
“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,共40分) 1.下列事件中的不可能事件是( )A.三角形的两个内角的和小于第三个内角B.未来3天内将下雨C.经过交通信号灯的路口遇到红灯D.三根长度分别为2cm 、3cm 、5cm 的木棒摆成三角形2.二次函数y =2x 2的图象向右平移3个单位,得到新的图象的函数表达式是( ) A.y =2x 2+3 B.y =-2x 2+3 C.y =2(x -3)2 D.y =-2(x -3)23.如图所示的几何体,从上边看得到的图形是( )4.如图,一个小球由地面沿着坡角为30°的坡面向上前进了10m ,此时小球距离地面的 高度为( ) A.5mB.35mC.355 D.3510 5.下列说法中,不正确的是( )A.圆既是轴对称图形又是旋转对称图形B.一个圆的直径的长是它半径的2倍C.圆的每一条直径都是它的对称轴D.直径是圆的弦,但半径不是弦6.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠ADE =∠B ,已知AE =6,73AB AD , 则EC 的长是( ) A.4.5 B.8 C.10.5 D.147.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BAC=20°,则∠D的度数为()A.100°B.110°C.120°D.130°8.从-2,3,-8,10,12中任意选两个数,记作a和b,那么点(a,b)在函数y=x24-的图象上的概率是()A.41B.51C.52D.619.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为25,AC=4,则sinB的值是()A.53B.54C.85D.6110.如图,在△ABC中,LACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP’,连接DP’,则DP’的最小值是()A.222- B.224- C.222- D.12-二、填空题(本大题共4小题,每小题5分,满分20分)11.已知A(-1,6)与B(2,m-3)是反比例函数xky=图象上的两个点,则m的值是_______。
〖湘教版〗九年级数学下册第一次月考数学试卷3
〖湘教版〗九年级数学下册第一次月考数学试卷创作人:百里见州创作日期:2021.04.01审核人:北堂过什创作单位:北京市智语学校一、填空题(本题有10小题,每小题2分,共20分)1.(2分)函数的自变量x的取值范围是.2.(2分)上海世博会预计约有69000000人次参观,69000000用科学记数法表示为.3.(2分)分解因式:2a2﹣4a+2=.4.(2分)若2a﹣b=2,则6+8a﹣4b=.5.(2分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.6.(2分)将半径为5的圆(如图1)剪去一个圆心角为n°的扇形后围成如图2所示的圆锥,则n的值等于.7.(2分)平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC(2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.8.(2分)在平面直角坐标系中,将直线y=﹣2x+1向下平移4个单位长度后.所得直线的解析式为.9.(2分)在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有个.10.(2分)观察等式:①9﹣1=2×4;②25﹣1=4×6;③49﹣1=6×8…按照这种规律写出第n个等式:.二、选择题(共6小题.每小题3分.共18分)11.(3分)计算 10﹣()×(﹣2)的结果是()A.﹣2 B.﹣1 C.2 D.312.(3分)如图,如果甲、乙两图关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.D.13.(3分)甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是()A.从甲箱摸到黑球的概率较大B.从乙箱摸到黑球的概率较大C.从甲、乙两箱摸到黑球的概率相等D.无法比较从甲、乙两箱摸到黑球的概率14.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.415.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°16.(3分)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人、绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为()A.129 B.120 C.108 D.96三、解答题(共4小题,每小题5分.共20分)17.(5分)先化简,再求值:选一个你所喜欢的数带入求值.18.(5分)如图,在正方形网格中,每个小正方形的边长都是1.四边形ABCD的四个顶点都在格点上,点O为AD的中点.把四边形ABCD绕点O顺时针旋转180°,(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中所经过的线路的长(结果保留π)19.(5分)如图画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹).20.(5分)上海世博会某展览馆展厅东面有两个入口A,B,南面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?四、解答题(共2小题,每小题6分.共12分)21.(6分)如图,已知二次函数y=﹣x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.22.(6分)如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P.(1)求证:AC=CP;(2)若PC=6,求图中阴影部分的面积(结果精确到0.1).(参考数据:,π=3.14)五、解答题(共2小题,每小题7分.共14分)23.(7分)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 1524.(7分)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01m)sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732.六、解答题(共2小题,每小题8分.共16分)25.(8分)已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.(1)当P点在BC边上运动时,求证:△BOP∽△DOE;(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是;②当k=2时,是;③当k=3时,是.26.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.七、解答题(共2小题,每小题10分.共20分)27.(10分)如图:二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).(1)求出图象与x 轴的交点A,B的坐标;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.28.(10分)如图,过A(8,0)、B(0,)两点的直线与直线交于点C、平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC 于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l 的运动时间为t(秒).(1)直接写出C点坐标和t的取值范围;(2)求S与t的函数关系式;(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(本题有10小题,每小题2分,共20分)1.(2分)函数的自变量x的取值范围是x≤2.【解答】解:依题意,得2﹣x≥0,解得x≤2.故答案为:x≤2.2.(2分)上海世博会预计约有69000000人次参观,69000000用科学记数法表示为 6.9×107.【解答】解:69 000 000=6.9×107.3.(2分)分解因式:2a2﹣4a+2=2(a﹣1)2.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.4.(2分)若2a﹣b=2,则6+8a﹣4b=14.【解答】解:∵2a﹣b=2,代入6+8a﹣4b,得6+4(2a﹣b)=6+4×2=14.5.(2分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为x≥1.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.6.(2分)将半径为5的圆(如图1)剪去一个圆心角为n°的扇形后围成如图2所示的圆锥,则n的值等于144.【解答】解:圆锥的底面周长为2π×3=6π,∴=6π,解得n=144,故答案为:144.7.(2分)平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC(2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.【解答】解:四边形ABCD是平行四边形,(1)若AB=BC,则AB=BC=CD=AD,符合“有一组邻边相等的平行四边形是菱形”的判定定理,故此小题正确;(2)若AC=BD,则此平行四边形是矩形,故此小题错误;(3)若AC⊥BD,符合“对角线互相垂直的平行四边形是菱形”的判定定理,此小题正确;(4)若AB⊥BC,则此平行四边形是矩形,故此小题错误.故正确的有(1)、(3)两个,所以可推出平行四边形ABCD是菱形的概率为: =.故答案为:.8.(2分)在平面直角坐标系中,将直线y=﹣2x+1向下平移4个单位长度后.所得直线的解析式为y=﹣2x﹣3.【解答】解:由题意得:平移后的解析式为:y=﹣2x+1﹣4=y=﹣2x﹣3.故答案为:y=﹣2x﹣3.9.(2分)在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有12个.【解答】解:坐标轴上到圆心距离为5的点有4个,由勾股定理,四个象限中,到圆心距离为5的点有8个,共12个,如图所示.10.(2分)观察等式:①9﹣1=2×4;②25﹣1=4×6;③49﹣1=6×8…按照这种规律写出第n个等式:(2n+1)2﹣1=2n(2n+2)(n为大于或等于1的自然数).【解答】解:①9﹣1=32﹣1=(2×1+1)2﹣1=2×(2+2)=2×4;②25﹣1=52﹣1=(2×2+1)2﹣1=(2×2)×(2+2×2)=4×6;③49﹣1=72﹣1=(2×3+1)2﹣1=(2×3)×(2+2×3)=6×8,…因此第n个等式为:(2n+1)2﹣1=2n(2n+2)(n为大于或等于1的自然数).二、选择题(共6小题.每小题3分.共18分)11.(3分)计算 10﹣()×(﹣2)的结果是()A.﹣2 B.﹣1 C.2 D.3【解答】解:原式=1﹣(﹣×2)×(﹣2)=1+2=3.故选D.12.(3分)如图,如果甲、乙两图关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.D.【解答】解:观察甲、乙两图,C的图案在绕点O旋转180°后,不能互相重合,因此乙图中不符合题意的一块是C的图案;故选C.13.(3分)甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是()A.从甲箱摸到黑球的概率较大B.从乙箱摸到黑球的概率较大C.从甲、乙两箱摸到黑球的概率相等D.无法比较从甲、乙两箱摸到黑球的概率【解答】解:∵甲箱装有40个红球和10个黑球,球的总个数为:40+10=50个;黑球的个数为:10个,∵乙箱装有60个红球、40个黑球和50个白球,球的总个数为:60+40+50=150个,黑球的个数为:40个,于是:从甲箱摸到黑球的概率=;从乙箱摸到黑球的概率=;由此可得从乙箱摸到黑球的概率较大,故选B.14.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.15.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.16.(3分)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人、绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为()A.129 B.120 C.108 D.96【解答】解:设1艘大船的载客量为x人,一艘小船的载客量为y人.由题意可得:,解得,∴3x+6y=96.∴3艘大船与6艘小船,一次可以载游客的人数为96人.故选:D.三、解答题(共4小题,每小题5分.共20分)17.(5分)先化简,再求值:选一个你所喜欢的数带入求值.【解答】解:原式=×﹣,=﹣,=﹣,当a=0时,原式=﹣.18.(5分)如图,在正方形网格中,每个小正方形的边长都是1.四边形ABCD的四个顶点都在格点上,点O为AD的中点.把四边形ABCD绕点O顺时针旋转180°,(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中所经过的线路的长(结果保留π)【解答】解:(1)如图所示:(2)易知点C的旋转路径是以O为圆心,OC为半径的半圆.因为OC==,所以半圆的长为.19.(5分)如图画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹).【解答】解:△ABC就是所求的三角形.20.(5分)上海世博会某展览馆展厅东面有两个入口A,B,南面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?【解答】解:(1)树状图如图:所有情况有6种;(2)她从入口A进入展厅并从北出口或西出口离开的概率是=.四、解答题(共2小题,每小题6分.共12分)21.(6分)如图,已知二次函数y=﹣x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.【解答】解:(1)把A(2,0)、B(0,﹣6)的坐标代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+4x﹣6.(2)∵抛物线的对称轴x=﹣=﹣=4,∴C(4,0),∵A(2,0)、B(0,﹣6),∴AC=2,BO=6,∴S△ACB=•AC•BO=×2×6=6.22.(6分)如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P.(1)求证:AC=CP;(2)若PC=6,求图中阴影部分的面积(结果精确到0.1).(参考数据:,π=3.14)【解答】(1)证明:连接OC.∵AB是⊙O的直径,∴AO=OC,∴∠ACO=∠A=30°.∴∠COP=2∠ACO=60°.∵PC切⊙O于点C,∴OC⊥PC.∴∠P=30°.∴∠A=∠P.∴AC=PC.(2)解:在Rt△OCP中,tan∠P=,∴OC=2∵S△OCP=CP•OC=×6×2=且S扇形COB=2π,∴S阴影=S△OCP﹣S扇形COB=.五、解答题(共2小题,每小题7分.共14分)23.(7分)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 15【解答】解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.(7分)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B 的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01m)sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732.【解答】解:(1)分别过A,B作地面的垂线,垂足分别为D,E.在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,∴AD﹦20×sin60°﹦10≈17.32.在Rt△BEC中,∵BC﹦24,∠BCE﹦45°,∴BE﹦24×sin45°﹦12≈16.97.∵17.32>16.97,∴风筝A比风筝B离地面更高.(2)在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,∴DC﹦20×cos60°﹦10.在Rt△BEC中,∵BC﹦24,∠BEC﹦90°,∴EC=BC×cos45°≈24×0.707≈16.97(m),∴EC﹣DC≈16.97﹣10﹦6.97(m).即风筝A与风筝B的水平距离约为6.97m.六、解答题(共2小题,每小题8分.共16分)25.(8分)已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.(1)当P点在BC边上运动时,求证:△BOP∽△DOE;(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是平行四边形;②当k=2时,是直角梯形;③当k=3时,是等腰梯形.【解答】(1)证明:∵AE∥BC,∴∠EDO=∠FBO,∠DEO=∠OFB,∴△BOP∽△DOE.(2)解:①如图1中,∵AE=ED,k=1,∴AE=ED=BP,∵AE∥PB,∴四边形ABPE是平行四边形.故答案为平行四边形.②如图2中,∵AE=DE,k=2,∴PB=2ED=2AE,∵AD:BC=2:3,∴PC=DE,∵DE∥PC,∴四边形CDEP是平行四边形,∵∠C=90°,∴四边形CEEP是矩形,∴∠EPB=∠EPC=90°,∵AE∥PB,AE≠PB,∴四边形ABPE是直角梯形.故答案为直角梯形.③如图③中,作BM⊥AD于M.∵AE=DE,AD:BC=2:3,k=3,∴PB=3DE,∵BC=3DE,∴点P与C重合,∵∠M=∠BCD=∠BDM=90°,∴四边形BCDM是矩形,∴BM=DC,DM=BC,∵BC=3DE,AE=DE,∴AM=DE,∵∠M=∠CDE=90°,∴△ABM≌△ECD,∴AB=EC,∴四边形ABPE是等腰梯形.故答案为等腰梯形.26.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.【解答】解:(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴解得∴y=﹣75x+1050∴y=.(2)当x=7时,y=﹣75×7+1050=525,V乙==75(千米/小时).七、解答题(共2小题,每小题10分.共20分)27.(10分)如图:二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).(1)求出图象与x轴的交点A,B的坐标;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.【解答】解:(1)∵顶点M(1,﹣4),∴m=﹣1,k=﹣4,∴二次函数的解析式为:y=(x﹣1)2﹣4,当y=0时,y=(x﹣1)2﹣4=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0);(2)如图所示,当直线y=x+b过点B时,直线y=x+b(b<1)与此图象有一个公共点,把B(3,0)代入得:3+b=0,b=﹣3,当直线y=x+b过点A时,直线y=x+b(b<1)与此图象有三个公共点,把A(﹣1,0)代入得:﹣1+b=0,b=1,∴当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围是﹣3<b<1.28.(10分)如图,过A(8,0)、B(0,)两点的直线与直线交于点C、平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC 于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l 的运动时间为t(秒).(1)直接写出C点坐标和t的取值范围;(2)求S与t的函数关系式;(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)设AB的解析式为y=kx+b,把A(8,0)、B(0,)分别代入解析式得,,解得k=﹣,则函数解析式为y=﹣x+8.将y=﹣x+8和y=x组成方程组得,,解得.故得C(4,),∴t的取值范围是:0≤t≤4.(2)作EM⊥y轴于M,DG⊥y轴于点G,∵D点的坐标是(t,),E的坐标是(t,)∴DE=﹣=;∴等边△D EF的DE边上的高为:sin60°•DE=DE=12﹣3t;根据E点的坐标(t,),以及∠MNE=60°,故ME=t,MN=tan30°ME=t,同理可得:GH=t,∴可求梯形上底为:﹣,∴当点F在BO边上时:12﹣3t=t,∴t=3;当0≤t<3时,重叠部分为等腰梯形,可求梯形面积为:S===;当3≤t≤4时,重叠部分为等边三角形S==.(3)存在,P(,0);说明:∵FO≥,FP≥,OP≤4,△DEF是等边三角形,∴以P,O,F为顶点的等腰三角形,腰只有可能是FO,FP,若FO=FP时,t=2(12﹣3t),解得:t=,∴P(,0).创作人:百里见州创作日期:2021.04.01审核人:北堂过什创作单位:北京市智语学校。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下第一次月考数学试卷(有答案)一.选择题:(每小题3分共30分)1.在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A.B.C.D.2.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COE=()A.B.C.D.4.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+15.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°7.二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C点.连接AC、BC,则tan∠CAB的值是()A.B.C.D.28.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110° D.130°9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.210.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④二、填空题(共6小题,每小题4分,满分24分)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是.12.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)tanα+tanβ.(填“>”“=”“<”)13.如图所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm,则△ABC 的周长是cm.14.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B 是y轴右侧圆弧上一点,则cos∠OBC的值为.15.已知,A、B、C三点在⊙O上,OD⊥BC于点D,∠BOD=40°,则∠BAC的度数等于.16.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.动点P从A点开始沿AB向B点以1cm/s 的速度运动(不与B点重合),动点Q从B点开始沿BC以2cm/s的速度向C点运动(不与C 重合).如果P、Q同时出发,四边形APQC的面积最小时,要经过秒.三.解答题17.计算:①6tan230°﹣sin60°﹣2cos45°②已知α是锐角,且sin(α+15°)=,计算﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1的值.18.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)19.如图,斜坡AB的坡度是i=1:2,坡角B处有一棵树BC,某一时刻测得树BC在斜坡AB 上的影子BD的长度是10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为多少米?(结果保留根号).20.如图,AB是⊙O的直径,点C在⊙O上(异于A、B两点),AD⊥CD.①若BC=3,AB=5,求AC的长?②若AC是∠DAB的平分线,求证:直线CD与⊙O相切.21.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;=1,请直接写出点P的坐标.(2)在抛物线上有一点P,满足S△AOP22.某商品成本价每个80元,1月销售额20000元.2月促销在1月的基础上打九折销售,结果多卖出去50个,销售额也增加了7000元.①求1月的销售单价;②如果2月搞打折销售时,折数x与销量y之间满足y=﹣50x+600.试求商场打几折时利润最大?最大利润是多少元?23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB 的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,以E(3,0)为圆心,5为半径的⊙E与x轴交于A、B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,顶点为F.(1)求A、B、C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;=S△ABC,连接PF,判断直线PF与⊙E (3)已知P是抛物线上位于第四象限的点,且满足S△ABP的位置关系并说明理由.九年级(下)第一次月考数学试卷参考答案与试题解析一.选择题:(每小题3分共30分)1.在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据三角形内角和定理求出角的度数后解答.【解答】解:∵△ABC中,∠C=90°,∠B=2∠A,∴设∠A=x,则∠B=2x.由三角形内角和定理得:x+2x+90°=180°,解得x=30°.∴cosA=cos30°=.故选A.2.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值得出∠A,∠B的度数,进而得出三角形的形状.【解答】解:∵cosA=,tanB=,∴∠A=45°,∠B=60°,∴∠C=75°,则这个三角形一定是锐角三角形.故选:D.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COE=()A.B.C.D.【考点】垂径定理;勾股定理;锐角三角函数的定义.【分析】由直径AB的长求出半径的长,再由直径AB垂直于弦CD,利用垂径定理得到E为CD 的中点,由CD的长求出CE的长,在直角三角形OCE中,利用勾股定理求出OE的长,再利用锐角三角函数定义即可求出tan∠COE的值.【解答】解:∵直径AB=10,∴OA=OC=OB=5,∵AB⊥CD,∴E为CD的中点,又CD=8,∴CE=DE=4,在Rt△OCE中,根据勾股定理得:OC2=CE2+OE2,∴OE=3,则tan∠COE==.故选B.4.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+1【考点】待定系数法求二次函数解析式.【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:y=a(x+1)2﹣2,再把(1,10)代入,求出a的值,即可得出二次函数的解析式.【解答】解:设抛物线的解析式为:y=a(x+1)2﹣2,把(1,10)代入解析式得10=4a﹣2,解得a=3,则抛物线的解析式为:y=3(x+1)2﹣2=3x2+6x+1.故选A.5.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位【考点】二次函数图象与几何变换.【分析】把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.【解答】解:根据题意y=x2+4x+3=(x+2)2﹣1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向下平移1个单位得到.故选B.6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°【考点】三角形的外接圆与外心.【分析】连接OC,根据圆周角定理求出∠AOC,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接OC,由圆周角定理得,∠AOC=2∠B=120°,∵OA=OC,∴∠CAO=×=30°,故选:B.7.二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C点.连接AC、BC,则tan∠CAB的值是()A.B.C.D.2【考点】抛物线与x轴的交点;解直角三角形.【分析】利用待定系数法求出A、B、C三点坐标,设对称轴交x轴于D,在Rt△ACD中,∠ADC=90°,AD=2,CD=4,根据tan∠CAB=,计算即可.【解答】解:对于抛物线y=﹣x2﹣2x+3,令y=0,得﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图,设对称轴交x轴于D.在Rt△ACD中,∠ADC=90°,AD=2,CD=4,∴tan∠CAB==2,故选D.8.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110° D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A 的度数.【解答】解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2【考点】垂径定理;勾股定理;圆周角定理.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.【解答】解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【分析】①函数图象的对称轴为:x=﹣==1,所以b=﹣2a,即2a+b=0;②由抛物线的开口方向可以确定a的符号,再利用图象与x轴的交点坐标以及数形结合思想得出当﹣1≤x≤3时,y≤0;③由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;④由图象过点(3,0),即可得出9a+3b+c=0.【解答】解:①∵函数图象的对称轴为:x=﹣==1,∴b=﹣2a,即2a+b=0,故①正确;②∵抛物线开口方向朝上,∴a>0,又∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴当﹣1≤x≤3时,y≤0,故②错误;③∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故③错误;④∵二次函数y=ax2+bx+c的图象过点(3,0),∴x=3时,y=0,即9a+3b+c=0,故④正确.故选:B.二、填空题(共6小题,每小题4分,满分24分)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是51°.【考点】圆心角、弧、弦的关系.【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×=51°.故答案为:51°.12.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)>tanα+tanβ.(填“>”“=”“<”)【考点】特殊角的三角函数值;等腰直角三角形;锐角三角函数的定义.【分析】根据正切的概念和正方形网格图求出tanα和tanβ,根据等腰直角三角形的性质和tan45°的值求出tan(α+β),比较即可.【解答】解:由正方形网格图可知,tanα=,tanβ=,则tanα+tanβ=+=,∵AC=BC,∠ACB=90°,∴α+β=45°,∴tan(α+β)=1,∴tan(α+β)>tanα+tanβ,故答案为:>.13.如图所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm,则△ABC 的周长是8cm.【考点】切线长定理.【分析】首先根据题意可得⊙I与EC、ED、BC、BD分别相切,可得EG=EH,DH=DF,BF=BM,CG=CM,根据BC=2cm,可得CG+BF=2cm,三角形ABC的周长可化为△AED的周长+2倍BC的长度求解.【解答】解:∵⊙I与EC、ED、BC、BD分别相切于G、H、M、F,∴EG=EH,DH=DF,BF=BM,CG=CM,∴EG+DF=EH+DH=DE,CG+BF=CM+BM=BC,∵BC=2,AD+AE+DE=4,∴△ABC的周长=AD+AE+(EG+DF)+(CG+BF)+BC=(AD+AE+DE)+BC+BC=4+2+2=8.故答案为:8.14.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【考点】勾股定理;圆周角定理;锐角三角函数的定义.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.15.已知,A、B、C三点在⊙O上,OD⊥BC于点D,∠BOD=40°,则∠BAC的度数等于40°或140°.【考点】圆周角定理;垂径定理.【分析】由在⊙O中,OD⊥BC,根据垂径定理的即可求得:=,然后利用圆周角定理求解即可求得答案.【解答】解:连接OC,∵在⊙O中,OD⊥BC,∴=,∴∠BOC=2∠BOD=80°.∴∠BAC=BOC=40°,∴∠BA′C=180°﹣40°=140°,∴∠BAC的度数等于40°或140°,故答案为:40°或140°.16.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.动点P从A点开始沿AB向B点以1cm/s 的速度运动(不与B点重合),动点Q从B点开始沿BC以2cm/s的速度向C点运动(不与C 重合).如果P、Q同时出发,四边形APQC的面积最小时,要经过3秒.【考点】二次函数的应用;勾股定理.=S△ABC﹣S△PBQ列出函数解析【分析】设经过x秒时,四边形APQC的面积为y,根据S四边形APQC式,配方成顶点式即可得.【解答】解:设经过x秒时,四边形APQC的面积为y,则BP=6﹣x,BQ=2x,则y=×6×12﹣×(6﹣x)•2x=x2﹣6x+36=(x﹣3)2+27,∴当x=3时,y最大=27,故答案为:3.三.解答题17.计算:①6tan230°﹣sin60°﹣2cos45°②已知α是锐角,且sin(α+15°)=,计算﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1的值.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】①先把各个角的三角函数值代入,再求出即可;②先求出α的度数,再根据特殊角的三角函数值、零指数幂、负整数指数幂分别求出每一部分的值,再求出即可.【解答】解:①6tan230°﹣sin60°﹣2cos45°=6×()2﹣×﹣2×=2﹣﹣=;②∵α是锐角,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1=2﹣4×﹣1+1+3=3.18.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)【考点】作图—复杂作图;垂径定理.【分析】利用垂径定理得出两弦的垂直平分线交点O即可.【解答】解:如图所示:19.如图,斜坡AB的坡度是i=1:2,坡角B处有一棵树BC,某一时刻测得树BC在斜坡AB 上的影子BD的长度是10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为多少米?(结果保留根号).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据题意首先利用勾股定理得出DF,DE的长,再利用锐角三角函数关系得出EC的长,进而得出答案.【解答】解:过点D作DF⊥BG,垂足为F,∵斜坡AB的坡度i=1:2,∴设DF=x,BF=2x,则DB=10m,∴x2+(2x)2=102,解得:x=2,故DE=4,BE=DF=2,∵测得太阳光线与水平线的夹角为60°,∴tan60°===,解得:EC=4,故BC=EC+BE=(2+4)(m).20.如图,AB是⊙O的直径,点C在⊙O上(异于A、B两点),AD⊥CD.①若BC=3,AB=5,求AC的长?②若AC是∠DAB的平分线,求证:直线CD与⊙O相切.【考点】切线的判定.【分析】①首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;②连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【解答】解:①∵AB是⊙O的直径,∴∠ACB=90°,∵BC=3,AB=5,∴AC===4;②证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.21.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;=1,请直接写出点P的坐标.(2)在抛物线上有一点P,满足S△AOP【考点】二次函数的性质.【分析】(1)把A(﹣2,0)、O(0,0)代入解析式y=﹣x2+bx+c,可得出二次函数解析式,即可得出B的坐标;(2)利用三角形的面积可得出P点的纵坐标,可求出点P的横坐标,即可得出点P的坐标.【解答】解:(1)将A(﹣2,0)、O(0,0)代入解析式y=x2+bx+c,得c=0,﹣4﹣2b+c=0,解得c=0,b=﹣2,所以二次函数解析式:y=﹣x2﹣2x=﹣(x+1)2+1,所以,顶点B坐标(﹣1,1);=1,(2)∵AO=2,S△AOP∴P点的纵坐标为:±1,∴﹣x2﹣2x=±1,当﹣x2﹣2x=1,解得:x1=x2=﹣1,当﹣x2﹣2x=﹣1时,解得:x1=1+,x2=1﹣,∴点P的坐标为(﹣1,1)或(1+,﹣1))或(1﹣,﹣1).22.某商品成本价每个80元,1月销售额20000元.2月促销在1月的基础上打九折销售,结果多卖出去50个,销售额也增加了7000元.①求1月的销售单价;②如果2月搞打折销售时,折数x与销量y之间满足y=﹣50x+600.试求商场打几折时利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】①设1月份的销售单价为x元/个,则2月的销售单价为0.9x元/个,根据“1月份的销售量+50=2月份的销售量”列分式方程求解可得;②根据“总利润=单件利润×销售量”列出总利润W关于折数x的函数解析式,再根据二次函数的性质可得其最值情况.【解答】解:①设1月份的销售单价为x元/个,则2月的销售单价为0.9x元/个,根据题意可得: +50=,解得:x=200,经检验x=200是原分式方程的解,答:1月的销售单价为200元/个;②设商场所获利润为W,则W=(﹣50x+600)=﹣1000(x﹣8)2+16000,∴当x=8时,W取得最大值,最大值为16000元,答:商场打8折时利润最大,最大利润是16000元.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB 的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,以E(3,0)为圆心,5为半径的⊙E与x轴交于A、B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,顶点为F.(1)求A、B、C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;=S△ABC,连接PF,判断直线PF与⊙E (3)已知P是抛物线上位于第四象限的点,且满足S△ABP的位置关系并说明理由.【考点】圆的综合题.【分析】(1)由题意可直接得到点A、B的坐标,连接CE,在Rt△OCE中,利用勾股定理求出OC的长,则得到点C的坐标;(2)已知点A、B、C的坐标,利用交点式与待定系数法求出抛物线的解析式,由解析式得到顶点F的坐标;(3)首先求出点P的坐标;连接EP,PF,过点P作PG⊥对称轴EF于点G,求出PE,推出点P在⊙E上;再利用勾股定理求出PF的长度,则利用勾股定理的逆定理可判定△EPF为直角三角形,∠EPF=90°,所以直线PF与⊙E相切.【解答】解:(1)∵以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,∴A(﹣2,0),B(8,0).如解答图所示,连接CE.在Rt△OCE中,OE=AE﹣OA=5﹣2=3,CE=5,由勾股定理得:OC===4,∴C(0,﹣4).(2)∵点A(﹣2,0),B(8,0)在抛物线上,∴可设抛物线的解析式为:y=a(x+2)(x﹣8).∵点C(0,﹣4)在抛物线上,∴﹣4=a×2×﹣8,解得a=∴抛物线的解析式为:y=(x+2)(x﹣8)=x2﹣x﹣4=(x﹣3)2﹣,∴顶点F的坐标为(3,﹣).(3)直线PF与⊙E相切.理由如下:∵△ABC中,底边AB上的高OC=4,∴若△ABC与△ABP面积相等,则抛物线上的点P须满足条件:|y P|=4,∵点P在第四象限,∴y p=﹣4,则x2﹣x﹣4=﹣4,整理得:x2﹣6x=0,解得x=6或x=0(与点C重合,故舍去).∴点P的坐标为(6,﹣4),连接EP,PF,过点P作PG⊥对称轴EF于点G,则PG=3,EG=4.在Rt△PEG中,由勾股定理得:PE===5,∴点P在⊙E上.由(2)知,顶点F的坐标(3,﹣),∴EF=,∴FG=EF﹣EG=.在Rt△PGF中,由勾股定理得:PF===.在△EFP中,∵EP2+PF2=52+()2=()2=EF2,∴△EFP为直角三角形,∠EPF=90°.∵点P在⊙E上,且∠EPF=90°,∴直线PF与⊙E相切.2017年3月25日。