太阳能发电系统设计
太阳能发电系统的设计与优化

太阳能发电系统的设计与优化第一章引言随着能源的紧缺和环境问题的日益突出,以太阳能为代表的可再生能源正逐渐受到人们的关注。
太阳能发电系统作为一种可靠的清洁能源装置,具有很大的潜力和发展前景。
本文将着重探讨太阳能发电系统的设计与优化,以期为相关研究和工程提供指导和建议。
第二章太阳能发电系统组成及工作原理太阳能发电系统主要由太阳能电池板、电池储能装置和变流器组成。
其中,太阳能电池板通过光电效应将太阳能转化为电能,电池储能装置用于存储电能,变流器则负责将直流电转换为交流电以供家庭或工业用电。
太阳能发电系统的工作原理是利用太阳能的辐射能,通过光伏效应将光能转换成电能,从而实现发电。
第三章太阳能发电系统设计要点在设计太阳能发电系统时,需要考虑以下几个要点:1. 太阳能电池板的选择:太阳能电池板是整个系统的核心部件,其品质直接影响发电效率和稳定性。
在选择太阳能电池板时,需要考虑其光电转换效率、耐久性和成本等因素。
2. 电池储能装置的设计:电池储能装置的设计应考虑储能容量和充放电效率等因素。
合理的储能设计可以确保系统充电时效率高、放电时能提供稳定的电能供应。
3. 变流器的选型与设计:变流器的选型与设计需要根据实际用电需求来确定,同时还需考虑其转换效率、稳定性和安全性等方面的问题。
4. 太阳能发电系统与电网的连接:太阳能发电系统通常需要与电网进行连接,以实现光伏发电与传统能源的补充和替代。
在连接过程中,需考虑系统和电网的接口匹配、供电安全和电网的反送电问题。
第四章太阳能发电系统的优化方法为提高太阳能发电系统的发电效率和经济性,需要进行系统的优化。
以下是几种常见的优化方法:1. 优化电池储能装置:通过技术改进和优化设计,提高电池储能装置的充放电效率和循环寿命,以增加系统的稳定性和可靠性。
2. 最大功率点跟踪(MPPT)算法优化:MPPT算法能够保证太阳能电池板工作在最佳的工作状态,最大限度地提高其发电效率。
3. 结合能源储能技术:将太阳能发电系统与其他可再生能源发电系统结合,如风能发电系统或水能发电系统,可以实现互补发电,提高系统的全天候发电能力。
小型太阳能光伏发电系统设计

小型太阳能光伏发电系统设计一、引言随着能源需求的不断增长和环境问题的日益严重,可再生能源逐渐成为人们关注的焦点。
太阳能光伏发电作为一种清洁、可再生的能源,具有广阔的发展前景。
本文旨在设计一个小型太阳能光伏发电系统,以满足家庭日常用电需求,并探讨其在实际应用中的可行性和优势。
二、系统设计1. 光伏组件选择光伏组件是太阳能光伏发电系统中最关键的部分,其性能直接影响系统的发电效率。
在选择光伏组件时,应考虑其转换效率、耐久性和成本等因素。
常见的光伏组件有单晶硅、多晶硅和薄膜太阳能电池等。
根据实际需求和经济考虑,本文选择多晶硅太阳能电池作为光伏组件。
2. 逆变器设计逆变器是将直流电转换成交流电供家庭用电器使用的关键设备。
在设计逆变器时,应考虑其转换效率、输出波形质量以及负载容量等因素。
根据实际需求,本文选择了高效率、低失真的逆变器,并根据家庭用电负载的特点进行适当的容量选择。
3. 电池储能系统设计太阳能光伏发电系统在夜晚或阴天时无法直接发电,因此需要储能系统来存储白天产生的多余电能。
在设计储能系统时,应考虑其容量、充放电效率以及寿命等因素。
本文选择了高容量、高效率的锂离子电池作为储能系统,并根据实际需求进行适当的容量选择。
4. 控制与监测系统设计为了保证太阳能光伏发电系统的正常运行和安全性,需要设计相应的控制与监测系统。
控制系统可以实现对光伏组件、逆变器和储能系统等设备进行监控和调节,以保证其正常运行和最大化发电效果。
监测系统可以对发电功率、负载功率以及储存状态等进行实时监测,并提供相应数据供用户参考。
三、性能分析1. 发电效率分析通过对太阳辐射强度和光伏组件转换效率等因素进行分析,可以评估太阳能光伏发电系统的发电效率。
根据实际数据和模拟计算,本文得出了系统的平均发电效率,并与其他可再生能源发电系统进行了比较。
2. 经济性分析太阳能光伏发电系统的经济性是评估其实际应用价值的重要指标。
本文通过对系统的投资成本、运行维护成本和可回收能源价值等进行综合分析,得出了太阳能光伏发电系统在经济上的可行性,并与传统能源供应方式进行了对比。
设计太阳能发电系统的关键要素及原理介绍

设计太阳能发电系统的关键要素及原理介绍太阳能发电系统是一种利用太阳能直接转化为电能的装置。
它是一种清洁、可再生的能源解决方案,在可持续发展的背景下具有重要意义。
本文将介绍设计太阳能发电系统的关键要素及原理,帮助读者更好地了解太阳能发电系统的工作原理和设计要点。
一、太阳能发电系统的基本原理太阳能发电系统的基本原理可以概括为光伏效应,即太阳光进入光伏电池片后,通过与光伏电池片中的半导体材料相互作用,产生电荷分离和电流流动的现象。
这种现象使得光能被转化成了可用的电能。
二、太阳能发电系统的关键要素设计太阳能发电系统时需要考虑以下几个关键要素:1. 光伏电池板:光伏电池板是太阳能发电系统中最核心的部件。
它由多个光伏电池片组成,能够将太阳光转化为电能。
光伏电池板种类繁多,常见的有单晶硅、多晶硅和非晶硅等。
设计者需要根据实际需求选择合适的光伏电池板类型,并确定安装位置和角度,以最大程度地接收太阳光。
2. 逆变器:逆变器是太阳能发电系统中的关键装置,它将直流电能转化为交流电能,以供家庭或工厂的正常用电。
逆变器还能监测系统性能并对电网故障进行保护。
设计者需要根据系统的负载需求和电网标准选择合适的逆变器型号。
3. 储能设备:太阳能发电系统中的储能设备用于储存多余的电能,以供太阳光不足或夜间使用。
目前常用的储能设备有蓄电池和超级电容器等。
设计者需要根据系统的负载需求和可再生能源供应情况选择合适的储能设备,并合理设计储能容量和充放电控制策略。
4. 控制与监测系统:控制与监测系统用于监测和控制太阳能发电系统的工作状态。
它能收集系统的发电数据、储能数据以及负载需求,并根据需求进行智能管理和调度。
设计者需要根据实际情况选择合适的监测与控制设备,确保系统的高效稳定运行。
三、太阳能发电系统的设计原则在设计太阳能发电系统时,需要考虑以下原则:1. 最大化太阳能的利用效率:通过合理的光伏电池板选择、安装角度调整和清洁等手段,最大限度地捕捉和利用太阳能,提高系统的发电效率。
太阳能发电系统设计技术手册

太阳能发电系统设计技术手册1. 引言太阳能是一种清洁、可再生的能源,随着环境保护的重要性日益突出,太阳能发电系统在各个领域得到了广泛应用。
本手册旨在介绍太阳能发电系统的设计技术,帮助读者了解并掌握相关知识。
2. 太阳能发电系统的原理太阳能发电系统利用太阳光的能量转换成电能。
系统主要包括太阳能电池板、电池储存系统和逆变器。
太阳能电池板通过光伏效应将阳光转化为直流电能,储存系统用于存储电能,逆变器将直流电能转换为交流电能以供使用。
3. 太阳能发电系统的设计步骤3.1 确定需求在设计太阳能发电系统之前,需要明确系统的使用需求。
包括所需电能的负载量、使用时间以及电能负载的特性等。
根据需求可以确定发电系统的规模和组成。
3.2 计算太阳能电池板的规模根据所需电能负载量和太阳能电池板的效率,可以计算出所需的太阳能电池板面积。
考虑到太阳辐射的季节变化以及天气条件,应该合理增加电池板的容量。
3.3 选择适当的电池储存系统为了储存白天通过太阳能电池板产生的多余电能,需要选择适当的电池储存系统。
常见的储能设备包括铅酸蓄电池和锂电池等,选择时应考虑其容量、寿命和充放电效率等因素。
3.4 确定逆变器的容量逆变器用于将直流电转换为交流电以供使用,其容量应根据负载的总功率来确定。
同时,还需考虑负载的起动电流和峰值功率等因素,确保逆变器能够满足实际使用的需求。
3.5 设计支架和布线太阳能电池板需要支架来支撑和固定,根据实际情况选择适当的支架类型,并确保太阳能电池板能够正常接收到阳光。
布线时应注意避免电线过长过细造成的输电损耗,并确保电线的安装质量和安全性。
4. 太阳能发电系统的运维与维护4.1 定期检查和清洁太阳能电池板定期检查太阳能电池板的状态,确保其表面清洁以提高能量转换效率。
清除污垢和灰尘有助于提高太阳能光照的吸收。
4.2 定期维护电池储存系统定期检查电池储存系统的电量和性能,避免过度充放电对电池的损害。
同时,也应定期检查电池的连接线路,确保其安全可靠。
太阳能光伏发电系统优化设计与控制

太阳能光伏发电系统优化设计与控制太阳能光伏发电是一种利用太阳能转换为电能的技术,目前越来越广泛的应用于生产和生活领域。
随着技术不断提升,太阳能光伏发电的效率和控制也在不断完善和优化。
本文将从设计、控制两方面分别进行论述。
一、太阳能光伏发电系统优化设计太阳能光伏发电系统的组成主要包括光电转换器、电池组、逆变器、储能设备等。
要想实现优化设计,需要用到以下方法:1. 光电转换器优化光电转换器是太阳能光伏系统的核心部件,优化其设计方案可以提高整个系统的效率。
一般来说,光电转换器的设计考虑从以下几个方面入手:(1)太阳能辐照度不同的地区太阳能辐照度不同,因此要根据不同的地理位置设计不同的光电转换器方案。
(2)光伏电池芯片类型目前市场上主流的光伏电池芯片有多晶硅和单晶硅两种,其中单晶硅更高效。
因此,在设计中可以尽可能采用单晶硅的光伏电池芯片,以提高光电转换器的效率。
(3)光伏电池连接方式电池连接方式主要有串联和并联两种方式。
串联连接可以提高电压,但需要保证电池之间电压相等;并联连接则可以提高电流。
在设计中要根据使用情况选择合适的连接方式。
2. 电池组优化电池组是太阳能光伏发电系统的储能设备,储存太阳能转换的电能。
要想实现优化设计,需要从以下方面考虑:(1)电池组容量根据需要的电能储存量,选择合适的电池组容量,不要过小,以避免电量不足导致系统停止运转;也不要过大,以避免造成额外的浪费。
(2)电池组温度控制电池组的工作温度会影响其寿命和效率。
因此,需要在设计中考虑到电池组的温度控制,避免出现过热或过冷现象。
可以采用散热系统或电池组通风散热等方式进行控制。
3. 逆变器优化逆变器是将直流电转换为交流电的关键设备,决定了系统转换效率的高低。
要想实现优化设计,需要从以下方面考虑:(1)逆变器转换效率逆变器的转换效率会影响整个系统的输出电能。
因此,在设计时可以尽可能地选择高效的逆变器,以提高输出电能效率。
(2)逆变器输出电压逆变器的输出电压需要与输出负载电器的电压匹配。
太阳能光伏发电系统的分析与设计

太阳能光伏发电系统的分析与设计随着世界经济的不断发展,环境问题也越来越受到人们的重视。
环境污染和能源危机成为全球面临的共同挑战,而太阳能光伏发电系统作为一种绿色、清洁的新能源正在逐步被人们所认可和使用。
本文将对太阳能光伏发电系统进行分析和设计。
一、太阳能光伏发电系统的原理太阳能光伏发电利用光电效应,将太阳辐射能转化成直流电能。
光伏电池是太阳能光伏发电系统的核心部件,它的主要构成是P型半导体和N型半导体。
当太阳辐射照射到光伏电池上时,会产生正负电荷,形成电场。
电荷被电场分离,从而产生电流。
太阳能光伏发电系统除了光伏电池组成的发电系统外,还包括逆变器、蓄电池、电容器、电阻和电感等附属元件。
二、太阳能光伏发电系统的构成1.光伏电池板太阳能光伏发电系统的核心部件是光伏电池板,它是由多个光伏电池串联或并联组成的电池板。
光伏电池板能够将太阳能辐射转换为电能。
2.逆变器逆变器是太阳能光伏发电系统的一个重要部件,其主要功能是将直流电能转化为交流电能。
逆变器种类繁多,功能也不同,除了作为电能转换的转换器外,还有监测、控制、保护和显示等功能。
3.蓄电池太阳能光伏发电系统中蓄电池的作用是储存电能。
由于太阳能是不断变化的,需要借助储能设备来储存电能以备不时之需。
4.控制器控制器可监测太阳能光伏发电系统的电压、电流、电池电量和温度等参数。
通过控制器我们可以实现太阳能光伏发电系统的自动化运行。
三、太阳能光伏发电系统的设计1.电源规划和建设计划在设计太阳能光伏发电系统之前,必须进行电源规划。
电源规划包括电源选型、电源规格、电源接线和电源布线等。
在进行太阳能光伏发电系统的建设计划之前,要确定光伏电池板的面积、逆变器的功率和蓄电池的容量,这是设计的重要环节。
2.光伏电池板的选择光伏电池板的类型繁多,如硅太阳能、薄膜太阳能和钙钛矿太阳能等。
在选择光伏电池板时需要考虑价格、效率和可靠性等因素。
3.逆变器的选择逆变器的种类繁多,不同的逆变器功率和效率也不同。
太阳能发电系统设计要素

太阳能发电系统设计要素太阳能发电作为一种可再生能源,正在逐渐受到人们的重视和广泛应用。
为了确保太阳能发电系统的高效运行和最大发电量产出,设计一个合理的系统是至关重要的。
本文将介绍太阳能发电系统的设计要素,包括:太阳能电池板、电池组、逆变器以及配套设备。
一、太阳能电池板太阳能电池板是太阳能发电系统的核心组成部分。
它主要由光伏电池片、玻璃罩板、背板、铝合金框架等组成。
太阳能电池板的选型需要考虑以下几个要素:1. 光伏电池片的类型:太阳能电池板的光伏电池片可以分为单晶硅、多晶硅和非晶硅等几种类型。
不同类型的电池片有不同的效率和成本,设计时需要根据具体情况进行选择。
2. 光伏电池片的平均功率温度系数:光伏电池片的功率温度系数反映了在不同温度下其发电效率的变化情况。
设计时需要选择功率温度系数较低的电池片,以确保系统在高温条件下仍能保持较高的发电效率。
3. 光伏电池片的寿命和性能保证:选用质量可靠、有良好质保及售后服务的供应商,以确保太阳能电池板的寿命和性能。
二、电池组电池组是太阳能发电系统的储能装置,主要有铅酸蓄电池、锂离子电池、镍氢电池等。
在设计电池组时,需要考虑以下要素:1. 电池组的容量和额定电压:根据系统的负载需求和储能时间确定电池组的容量。
额定电压一般为12V、24V或48V,需要根据系统的电压要求来选择。
2. 电池组的寿命和循环次数:电池组的寿命和循环次数对系统的使用寿命和经济性至关重要。
选择具有较长循环寿命的电池组,并合理设计电池充放电控制策略,以延长整个系统的寿命。
三、逆变器逆变器是将直流电能转换为交流电能的核心设备。
在太阳能发电系统的设计中,逆变器的选择要素包括:1. 逆变器的额定功率:根据系统的负载需求和最大发电容量来选择逆变器的额定功率。
需合理考虑系统未来的扩容需求,选择合适的额定功率范围。
2. 逆变器的效率和功率因数:高效率的逆变器能够提高太阳能发电系统的发电效率和经济性。
功率因数的选择要符合当地的电网要求,以确保系统的并网运行稳定。
太阳能光热发电系统的设计与实现

太阳能光热发电系统的设计与实现太阳能光热发电系统是目前世界上最受关注的可再生能源之一。
它不仅可以帮助我们减少使用化石燃料等不可再生资源,也能减少空气污染和温室气体的排放。
这种系统利用太阳能把光能转化为热能,然后再把热能转化为电能。
在这篇文章中,我将介绍太阳能光热发电系统的设计与实现。
I. 太阳能光热发电系统的组成部分太阳能光热发电系统主要由太阳能集热器、传热系统、蒸汽发生器、蒸汽涡轮发电机、储热系统、水循环系统、控制系统等组成。
1.太阳能集热器:太阳能集热器是太阳能光热发电系统的关键组成部分,用于把太阳能转化为热能。
其主要分类有平板集热器和聚光集热器两种。
平板集热器应用较广,因为它的制作成本较低,但其效率较低。
而聚光集热器则可以将太阳辐射能集中到一个小区域,使得温度变得非常高,从而提高发电效率。
2.传热系统:传热系统用来传递集热器中产生的热量到蒸汽发生器,主要包括流体输送管道、换热器、水循环泵等。
其中流体输送管道的选择非常重要,因为它需要承受高温高压的热质料。
3.蒸汽发生器:蒸汽发生器用于将集热器中的热量转化为水蒸汽,用来驱动蒸汽涡轮发电机来产生电能。
目前,常用的蒸汽发生器有自然循环式和强制循环式两种。
4.蒸汽涡轮发电机:蒸汽涡轮发电机是将蒸汽的动能转化为电能的关键设备。
常见的蒸汽涡轮发电机是由几个涡轮级组成的,涡轮级之间通过各自的高压和低压蒸汽输出端合并起来,形成一个完整的流动闭合系统,最后输出电能。
5.储热系统:储热系统用来储存集热器收集到的热能。
这种系统允许把白天的热量储存在储热器中,在晚上和阴雨天时,仍能够产生电能。
6.水循环系统:水循环系统通过传递热量把蒸汽发生器中的液态水转化为蒸汽,驱动发电机产生电能,然后将水再次送回蒸汽发生器,形成循环,节约水的使用量。
7.控制系统:控制系统主要用于监测和控制整个太阳能光热发电系统的运行状况,确保系统运行安全可靠。
II. 太阳能光热发电系统的设计流程太阳能光热发电系统的设计流程主要包括以下几个步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东力诺太阳能电力工程有限公司技术支持部彭剑2010年2月声明Ø本次汇报内容出自个人工作总结,仅代表个人的观点,疑问之处大家共同探讨;Ø一般数据及理论公式来源没有给详细出处备注;Ø太阳能发电系统设计方法及理论数据仅供参考;Ø欢迎各位对感兴趣的方面随时提问。
n 第一部分:光伏系统设计基础知识介绍1、几个较重要的光伏能源术语2、几个重要的性能曲线n 第二部分:光伏系统分类及其原理介绍n 第三部分:光伏系统设计总体说明(设计考虑及设计影响因素分析)1、设计依据2、设计原则3、设计说明目录n第四部分:PV辅助设计软件介绍n第五部分:光伏系统设计(电气和结构)n第六部分:光伏系统设计时的一些经验考虑因素n直流电Direct Current (DC)是指方向和时间不作周期性变化的电流,但电流大小可能不固定。
n并网系统Grid-Connected Systemn离网系统Off -Grid photovoltaic power system System独立光伏系统Stand-alone photovoltaic power systemn千瓦Kilowatt (kW)n千瓦时Kilowatt-Hour (kWh)n峰瓦watt-peak(Wp)n峰值日照时间Peak Sun Hours (kWh/m2/day)n光伏组件Photovoltaic (PV)Module/Photovoltaic (PV) Paneln标准测试条件STC -(Standard Test Conditions) 1 kW/m2, AM 1.5, and 25 °C,0 m/s wind speed cell or module junction temperaturen电池的额定工作温度(平均结温)(NOTC)normal operating cell temperature is the cell temperature when irradiance is 800 W/m2 , ambient temperature is 20°C and wind speed is 1 m/s at a module tilt‐angle 45o.。
n NCOT测试结果n USA标准测试电池的额定工作温度PVUSA Test Conditions(PTC )1000 W/m2 水平面, 20o C 环境温度, 1 m/s.PTC differs from STC in that its test conditions of ambient temperature and wind speed will result in a PV module temperature of about 50o C ,是STC条件下的70%~85%。
n充电控制器Charge controllern蓄电池Batteryn Voc–开路电压at STC.n Vpeak–(Vmpp) 最大功率点电压at STC.n Isc–短路电流at STC.n Ipeak–(Impp)最大功率点电流at STC.n Maximum Input Current–Maximum current of the Array at Max Power Point.n Max DC Short Circuit Current–Maximum Array Isc.n温度系数temperature coefficient(n逆变器Invertern逆变器效率Inverter Efficiencyn蓄电池额定(标称)容量(C10)阀控式铅酸蓄电池规定在25℃环境温度下,以10小时率电流放电,应该放出最低限度的电量(Ah)。
n孤岛效应光伏并网发电系统分布式安装时。
当由于电气故障、误操作或自然因素等原因造成电网中断供电时,各个光伏并网发电系统仍在运行,并且与本地负载连接处于独立运行状态,这种现象被称为孤岛效应。
n热斑效应在一定条件下,太阳能电池组件中被遮蔽的太阳电池,会作为负载消耗其他有光照的太阳电池所产生的能量。
被遮蔽的太阳电池部分此时会发热,这就是热斑效应。
这种效应能严重的破坏太阳电池。
n逆功率用户侧并网系统(用户自备电源),消耗不完的光伏能源反送电网。
n太阳高度角对于地球上的某个地点,太阳高度是指太阳光的入射方向和地平面之间的夹角,专业上讲太阳高度角是指某地太阳光线与该地作垂直于地心的地表切线的夹角。
性能曲线填充因子F.F.(F i l lF a c t o r)=(V mx I m/V o c x I s c)x100%(越高越好)效率η(E f f i c i e n c y)=(V mx I m/P i n)x100%n日照运行曲线光伏发电系统分类离网光伏发电系统原理框图并网光伏发电系统原理框图光伏系统设计依据n GB/T19939--2005《光伏系统并网技术要求》n IEC61215 --2005 《地面用晶体硅光伏组件设计和定型》n SJ/11127-1997《光伏发电系统过电压保护导则》n GB/T 19064-2003《家用太阳能光伏电源系统技术条件和试验方法》n GB 50054-95《低压配电设计规范》Electrical installations of buildings –Part 7-712: Requirements for special installations or locations –Solar photovoltaic (PV) powersupply systems 光伏与建筑结合标准IEC 60364-7-712 (2002)7GB/T 19939-20051并网发电系统n太阳能资源气象地理依据(NASA National Aeronautics and Space Administration 美国国家航空航天局)中国太阳能资源n一类地区全年日照时数为3200~3300h。
在每平方米面积上一年内接爱的太阳总辐射量为6680~8400M J。
这一地区主要包括宁夏北部、甘肃北部、新疆南部、青海西部和西藏西部等地,是我国太阳能资源最丰富的地区,尤以西藏自治区的太阳能资源最为丰富。
n二类地区全年日照时数为3000~3200h。
在第平方米面积上一年内接受的太阳总辐射量为5852~6680M J。
这一地区主要包括洒北西北部、山西北部、内蒙古西部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。
为我国太阳能资源较丰富的地区。
n三类地区全年日照时数为2200~3000h。
在第平方米面积上一年内接受的太阳总辐射量为5016~5852M J。
这一地区主要包括山东东南部、河南东南部、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏北部安徽北部、天津、上海和台湾西南部等地。
为我国太阳能资源的中等类型区。
n四类地区全年日照时数为1400~2200h。
在每平方米面积上一年内接受的太阳总辐射量为4190~5016M J。
这一地区主要包括湖南、湖北、广西、江西、浙江、福建北部、陕西南部、江苏南部、安徽南部以及黑龙江、台湾东北部等地。
是我国太阳能资源较贫乏的地区。
n五类地区全年日照时数1000~1400h。
在每平方米面积上一年内接受的太阳总辐射量为3344~4190M J。
这一地区主要包括四川、贵州及重庆等地区,是我国太阳能资源最少的地区。
处于太阳能资源第三类及以上地区时太阳能发电装置能发挥更高的系统发电效率。
n 依据《光伏系统并网技术要求》(GB/T19939--2005)、《独立光伏系统的特性参数》(IEC 61194)确定电站建设及供电方案的设计原则n 光伏系统的设计应对环境条件、系统性能进行综合评价,确定使用合理的光伏子系统功率和功率调节系统容量,同时还应考虑系统的可扩展性。
n 系统设计应有冗余量,具有保护功能以满足系统可靠工作的要求配置提高系统运行可靠性。
n 系统设计应考虑建站地点的地理条件,如高海拔、海洋环境或潮湿环境等。
设计时要充分考虑建站地点特殊的地理条件,如:海洋环境或潮湿环境、高海拔地区等应考虑特别的系统耐候性设计。
在地震多发地区的系统工程应考虑相应的防震设计。
n 设计使用的环境气象数据主要有:现场地理位置(包括地点、纬度、经度和海拔等)、气象资料(包括逐月太阳总辐射、直接辐射或散射辐射、年平均气温、最高、最低气温、最长连续阴雨天数、最大风速、冰雹、降雪、雷电等情况)。
在无完整气象资料时,可参考条件相似地点的气象资料或采用经验公式/方法进行估算。
n应进行系统设计的综合优化,如:各功能设备间应考虑功能和/或功率(容量)的协调及匹配,各部分间连接电缆的选择应满足电气性能及耐候性能的要求。
设计原则一般性原则n(1)安全可靠性n为保障系统可靠运行,系统设有完整的在线监控系统;系统采用了多项自我保护、电网保护、负载保护等安全措施;选用性能优良、可靠性高的成熟技术产品;整体设计采用冗余技术,来保证系统的安全可靠性。
n(2)先进实用性n选用的设备(包括并网逆变器、交直流配电设备、在线监控设备、离网逆变器、蓄电池等)均为国际上先进实用的技术和产品。
建成后的系统具有最为先进的最大功率点跟踪技术(MPPT)、系统管理技术、系统在线监控技术,让系统的使用和维护变得更加简单。
n(3)扩充性和灵活性n系统的设计全部采用了模块化设计,系统的扩容将变得简单而灵活,增加一定数量的太阳能光伏电源很容易融入整个网络,而不需对其它设备做任何的改动,也不会影响其它设备的正常使用。
这也相对减少了扩容资金投入。
n(4)示范性n从项目的设计、施工、培训和售后服务都要进行周密计划,并规范化实施,取得过程管理与实施结果的全面成功,为以后同类工程的实施起示范作用。
设计说明我们将分以下几个部分来考虑系统的设计:n光伏电站总体方案部分n太阳能组件部分n太阳能并网逆变器部分n(太阳能离网控制器部分)n(蓄电池组储能部分)n交直流配电部分n系统保护设计部分n太阳能光伏电站在线监控、显示系统部分n辅助系统部分(汇流箱及支架部分)PV辅助设计软件n1、资源评估:太阳辐射数据、环境温度、10米风速、气压等;n2、不同安装和运行方式下的辐射量计算:固定安装,不同朝向和不同倾角,单轴跟踪,双轴跟踪等;n3、设备选型和容量计算:太阳电池、蓄电池、系统各个环节的效率、发电量测算;n4、成本分析:可研、设计、设备、土建、运输、安装、运行维护、周期性投资等;n5、温室气体减排分析:按照I P C C 标准;n6、财务评估:贷款、赠款、利息、税收、C D M 、光伏电价测算、I R R 、现金流、资金回收期等;n7、敏感性分析:影响电价的主要因素分析。