2018年辽宁省阜新市中考数学试卷(含答案解析版)
辽宁省阜新市中考数学试卷(含答案)

辽宁省阜新市中考数学试卷一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共18分)1.﹣3的绝对值是()A.3 B.﹣C.﹣3 D.2.某几何体的三视图如图所示,该几何体是()A.B.C.D.3.某中学篮球队12名队员的年龄如下表所示:年龄(岁)15 16 17 18人数 4 5 2 1则这12名队员年龄的众数和平均数分别是()A.15,15 B.15,16 C.16,16 D.16,16.5 4.不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.反比例函数y=的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限6.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°二、填空题(每小题3分,共18分)7.函数y=的自变量取值范围是.8.如图,直线a∥b,被直线c所截,已知∠1=70°,那么∠2的度数为.9.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.10.如图,点E是▱ABCD的边AD的中点,连接CE交BD于点F,如果S△DEF=a,那么S△BCF=.11.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为m(结果保留根号).12.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是折.三、解答题(13、14、15、16题每题10分,17、18题每题12分,共64分)13.(1)计算:()﹣2+﹣2cos60°;(2)先化简,再求值:(a﹣)÷,其中a=+1.14.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.15.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生,两幅统计图中的m=,n=.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?16.为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?17.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接B P,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.18.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2018年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共18分)1.﹣3的绝对值是()A.3 B.﹣C.﹣3 D.考点:绝对值.分析:根据一个负数的绝对值是它的相反数进行解答即可.解答:解:|﹣3|=3,故选:A.点评:本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.某几何体的三视图如图所示,该几何体是()A.B.C.D.考点:简单组合体的三视图.分析:根据几何体的三视图可以得出几何体,然后判断即可.解答:解:根据题意发现主视图和左视图为矩形,俯视图是一个圆,可以得出这个图形是圆柱.故选B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及动手操作能力,较简单.3.某中学篮球队12名队员的年龄如下表所示:年龄(岁)15 16 17 18人数 4 5 2 1则这12名队员年龄的众数和平均数分别是()A.15,15 B.15,16 C.16,16 D.16,16.5考点:众数;加权平均数.专题:计算题.分析:根据表格中的数据,求出众数与平均数即可.解答:解:根据题意得:这12名队员年龄的众数为16;平均数为=16,故选C点评:此题考查了众数,以及加权平均数,熟练掌握各自的定义是解本题的关键.4.不等式组的解集,在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式,然后在数轴上表示出解集.解答:解:解不等式1﹣x<2得,x>﹣1,解不等式3x≤6得:x≤2,则不等式的解集为:.故选B.点评:本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.5.反比例函数y=的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限考点:反比例函数的性质.分析:根据反比例函数的图象性质求解.解答:解:∵k=2>0,∴反比例函数y=的图象在第一,三象限内,故选A点评:此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.6.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°考点:圆周角定理.专题:计算题.分析:根据图形,利用圆周角定理求出所求角度数即可.解答:解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.二、填空题(每小题3分,共18分)7.函数y=的自变量取值范围是x≠2.考点:函数自变量的取值范围.分析:根据分式有意义的条件:分母不等于0,即可求解.解答:解:根据题意得,2﹣x≠0,解得:x≠2.故答案是:x≠2.点评:本题考查的知识点为:分式有意义,分母不为0.8.如图,直线a∥b,被直线c所截,已知∠1=70°,那么∠2的度数为110°.考点:平行线的性质.分析:先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.解答:解:∵直线a∥b,被直线c所截,∠1=70°,∴∠3=∠1=70°,∴∠2=180°﹣∠3=180°﹣70°=110°.故答案为:110°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.9.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为20个.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:设暗箱里白球的数量是n,则根据题意得:=0.2,解得:n=20,故答案为:20.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.10.如图,点E是▱ABCD的边AD的中点,连接CE交BD于点F,如果S△DEF=a,那么S△BCF= 4a.考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形的性质得到AD∥BC和△EFD∽△CFB,根据相似三角形的面积比是相似比的平方得到答案.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴△EFD∽△CFB,∵E是边AD的中点,∴DE=BC,∴S△DEF:S△BCF=1:4,∵S△DEF=a,∴S△BCF=4a,故答案为:4a.点评:本题考查的是平行四边形的性质和相似三角形的判定和性质,掌握三角形相似的判定定理和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.11.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10m(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:由题意得,在直角三角形ACB中,知道了已知角的邻边求对边,用正切函数计算即可.解答:解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故答案为:10.点评:本题考查了解直角三角形的应用﹣仰角俯角问题,俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.12.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是七折.考点:一次函数的应用.分析:根据函数图象求出打折前后的单价,然后解答即可.解答:解:打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,=0.7,所以,在这个超市买10本以上的练习本优惠折扣是七折.故答案为:七.点评:本题考查了一次函数的应用,比较简单,准确识图并求出打折前后每本练习本的价格是解题的关键.三、解答题(13、14、15、16题每题10分,17、18题每题12分,共64分)13.(1)计算:()﹣2+﹣2cos60°;(2)先化简,再求值:(a﹣)÷,其中a=+1.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.分析:(1)分别根据负整数指数幂的计算法则、特殊角的三角函数值及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:(1)原式=4+2﹣2×=6﹣1=5;(2)原式=•=a﹣1,当a=+1时,原式=+1﹣1=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.14.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.考点:作图-旋转变换;弧长的计算.分析:(1)在平面直角坐标系中画出△ABC,然后根据网格结构找出点B、C的对应点B′,C′的位置,然后顺次连接即可;(2)根据图形即可得出点A的坐标;(3)利用AC的长,然后根据弧长公式进行计算即可求出点B转动到点B′所经过的路程.解答:解:(1)△AB′C′如图所示;(2)点B′的坐标为(3,2),点C′的坐标为(3,5);(3)点C经过的路径为以点A为圆心,AC为半径的圆弧,路径长即为弧长,∵AC=4,∴弧长为:==2π,即点C经过的路径长为2π.点评:本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.15.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了120名学生,两幅统计图中的m=48,n=15.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.分析:(1)用A类的人数和所占的百分比求出总人数,用总数减去A,C,D类的人数,即可求出m的值,用C类的人数除以总人数,即可得出n的值;(2)用该校喜欢阅读“A”类图书的学生人数=学校总人数×A类的百分比求解即可;(3)列出图形,即可得出答案.解答:解:(1)这次调查的学生人数为42÷35%=120(人),m=120﹣42﹣18﹣12=48,18÷120=15%;所以n=15故答案为:120,48,15.(2)该校喜欢阅读“A”类图书的学生人数为:960×35%=336(人),(3)抽出的所有情况如图:两名参赛同学为1男1女的概率为:.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设篮球、足球的单价分别为x,y元,列出二元一次方程组,即可求出x和y的值;(2)由(1)中的单价可列出一元一次不等式,解不等式即可得到至少要购买多少个足球.解答:解:(1)设篮球、足球的单价分别为x,y元,由题意列方程组得:,解得:,答:求篮球、足球的单价分别为100,90元;(2)设至少要购买m个足球,由题意得:52×90+100m≤5000,解得:m≤3.2,所以至少要购买3个足球.点评:此题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解决本题的关键.17.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.考点:四边形综合题.分析:(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;(2)①根据全等的性质和对顶角相等即可得到答案;②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.解答:(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ;(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPDF=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.点评:本题考查的是正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.18.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.考点:二次函数综合题.分析:(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.解答:解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+,﹣4)或(﹣1﹣,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.点评:此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。
辽宁省阜新市中考数学试卷及答案

辽宁省阜新市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。
中考数学真题分类汇编第三期专题16概率试题含解析

概率一.选择题1. (2018·广西梧州·3分)小燕一家三口在商场参加抽奖活动、每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个、这些球除颜色外无其他差别、从箱子中随机摸出1个球、然后放回箱子中轮到下一个人摸球、三人摸到球的颜色都不相同的概率是()A.B.C.D.【分析】画出树状图、利用概率公式计算即可.【解答】解:如图、一共有27种可能、三人摸到球的颜色都不相同有6种可能、∴P(三人摸到球的颜色都不相同)==.故选:D.【点评】本题考查列表法与树状图、解题的关键是学会利用树状图解决概率问题.2.(2018·四川省攀枝花·3分)布袋中装有除颜色外没有其他区别的1个红球和2个白球、搅匀后从中摸出一个球、放回搅匀、再摸出第二个球、两次都摸出白球的概率是()A.B.C.D.解:画树状图得:则共有9种等可能的结果、两次都摸到白球的有4种情况、∴两次都摸到白球的概率为.故选A.3.(2018·辽宁省沈阳市)(2.00分)下列事件中、是必然事件的是()A.任意买一张电影票、座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口、遇到红灯D.明天一定会下雨【分析】必然事件就是一定发生的事件、依据定义即可判断.【解答】解:A.“任意买一张电影票、座位号是2的倍数”是随机事件、故此选项错误;B.“13个人中至少有两个人生肖相同”是必然事件、故此选项正确;C.“车辆随机到达一个路口、遇到红灯”是随机事件、故此选项错误;D.“明天一定会下雨”是随机事件、故此选项错误;故选:B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下、一定不发生的事件.不确定事件即随机事件是指在一定条件下、可能发生也可能不发生的事件.4.(2018·辽宁省阜新市)如图所示、阴影是两个相同菱形的重合部分、假设可以随机在图中取点、那么这个点取在阴影部分的概率是()A.B.C.D.【解答】解:设阴影部分的面积是x、则整个图形的面积是7x、则这个点取在阴影部分的概率是=.故选C.5. (2018•呼和浩特•3分)(3.00分)某学习小组做“用频率估计概率”的实验时、统计了某一结果出现的频率、绘制了如下折线统计图、则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球、从中随机取一个、取到红球B.掷一枚质地均匀的正六面体骰子、向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币、两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子、两次向上的面的点数之和是7或超过9解:A.袋中装有大小和质地都相同的3个红球和2个黄球、从中随机取一个、取到红球的概率为、不符合题意;B.掷一枚质地均匀的正六面体骰子、向上的面的点数是偶数的概率为、不符合题意;C.先后两次掷一枚质地均匀的硬币、两次都出现反面的概率为、不符合题意;D.先后两次掷一枚质地均匀的正六面体骰子、两次向上的面的点数之和是7或超过9的概率为、符合题意;故选:D.6.(2018·辽宁大连·3分)一个不透明的袋子中有三个完全相同的小球、把它们分别标号为1、2、3、随机摸出一个小球、记下标号后放回、再随机摸出一个小球并记下标号、两次摸出的小球标号的和是偶数的概率是()A.B.C.D.解:列表得:所有等可能的情况数有9种、它们出现的可能性相同、其中两次摸出的小球标号的和是偶数的有5种结果、所以两次摸出的小球标号的和是偶数的概率为.故选D.7.(2018·江苏镇江·3分)小明将如图所示的转盘分成n(n是正整数)个扇形、并使得各个扇形的面积都相等、然后他在这些扇形区域内分别标连接偶数数字2、4、6、…、2n(每个区域内标注1个数字、且各区域内标注的数字互不相同)、转动转盘1次、当转盘停止转动时、若事件“指针所落区域标注的数字大于8”的概率是、则n的取值为()A.36 B.30 C.24 D.18【解答】解:∵“指针所落区域标注的数字大于8”的概率是、∴=、解得:n=24、故选:C.二.填空题1. (2018·广西贺州·3分)从﹣1.0、、π、5.1.7这6个数中随机抽取一个数、抽到无理数的概率是.【解答】解:∵在﹣1.0、、π、5.1.7这6个数中无理数有、π这2个、∴抽到无理数的概率是=、故答案为:.2. (2018·湖北江汉·3分)在“Wish you success”中、任选一个字母、这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母、这个字母为“s”的概率为:=、故答案为:.3.(2018·浙江省台州·5分)一个不透明的口袋中有三个完全相同的小球、把它们分别标号为1、2、3.随机摸出一个小球然后放回、再随机摸出一个小球、则两次摸出的小球标号相同的概率是.【分析】首先根据题意画出树状图、然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况、再利用概率公式即可求得答案.【解答】解:根据题意、画树状图如下:共有9种等可能结果、其中两次摸出的小球标号相同的有3种结果、所以两次摸出的小球标号相同的概率是=、故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.(2018·辽宁省葫芦岛市) 有四张看上去无差别的卡片、正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称、将它们背面朝上、从中随机一张卡片正面写有“葫芦山庄”的概率是.【解答】解:∵在这4张无差别的卡片上、只有1张写有“葫芦山庄”、∴从中随机一张卡片正面写有“葫芦山庄”的概率是.故答案为:.5.(2018·辽宁省盘锦市)如图、正六边形内接于⊙O、小明向圆内投掷飞镖一次、则飞镖落在阴影部分的概率是.【解答】解:如图所示:连接OA.∵正六边形内接于⊙O、∴△OAB、△OBC都是等边三角形、∴∠AOB=∠OBC=60°、∴OC∥AB、∴S△ABC=S△OBC、∴S阴=S扇形OBC、则飞镖落在阴影部分的概率是;故答案为:.6.(2018·辽宁省抚顺市)(3.00分)一个不透明布袋里有3个红球、4个白球和m个黄球、这些球除颜色外其余都相同、若从中随机摸出1个球是红球的概率为、则m的值为 2 .【分析】根据题目中的数据可以计算出总的球的个数、从而可以求得m的值.【解答】解:由题意可得、m=3÷﹣3﹣4=9﹣3﹣4=2、故答案为:2.【点评】本题考查概率公式、解答本题的关键是明确题意、求出相应的m的值.7. (2018•呼和浩特•3分)已知函数y=(2k﹣1)x+4(k为常数)、若从﹣3≤k≤3中任取k值、则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.解:当2k﹣1>0时、解得:k>、则<k≤3时、y随x增加而增加、故﹣3≤k<时、y随x增加而减小、则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:=.故答案为:.8.(2018·江苏常州·2分)中华文化源远流长、如图是中国古代文化符号的太极图、圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点、则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等、根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称、∴圆中的黑色部分和白色部分面积相等、∴在圆内随机取一点、则此点取黑色部分的概率是、故答案为:.【点评】本题考查的是概率公式、中心对称图形、掌握概率公式是解题的关键.9.(2018·湖北咸宁·3分)一个不透明的口袋中有三个完全相同的小球、把它们分别标号为1、2、3.随机摸出一个小球然后放回、再随机摸出一个小球、则两次摸出的小球标号相同的概率是_________。
辽宁省阜新市中考数学试卷及答案

辽宁省阜新市中考数学试卷及答案考题时间120分钟 试卷满分150分一、选择题(在每小题给出的四个选项中,只有一个是正确的,每小题3分,共24分) 1.(11·辽宁阜新)-2的倒数是A . 2B .-12C .-2D .12【答案】B2.(11·辽宁阜新)随着“毒馒头、毒豆芽”等事件的曝光,人们越来越关注健康的话题。
关于甲醛污染问题也一直困扰人们。
我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为A .0.75×10-4B .7.5×10-4C .7.5×10-5D .75×10-6【答案】C3.(11·辽宁阜新)下列计算错误的是A .x 2·x 3=x 6B .3-1=13C .-2+|-2|-0D .33+3=4 3【答案】A4.(11·辽宁阜新)如图所示,是由几个相同的小正方体搭成的几何体的三视图,则这个A .4B .5C .6D .7【答案】B5.(11·辽宁阜新)如图,已知AB ∥CD ,OM 是∠BOF 的平分线,∠2=70°,则∠1的度数为A .100°B .125°C .130°D .140°【答案】D6.(11·辽宁阜新)反比例函数y = 6x 与y = 3x在第一象限的图家雀儿如图所示,作一条平行于x 轴的直线分别交双曲线OA 、OB ,则△AOB 的面积为A BDC O M FE 12 主视图 左视图俯视图A .32B .2C .3D .1【答案】A7.(11·辽宁阜新)一组数据3,x ,4,5,8的平均数为5,则这组数据的众数、中位数是A .5,6B .4,4.5C .5,5D .5,4.5 【答案】C8.(11·辽宁阜新)如图,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD上的任意一点,当△AEF 的周长最小时,则DF 的长为A .1B .2C .3D 【答案】D二、填空题(每小题3分,共24分)9.(11·辽宁阜新)函数y =x -2x中,自变量x 的取值范围是_ ▲ .【答案】x ≥-210.(11·辽宁阜新)掷一枚均匀的正方体,6个面上分别标有数字1,2,3,4,4,6,随意掷出这个正方体,朝上的数字不小于“3”的概率为_ ▲ .【答案】2311.(11·辽宁阜新)如图,晚上小亮站在与路灯底部M 相距3米的A 处,测得此时小亮的影长AP 为1米,已知小亮的身高是1.5米,那么路灯CM 高为_ ▲ 米.【答案】612.(11·辽宁阜新)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB 、CD 的延长线交于点E ,若AB =2DE ,∠B =18【答案】5413.(11·辽宁阜新)如图,直线y =kx +b (k >0) 与x 轴的交点为 (-2,0),则关于x的不等式kx +b <0的解集是_ ▲ .AC【答案】x <-214.(11·辽宁阜新)已知一个多边形的内角和是外角和的3倍,则这个多边形为_ ▲ 边形. 【答案】八15.(11·辽宁阜新)甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,根据题意列出的方程是_ ▲ .【答案】15x -15x +1=1216.(11·辽宁阜新)如图,⊙A 与x 轴相切于点O ,点A 的坐标为(0,1),点P 在⊙A上,且在第一象限,∠PAO =60°,⊙A 沿x 轴正方向滚动,当点P 第n 次落在x 轴上时,点P 的横坐标为_ ▲ .【答案】2 (n -53)π或2n -53π三、解答题(每题10分,共20分)17.(11·辽宁阜新)计算:-12011+12+(12)-1-2cos60°.【答案】原式=-1+23+2-2×12 ………………6分=-1+23+2-1 ………………8分 =2 3 ………………10分18.(11·辽宁阜新)先化简,再求值:(xx -2-2)÷x 2-16x 2-2x,其中x =3-4.【答案】原式=x -2x +4x -2÷x 2-16x 2-2x………………4分=-x +4x -2·x (x -2)(x +4) (x -4) ………………5分 =-x x +4………………7分当x =3-4时 原式=- 3-43-4+4=43-33………………10分 四、解答题(每题10分,共20分)19.(11·辽宁阜新)如图,在边长为1的小正方形组成的网格,直角梯形ABEF 的顶点均在格点上,请按要求完成下列各题:(1)请在图中拼上一个直角梯形,使它与梯形ABEF 构成一个等腰梯形ABCD ; (2)将等腰梯形ABCD 绕点C 按顺时针方向旋转90°,画出相应的图形A 1B 1CD 1; (3)求点A 旋转到点A 1时,点A 所经过的路线长.(结果保留π)【答案】解:(13分 (2)等腰梯形A 1B 1CD 1为所求: ………………4分 (3)由勾股定理得AC =13点A 旋转到点A 1所经过的路线长为90π·13180=13 π2………………10分20.(11·辽宁阜新)不透明的盒中装有红、黄、蓝三种颜色的小球若干个(除颜色外均相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,是蓝球的概率为14.(1)求盒中黄球的个数;(2)第一次任意摸出一个球放回后,第二次再任意摸一个球,请用列表或树状图,求两次都摸出红球的概率.【答案】(1)设盒中黄球的个数为x 个由题意得12+x +2=14解得x =1答:盒中黄球的个数为1个………………4分(2)列表如下:到红球的情况有4种 ………………8分 P (两次都摸到红球)=416=14………………10分 五、解答题(每题12分,共24分)21.(11·辽宁阜新)如图,△ABC 内接于⊙O ,AB 为⊙O 直径,AC =CD ,连接AD 交BC 于点M ,延长MC 到N ,使CN =CM .(1)判断直线AN 是否为⊙O 的切线,并说明理由;(2)若AC =10,tan ∠CAD =34,求AD 的长. 【答案】解:(1)AN 是⊙O 的切线 ………………1分 理由:∵AB 为⊙O 直径∴∠ACB =90°∴∠1+∠2+∠B =90°∵CN =CM 即AC 垂直平分MN ∴AM =AN ∴∠1=∠CAN ∵AC =CD∴∠D =∠1=∠CAN =∠B ………………∴∠1+∠2+∠CAN =90°即OA ⊥AN 于A ∴AN 是⊙O 的切线 ………………6分 (2)过点C 作CE ⊥AD 于点E在Rt △ACE 中,∠ACE =90°∴CE =AE ·tan ∠CAD =34AE ………………8分∵CE 2+AE 2=AC 2∴(34AE )2+AE 2=102 ………………10分 ∴AE =8 ∴AD =2AE =2×8=16 ………………12分 22.(11·辽宁阜新)电信公司最近推出多种话费套餐,小亮为帮助爸爸选择哪种套餐更合算,将爸爸上月的手机费中各项费用情况绘制成两幅统计图(不完整): (1)上月爸爸一共消费多少元话费? (2)补全两幅统计图;(3)若接听免费,长途话费0.6元/分,求爸爸长途通话时间为多少分钟?【答案】解:(1)72÷45%=160(元)答:上月爸爸一共消费160元 ………………3分(2)爸爸手机的月租费:6.25%×160=10(元)爸爸手机的短信费:18.75%×160=30(元)爸爸的本地话费占上月手机费的百分比:46÷160=30%………………6分 补全统计图如下:………9分(3)72÷0.6=120(分)答:爸爸长途通话时间为120分钟 ………………12分 六、解答题(本题12分) 23.(11·辽宁阜新)随着人们生活水平的提高,轿车已进入平常百姓家,我市家庭轿车的拥有量也逐年增加.某汽车经销商计划用不低于228万元且不高于240万元的资金订购(1(2)如果按表中售价全部卖出,哪种进货方案获利最多?并求出最大利润.(注:其他费用不计,利润=售价-进价)【答案】解:(1)设订购甲车为x辆,则订购乙车为(30-x )辆………………1分由题意得:⎩⎨⎧10.5x +6 (30-x )≥22810.5x +6 (30-x )≥240………………5分解得323≤x ≤403 ………………6分∵x 为整数6.短信费 10 2030 40 50 60 70 806.短信费 费用/元AB AB ∴x 取11,12,13∴30-x 取19,18,17 ………………7分 答:该经销商订购甲、乙车共有3种方案 方案一:甲车11辆,乙车19辆 方案二:甲车12辆,乙车18辆方案三:甲车13辆,乙车17辆 ………………8分(2)设该经销商全部出售甲、乙两车后获利为W 万元由题意得W =(11.2-10.5) x +(6.8-6)(30-x )=-0.1x +24 ∵k =-0.1<0∴W 随x 的增大而减小………………10分∴当x =11时,最大=-0.1×11+24=22.9(万元)∴当售出甲车11辆,乙车19辆时,该经销商获得最大利润为22.9万元…………12分七、解答题(本题12分)24.(11·辽宁阜新)如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PE =EB ,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系,不用说明理由;(2)如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P 在AC 的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.【答案】(1)PE =PD 且PE ⊥PD ………………2分 (2)成立………………3分理由:∵四边形ABCD 是正方形∴BC =DC ,∠BCP =∠DCP =45°,∠BCD =90° 又∵PC =PC ∴△BCP ≌△DCP ∴PB =PD ,∠1=∠2 又∵PE =PB∴PE =PD ,∠1=∠3………………5分 ∴∠2=∠3 ∵∠BCD =90°A B A B A B∴∠DCE =90°∴∠DPE =180°―∠2―∠5 ∠DCE =180°―∠3―∠4 又∵∠4=∠5∴∠DPE =∠DCE =90° 即PE ⊥PD ………………9分 (3)仍然成立………………10分作图如图………………12分 八、解答题(本题14分)25.(11·辽宁阜新)如图,抛物线y =12x 2+x -32与x 轴相交于A 、B 两点,顶点为P .(1)求点A 、B 的坐标;(2)在抛物线是否存在点E ,使△ABP 的面积等于△ABE 的面积,若存在,求出符合条件的点E 的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F ,使得以A 、B 、P 、F 为顶点的四边形为平行四边形,直接写出所有符合条件的点F 的坐标.【答案】(1)把y =0代入y =12x 2+x -32中,得12x 2+x -32=0解得x 1=-3,x 2=1∴A (-3,0)、B (1,0) ………………4分 (2)设E (x ,y )∵点P 是抛物线y =12x 2+x -32的顶点∴P (-1,-2) ∵S △ABP =AB ·|y P |2∴S △ABP =(1+3)·22=4∵S △ABE =AB ·|y E |2∴S △ABE =(1+3)·|y E |2=2|y E |∵S △ABP =S △ABE∴4=2|y E | ………………8分 解得y E =±2当y =2时,12x 2+x -32=2 解得x =-1±2 2当y =-2时,12x 2+x -32=-2 解得x =-1∵E (-1,-2)与点P 重合 ∴舍去∴综上所述,在抛物线上存在符合条件的E 有两个,E 1 (-1+22,2)、E 2 (-1-22,2) ………………11分(3)存在符合题意的点F 有3个,分别为F 1 (-5,-2)、F 2(3,-2)、F 3 (-1,2)………………14分。
2018年辽宁省阜新市中考数学真题(解析版)

2018年辽宁省阜新市中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣2.如图所示,是一个空心正方体,它的左视图是()A.B.C.D.3.某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为144.不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)6.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.8.甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×29.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)10.如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0二、填空题(共6小题)11.函数的自变量x的取值范围是.12.如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.13.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为.14.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为.15.如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为m(结果保留根号).16.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.三、解答题(共6小题)17.(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.18.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).19.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?20.在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?21.如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.22.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2018年辽宁省阜新市中考数学真题(解析版)参考答案一、单选题(共10小题)1.【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:B.【知识点】相反数2.【分析】直接利用左视图的观察角度进而得出答案.【解答】解:如图所示:左视图为:.故选:C.【知识点】简单组合体的三视图3.【分析】根据众数、中位数、平均数与极差的定义逐一计算即可判断.【解答】解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.【知识点】极差、中位数、加权平均数、众数4.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为,故选:B.【知识点】解一元一次不等式组、在数轴上表示不等式的解集5.【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D、(﹣2,3),此时xy=﹣2×3=﹣6,符合题意;故选:D.【知识点】反比例函数图象上点的坐标特征6.【分析】根据直径得出∠ACB=90°,进而得出∠CAB=25°,进而解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=65°,∴∠CAB=25°,∵OA=OC,∴∠OCA=∠CAB=25°,故选:A.【知识点】圆周角定理7.【分析】先设阴影部分的面积是x,得出整个图形的面积是7x,再根据几何概率的求法即可得出答案.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=,故选:C.【知识点】菱形的性质、几何概率8.【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【解答】解:设特快列车的平均行驶速度为xkm/h,由题意得,故选:C.【知识点】由实际问题抽象出分式方程9.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(﹣1,1)故选:D.【知识点】规律型:点的坐标、坐标与图形变化-旋转10.【分析】直接利用二次函数图象与系数的关系进而分析得出答案.【解答】解:A、∵抛物线开口向下,∴a<0,∵抛物线与y轴交在正半轴上,∴c>0,∴ac<0,故此选项错误;B、∵抛物线与x轴有2个交点,∴b2﹣4ac>0,故此选项错误;C、∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),∴对称轴是直线x=1.5,故此选项错误;D、∵a<0,抛物线对称轴在y轴右侧,∴a,b异号,∴b>0,故此选项正确.故选:D.【知识点】抛物线与x轴的交点、二次函数图象与系数的关系二、填空题(共6小题)11.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【知识点】函数自变量的取值范围12.【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°,又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.【知识点】平行线的性质13.【分析】根据矩形的性质可得AD∥BC,那么△DEF∽△BCF,利用相似三角形对应边成比例即可求出线段BF的长度.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=,∵点E为AD中点,∴DE=AD,∴DE=BC,∴=,∴BF=2DF=4.故答案为4.【知识点】相似三角形的判定与性质、矩形的性质14.【分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8﹣x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.【解答】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x,在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,故答案为:5.【知识点】翻折变换(折叠问题)、等腰直角三角形15.【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:∵在点B处测得塔顶A的仰角为30°,∴∠B=30°,∵BC=30m,∴AC=m,故答案为:10【知识点】解直角三角形的应用-仰角俯角问题16.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6【知识点】一次函数的应用三、解答题(共6小题)17.【分析】(1)根据负整数指数幂的意义,二次根式的性质以及特殊角锐角三角函数值即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+3﹣2×=4+3﹣=4+2(2)原式=÷=×=当a=2时,原式==【知识点】分式的化简求值、特殊角的三角函数值、实数的运算、负整数指数幂18.【分析】(1)根据点C移到点C1(﹣2,﹣4),可知向下平移了5个单位,分别作出A、B、C的对应点A1、B1、C1即可解决问题;(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;(3)利用勾股定理计算CC2,可得半径为2,根据圆的周长公式计算即可.【解答】解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)∴A1(﹣4,﹣1),B1(﹣2,0);(4分)(2)如图所示,则△A2B2C2为所求作的三角形,(6分)(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2==4,∴点C经过的路径长:×2πr=2π.(8分)【知识点】作图-旋转变换、作图-平移变换、轨迹19.【分析】(1)根据A类的种数除以占的百分比即可得到总人数;再根据总数依次求出即可;(2)求出B的种数是20﹣4﹣6﹣8=2,画出即可;(3)用样本估计总体.【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,∵8÷20=0.4=40%,∴a=40,360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,故答案为:20,40,72°;(2);(3)120×=36(种),答:估计约有36种属于“豆制品类”.【知识点】扇形统计图、用样本估计总体、条形统计图20.【分析】(1)设购买一个篮球需x元,购买一个足球需y元,根据题意列出方程组解答即可;(2)设购买a个篮球,根据题意列出不等式解答即可.【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.【知识点】一元一次不等式的应用、二元一次方程组的应用21.【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=∠ADF,进而判断出△BDE≌△ADF,即可得出结论;(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可判断出AP=AB+AN,再判断出AP=AM,即可得出结论;②先求出BD,再求出∠BMD=60°,最后用三角函数求出DM,即可得出结论.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴BE=AF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠P AM=45°,∴∠P=∠P AM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=,∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.【知识点】三角形综合题22.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得,解这个方程组,得直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,∴S△BCP=S△BPE+S CPE=(﹣t2+3t)×3=﹣(t﹣)2+,∵﹣<0,∴当t=时,S△BCP最大=(3)M(m,﹣m+3),N(m,m2﹣4m+3)MN=m2﹣3m,BM=|m﹣3|,当MN=BM时,①m2﹣3m=(m﹣3),解得m=,②m2﹣3m=﹣(m﹣3),解得m=﹣当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为,﹣,1,2.【知识点】二次函数综合题。
阜新市中考数学试卷

阜新市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列各对数中,互为相反数的是()A . +(﹣5)和﹣(+5)B . ﹣|﹣3|和+(﹣3)C . (﹣1)2和﹣12D . (﹣1)3和﹣132. (2分) (2018八上·东台期中) 下列汽车标志中是轴对称图形的有()A . 5个B . 4个C . 3个D . 2个3. (2分)(2019·永昌模拟) 将14465000元,用科学记数法表示(保留3个有效数字)()A . 1.45×107B . 1.44×107C . 1.40×107D . 0.145×1084. (2分) (2020九下·镇平月考) 如图,在△ABC中,∠A=90°,AB=3,BC=5,则cosB等于()A .B .C .D .5. (2分)(2019·萧山模拟) 已知,如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56′,那么∠BOC为()A . 80°18′B . 50°58′C . 30°10′D . 81°8′6. (2分)如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A . x≤10B . x≥10C . x<10D . x>107. (2分)下列方程有实数根的是A .B .C . +2x−1=0D .8. (2分)已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A .B .C .D .9. (2分)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40o ,则∠OCB的度数为()A . 40°B . 50°C . 65°D . 75°10. (2分)小兰画了一个函数的图象如图,那么关于x的分式方程的解是()A . x=1B . x=2C . x=3D . x=411. (2分) (2020七下·太仓期中) 观察下列等式: ,,,,,,,试利用上述规律判断算式结果的末位数字是()A . 0B . 1C . 3D . 712. (2分)在二次函数y=-x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A . x>1B . x<1C . x>-1D . x<-1二、填空题 (共4题;共4分)13. (1分)(2020·杭州模拟) 在实数范围内分解因式:2x3-6x=________。
2018年辽宁省部分市中考数学试题汇编及参考答案(word解析版7份)

2018年辽宁省部分市中考数学试题汇编(含参考答案与试题解析)目录1.辽宁省沈阳市中考数学试题及参考答案与试题解析 (2)2.辽宁省大连市中考数学试题及参考答案与试题解析 (25)3.辽宁省葫芦岛市中考数学试题及参考答案与试题解析 (47)4.辽宁省锦州市中考数学试题及参考答案与试题解析 (71)5.辽宁省抚顺市中考数学试题及参考答案与试题解析 (97)6.辽宁省盘锦市中考数学试题及参考答案与试题解析 (121)7.辽宁省阜新市中考数学试题及参考答案与试题解析 (147)2018年辽宁省沈阳市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)1.下列各数中是有理数的是()A.πB.0 C D2.辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×1063.如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)5.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°7.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.点A (﹣3,2)在反比例函数ky x=(k≠0)的图象上,则k 的值是( ) A .﹣6 B .32- C .﹣1 D .610.如图,正方形ABCD 内接于⊙O ,AB=AB 的长是( )A .πB .32πC .2πD .12π二、细心填一填(本大题共6小题,每小题3分,满分18分) 11.因式分解:3x 3﹣12x= .12.一组数3,4,7,4,3,4,5,6,5的众数是 . 13.化简:22142a a a -=-- . 14.不等式组20360x x -⎧⎨+⎩<≥的解集是 .15.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.16.如图,△ABC 是等边三角形,,点D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH .当∠BHD=60°,∠AHC=90°时,DH= .三、解答题(本大题共3小题,共22分,17题6分,18-19题各8分)17.(6分)计算:()2012tan 45|3|42π-⎛⎫︒-+-- ⎪⎝⎭.18.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.19.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(本大题共2小题,每小题8分,共16分)20.(8分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.五、解答题(本题10)22.(10分)如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.六、解答题(本题10分)23.(10分)如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、34y x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD(点A移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题(本题12分)24.(12分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α(用含α的代数式表示)(3)若△ABC是等边三角形,AB=,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.八、解答题(本题12分)25.(12分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM 交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)1.下列各数中是有理数的是()A.πB.0 C D【知识考点】实数.【思路分析】根据有理数是有限小数或无限循环小,可得答案.【解答过程】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;CD故选:B.【总结归纳】本题考查了有理数,有限小数或无限循环小数是有理数.2.辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将81000用科学记数法表示为:8.1×104.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答过程】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:D.【总结归纳】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答过程】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【总结归纳】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答过程】解:A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【总结归纳】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°【知识考点】余角和补角;平行线的性质.【思路分析】根据平行线的性质比较多定义求解即可;【解答过程】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【总结归纳】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【知识考点】随机事件.【思路分析】必然事件就是一定发生的事件,依据定义即可判断.【解答过程】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.【总结归纳】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()。
阜新中考数学试题及答案

阜新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 3.14C. √2D. 0.33333答案:A2. 如果一个三角形的两边长分别为3和4,第三边的长x满足以下哪个条件?A. x > 1B. x > 7C. 1 < x < 7D. x = 7答案:C3. 以下哪个表达式等于0?A. 3 + 0B. 2 - 2C. 4 × 0D. 5 ÷ 5答案:B4. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 3(题目中应给出具体方程,此处假设方程为x^2 - 4x + 4 = 0)答案:A6. 以下哪个是正比例函数?A. y = 2x + 1B. y = 3xC. y = 4/xD. y = x^2答案:B7. 如果一个数的立方根等于它自己,这个数可能是?A. 1B. -1C. 0D. 所有选项答案:D8. 以下哪个是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a < b,那么a - c < b - cC. 如果a > b,那么ac > bcD. 如果a < b,那么ac < bc答案:A9. 以下哪个是几何平均数?A. 平均数B. 中位数C. 众数D. 调和平均数答案:A10. 以下哪个是统计图?A. 条形图B. 折线图C. 饼图D. 所有选项答案:D二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个角是直角的一半,那么这个角的度数是______。
答案:45°13. 一个长方体的长、宽、高分别是2cm、3cm和4cm,它的体积是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年辽宁省阜新市中考数学试卷一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3.00分)(2018•阜新)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣1 20182.(3.00分)(2018•阜新)如图所示,是一个空心正方体,它的左视图是()A.B.C.D.3.(3.00分)(2018•阜新)某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为144.(3.00分)(2018•阜新)不等式组{2x>−4x−1≤1的解集,在数轴上表示正确的是()A. B. C.D.5.(3.00分)(2018•阜新)反比例函数y=kx的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2) C.(﹣2,﹣3)D.(﹣2,3)6.(3.00分)(2018•阜新)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A .25°B .35°C .15°D .20°7.(3.00分)(2018•阜新)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.(3.00分)(2018•阜新)甲、乙两地相距600km ,乘高铁列车从甲地到乙地比乘特快列车少用4h ,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h ,根据题意可列方程为( )A .600x +6003x =4B .6003x −600x =4C .600x −6003x=4D .600x −6003x=4×29.(3.00分)(2018•阜新)如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2018次得到正方形OA 2018B 2018C 2018,如果点A 的坐标为(1,0),那么点B 2018的坐标为( )A .(1,1)B .(0,√2)C .(−√2,0)D .(﹣1,1)10.(3.00分)(2018•阜新)如图,抛物线y=ax 2+bx +c 交x 轴于点(﹣1,0)和(4,0),那么下列说法正确的是( )A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0二、填空题(每小题3分,共18分)11.(3.00分)(2018•阜新)函数y=1x−3的自变量x的取值范围是.12.(3.00分)(2018•阜新)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.13.(3.00分)(2018•阜新)如图,在矩形ABCD中,点E为AD中点,BD和CE 相交于点F,如果DF=2,那么线段BF的长度为.14.(3.00分)(2018•阜新)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为.15.(3.00分)(2018•阜新)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为m(结果保留根号).16.(3.00分)(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B 地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.(8.00分)(2018•阜新)(1)计算:(12)﹣2+√18﹣2cos45°;(2)先化简,再求值:a2−1a2−2a+1÷(1+1a−1),其中a=2.18.(8.00分)(2018•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).19.(8.00分)(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?20.(8.00分)(2018•阜新)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?21.(10.00分)(2018•阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC 于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=√2AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.22.(10.00分)(2018•阜新)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2018年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3.00分)(2018•阜新)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣1 2018【考点】14:相反数.【专题】1 :常规题型.【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3.00分)(2018•阜新)如图所示,是一个空心正方体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】直接利用左视图的观察角度进而得出答案.【解答】解:如图所示:左视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.3.(3.00分)(2018•阜新)某中学篮球队12名队员的年龄情况如下表: 年龄/岁 12 13 14 15 16 人数13422关于这12名队员的年龄,下列说法中正确的是( ) A .众数为14 B .极差为3C .中位数为13D .平均数为14【考点】W2:加权平均数;W4:中位数;W5:众数;W6:极差. 【专题】1 :常规题型;542:统计的应用.【分析】根据众数、中位数、平均数与极差的定义逐一计算即可判断. 【解答】解:A 、这12个数据的众数为14,正确; B 、极差为16﹣12=4,错误;C 、中位数为14+142=14,错误;D 、平均数为12+13×3+14×4+15×2+16×212=16912,错误;故选:A .【点评】本题主要考查众数、极差、中位数和平均数,熟练掌握众数、极差、中位数和平均数的定义是解题的关键.4.(3.00分)(2018•阜新)不等式组{2x >−4x −1≤1的解集,在数轴上表示正确的是( )A .B .C .D .【考点】C4:在数轴上表示不等式的解集;CB :解一元一次不等式组. 【专题】1 :常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项. 【解答】解:{2x >−4①x −1≤1②∵解不等式①得:x >﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集得出不等式组的解集是解此题的关键.5.(3.00分)(2018•阜新)反比例函数y=kx的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2) C.(﹣2,﹣3)D.(﹣2,3)【考点】G6:反比例函数图象上点的坐标特征.【专题】1 :常规题型.【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.【解答】解:∵反比例函数y=kx的图象经过点(3,﹣2),∴xy=k=﹣6,A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D、(﹣2,3),此时xy=﹣2×3=6,符合题意;故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.6.(3.00分)(2018•阜新)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A .25°B .35°C .15°D .20° 【考点】M5:圆周角定理. 【专题】55:几何图形.【分析】根据直径得出∠ACB=90°,进而得出∠CAB=25°,进而解答即可. 【解答】解:∵AB 是⊙O 的直径, ∴∠ACB=90°, ∵∠ABC=65°, ∴∠CAB=25°, ∵OA=OC ,∴∠OCA=∠CAB=25°, 故选:A .【点评】本题考查了圆周角定理,正确理解圆周角定理是关键.7.(3.00分)(2018•阜新)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .18【考点】L8:菱形的性质;X5:几何概率. 【专题】1 :常规题型;543:概率及其应用.【分析】先设阴影部分的面积是x ,得出整个图形的面积是7x ,再根据几何概率的求法即可得出答案.【解答】解:设阴影部分的面积是x ,则整个图形的面积是7x , 则这个点取在阴影部分的概率是x 7x =17,故选:C .【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.8.(3.00分)(2018•阜新)甲、乙两地相距600km ,乘高铁列车从甲地到乙地比乘特快列车少用4h ,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h ,根据题意可列方程为( )A .600x +6003x=4 B .6003x −600x =4 C .600x −6003x =4 D .600x −6003x =4×2 【考点】B6:由实际问题抽象出分式方程.【专题】12 :应用题.【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h ,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【解答】解:设特快列车的平均行驶速度为xkm/h ,由题意得600x −6003x =4,故选:C .【点评】此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.9.(3.00分)(2018•阜新)如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2018次得到正方形OA 2018B 2018C 2018,如果点A 的坐标为(1,0),那么点B 2018的坐标为( )A.(1,1) B.(0,√2)C.(−√2,0)D.(﹣1,1)【考点】D2:规律型:点的坐标;R7:坐标与图形变化﹣旋转.【专题】2A :规律型.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=√2,由旋转得:OB=OB1=OB2=OB3=…=√2,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,√2),B2(﹣1,1),B3(﹣√2,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(﹣1,1)故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.10.(3.00分)(2018•阜新)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】1 :常规题型.【分析】直接利用二次函数图象与系数的关系进而分析得出答案.【解答】解:A、∵抛物线开口向下,∴a<0,∵抛物线与y轴交在正半轴上,∴c>0,∴ac<0,故此选项错误;B、∵抛物线与x轴有2个交点,∴b2﹣4ac>0,故此选项错误;C、∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),∴对称轴是直线x=1.5,故此选项错误;D、∵a<0,抛物线对称轴在y轴右侧,∴a,b异号,∴b>0,故此选项正确.故选:D.【点评】此题主要考查了二次函数图象与系数的关系,正确掌握各项符号判断方法是解题关键.二、填空题(每小题3分,共18分)11.(3.00分)(2018•阜新)函数y=1x−3的自变量x的取值范围是x≠3.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(3.00分)(2018•阜新)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°,又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,熟练掌握性质并准确识图是解题的关键.13.(3.00分)(2018•阜新)如图,在矩形ABCD 中,点E 为AD 中点,BD 和CE 相交于点F ,如果DF=2,那么线段BF 的长度为 4 .【考点】LB :矩形的性质;S9:相似三角形的判定与性质.【专题】1 :常规题型.【分析】根据矩形的性质可得AD ∥BC ,那么△DEF ∽△BCF ,利用相似三角形对应边成比例即可求出线段BF 的长度.【解答】解:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∴△DEF ∽△BCF ,∴DF BF =DE BC, ∵点E 为AD 中点,∴DE=12AD , ∴DE=12BC , ∴DF BF =12, ∴BF=2DF=4.故答案为4.【点评】本题考查了相似三角形的判定与性质,矩形的性质,线段中点的定义,证明出△DEF ∽△BCF 是解题的关键.14.(3.00分)(2018•阜新)如图,将等腰直角三角形ABC (∠B=90°)沿EF 折叠,使点A 落在BC 边的中点A 1处,BC=8,那么线段AE 的长度为 5 .【考点】KW:等腰直角三角形;PB:翻折变换(折叠问题).【专题】1 :常规题型;554:等腰三角形与直角三角形;558:平移、旋转与对称.【分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8﹣x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.【解答】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x,在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,故答案为:5.【点评】本题主要考查折叠的性质,利用折叠的性质得到AE=A1E是解题的关键,注意勾股定理的应用.15.(3.00分)(2018•阜新)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为10√3m(结果保留根号).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】55:几何图形.【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:∵在点B处测得塔顶A的仰角为30°,∴∠B=30°,∵BC=30m,∴AC=√33BC=30×√33=10√3m,故答案为:10√3【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(3.00分)(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B 地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是 3.6km/h.【考点】FH:一次函数的应用.【专题】521:一次方程(组)及应用;533:一次函数及其应用.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12×2解得x=3.6故答案为:3.6【点评】本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.(8.00分)(2018•阜新)(1)计算:(12)﹣2+√18﹣2cos45°;(2)先化简,再求值:a2−1a2−2a+1÷(1+1a−1),其中a=2.【考点】2C:实数的运算;6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】(1)根据负整数指数幂的意义,二次根式的性质以及特殊角锐角三角函数值即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+3√2﹣2×√2 2=4+3√2﹣√2 =4+2√2(2)原式=(a+1)(a−1)(a−1)2÷aa−1=a+1a−1×a−1a=a+1 a当a=2时,原式=2+1 2=32【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)(2018•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).【考点】O4:轨迹;Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13 :作图题.【分析】(1)根据点C移到点C1(﹣2,﹣4),可知向下平移了5个单位,分别作出A、B、C的对应点A1、B1、C1即可解决问题;(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;(3)利用勾股定理计算CC2,可得半径为2√2,根据圆的周长公式计算即可.【解答】解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)∴A1(﹣4,﹣1),B1(﹣2,0);(4分)(2)如图所示,则△A2B2C2为所求作的三角形,(6分)(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2=√42+42=4√2,∴点C经过的路径长:12×2πr=2√2π.(8分)【点评】本题考查平移变换、旋转变换、勾股定理等知识,解题的关键是正确作出对应点解决问题,属于中考常考题型.19.(8.00分)(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共20种,扇形统计图中a=40,扇形统计图中A部分圆心角的度数为72°;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型.【分析】(1)根据A类的种数除以占的百分比即可得到总人数;再根据总数依次求出即可;(2)求出B的种数是20﹣4﹣6﹣8=2,画出即可;(3)用样本估计总体.【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,∵8÷20=0.4=40%,∴a=40,360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,故答案为:20,40,72°;(2);(3)120×620=36(种), 答:估计约有36种属于“豆制品类”.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.20.(8.00分)(2018•阜新)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【考点】9A :二元一次方程组的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)设购买一个篮球需x 元,购买一个足球需y 元,根据题意列出方程组解答即可;(2)设购买a 个篮球,根据题意列出不等式解答即可.【解答】解:(1)设购买一个篮球需x 元,购买一个足球需y 元,根据题意可得: {x −y =5010x +15y =3000, 解得:{x =150y =100, 答:购买一个篮球,一个足球各需150元,100元;(2)设购买a 个篮球,根据题意可得:0.9×150a +0.85×100(10﹣a )≤1050,解得:a≤4,答;最多可购买4个篮球.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据总费用作为不等关系列出不等式求解.21.(10.00分)(2018•阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC 于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=√2AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.【考点】KY:三角形综合题.【专题】15 :综合题.【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=∠ADF,进而判断出△BDE≌△ADF,即可得出结论;(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可判断出AP=AB+AN,再判断出AP=√2AM,即可得出结论;②先求出BD,再求出∠BMD=60°,最后用三角函数求出DM,即可得出结论.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴DE=DF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=√2AM,∴AB+AN=√2AM;②在Rt△ABD中,AD=BD=√22AB=√2,∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,在Rt△BDM中,DM=BDtan∠BMD =√6 3,∴AM=AD﹣DM=√2﹣√6 3.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,锐角三角函数,判断出△BDE ≌△ADF 是解(1)的关键,构造出全等三角形是解(2)的关键.22.(10.00分)(2018•阜新)如图,已知二次函数y=ax 2+bx +3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【考点】HF :二次函数综合题.【专题】537:函数的综合应用.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m 的方程,根据解方程,可得答案.【解答】解:(1)将A (1,0),B (3,0)代入函数解析式,得{a +b +3=09a +3b +3=0, 解得{a =1b =−4, 这个二次函数的表达式是y=x 2﹣4x +3;(2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx +b ,将点B (3,0)点C (0,3)代入函数解析式,得{3k +b =0b =0, 解这个方程组,得{k =−1b =3直线BC 的解析是为y=﹣x +3,过点P 作PE ∥y 轴,交直线BC 于点E (t ,﹣t +3),PE=﹣t +3﹣(t ﹣4t +3)=﹣t 2+3t , ∴S △BCP =S △BPE +S CPE =12(﹣t 2+3t )×3=﹣32(t ﹣32)2+278, ∵﹣32<0,∴当t=32时,S △BCP 最大=278(3)M (m ,﹣m +3),N (m ,m 2﹣4m +3)MN=m 2﹣3m ,BM=√2|m ﹣3|,当MN=BM 时,①m 2﹣3m=√2(m ﹣3),解得m=√2,②m 2﹣3m=﹣√2(m ﹣3),解得m=﹣√2当BN=MN 时,∠NBM=∠BMN=45°,m 2﹣4m +3=0,解得m=1或m=3(舍)当BM=BN 时,∠BMN=∠BNM=45°,﹣(m 2﹣4m +3)=﹣m +3,解得m=2或m=3(舍),当△BMN 是等腰三角形时,m 的值为√2,﹣√2,1,2.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m 的方程,要分类讨论,以防遗漏.。