2019最新北师大版中考数学试卷(含答案) - 副本 - 副本

合集下载

精品解析:【全国百强校】北京市首都师范附属中学2019届九年级中考综合复习数学试题(解析版)

精品解析:【全国百强校】北京市首都师范附属中学2019届九年级中考综合复习数学试题(解析版)

【点睛】本题考察了中心对称的含义.
3. 若实数 a,b 满足|a|>|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )
A.
B.
C.
D.
【答案】D 【解析】 【分析】 根据绝对值的意义即可解答. 【详解】由|a|>|b|,得 a 与原点的距离比 b 与原点的距离远, 只有选项 D 符合,故选 D. 【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键. 4. 小鹏和同学相约去影院观看《厉害了,我的国》,在购票选座时,他们选定了方框所围区域内的座位(如 图).取票时,小鹏从这五张票中随机抽取一张,则恰好抽到这五个座位正中间的座位的概率是( )
A. 1 2
【答案】D
4
B.
5
3
C.
5
1
D.
5
【解析】
分析:小鹏从这五张票中随机抽取一张,直接利用概率公式求解即可得到答案. 详解:∵小鹏从这五张票中随机抽取一张,
1
∴恰好抽到这五个座位正中间的座位的概率是: .
5
故选 D. 点睛:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
5. 如图,直线 a∥b,直线 c 与直线 a、b 分别交于点 A、点 B,AC⊥AB 于点 A,交直线 b 于点 C.如果
【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.
2. 在中国集邮总公司设计的 2017 年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( )
A.
B.
C.
D.
【答案】C 【解析】 【分析】 把一个图形绕着某一个点旋转 180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对 称图形. 【详解】解:观察四个选项中的图形,只有 C 符合中心对称的定义.

(完整版)北师大版中考数学试题及答案

(完整版)北师大版中考数学试题及答案

A B C31 23 6 78第一部分 选择题(本部分共12小题,每小题3分,共36分。

每小题给出的4个选项中,其中只有一个是正确的)1.12-的相反数等于( )A .12- B .12 C .-2 D .22.如图1所示的物体是一个几何体,其主视图是( )A .B .C .D . 图13.今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( ) A .5.6×103 B .5.6×104 C .5.6×105 D .0.56×105 4.下列运算正确的是( )A .x 2+x 3=x 5B .(x +y )2=x 2+y 2C .x 2·x 3=x 6D .(x 2)3=x 6 5.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5, 则这组数据的中位数为( )A .4B .4.5C .3D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( ) A .100元 B .105元 C .108元 D .118元7.如图2,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是( )图2 A . B . C . D . 8.如图3是两个可以自由转动的转盘,转盘各被等分成三个扇形, 并分别标上1,2,3和6,7,8这6个数字。

如果同时转动 两个转盘各一次(指针落在等分线上重转),当转盘停止后, 则指针指向的数字和为偶数的概率是( ) A .12 B .29 C .49D .139.已知a ,b ,c 均为实数,若a >b ,c ≠0。

下列结论不一定正确的是( ) A .a c b c +>+ B .c a c b ->- C .22a b c c> D .22a ab b >> 10.对抛物线223y x x =-+-而言,下列结论正确的是( )图7图5 A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标为(1,-2) 11.下列命题是真命题的个数有( )①垂直于半径的直线是圆的切线; ②平分弦的直径垂直于弦;③若12x y =⎧⎨=⎩是方程x -ay =3的一个解,则a =-1;④若反比例函数3y x=-的图像上有两点(12,y 1),(1,y 2),则y 1<y2。

2019年北京中考数学试题及答案.doc

2019年北京中考数学试题及答案.doc

2019年北京中考数学试题及答案正在准备中考的同学。

小编为您精心准备了2019年北京中考数学试题及答案,一起来看看吧,希望能够帮助到你,想知道更多相关资讯,请关注网站更新。

2019年北京中考数学试题及答案一、细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下列图形中能够说明的是()2.下列命题中的真命题是()A.邻补角互补B.两点之间,直线最短C.同位角相等D.同旁内角互补3.如右图所示,小手盖住的点的坐标可能为()A.(5,2)B.(4,-3)C.(-3,-4)D.(-5,2)4.不能成为某个多边形的内角和的是( )A.360°B.540°C.720°D.1180°5.下列说法错误的是()A.三角形的中线、角平分线、高线都是线段B.三角形按角分类可分为锐角三角形和钝角三角形C.三角形中的每个内角的度数不可能都小于600D.任意三角形的内角和都是180°参考答案题号12345答案CADDB二、耐心填一填11.如下图所示,AB‖CD,点E在CB的延长线上,若∠ABE=600,则∠ECD的度数为.12.已知△ABC的三个内角的度数比为3:4:5,则这个三角形的最大内角的度数为.13.平面直角坐标系中,点A与点B的横坐标相等且不为0,则直线AB与轴的关系是:.14.平面直角坐标系中,长为4的线段CD在轴的正半轴上,且点C的坐标为(0,3),则点D的坐标为.15在①正方形、②正六边形、③正七边形、④正八边形中,选一种能铺满地面的正多边形是_____(只填代号).填空题参考答案题号1112131415答案1200750平行(0,7)①②三、用心答一答19.(扩展)解方程组:(第①小题4分,第②小题5分)①②(用加减消元法)20.如图EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD.(每填一处1分,计9分) 解:∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥()∴∠BAC+=180)∵∠BAC=70o(已知)∴∠AGD=()21.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)将△ABC先向右平移1个单位长度,再向上平移1个单位长度,得到△A&#39;B&#39;C&#39;,在图中画出△A&#39;B&#39;C&#39;.(6分)(2)求出△A&#39;B&#39;C&#39;的面积.(5分)22.(10分)初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

2019-2020年九年级数学中考模拟考试试卷北师大版

2019-2020年九年级数学中考模拟考试试卷北师大版
(2)当 OD=2 时,若以 O、B 、 F 为顶点的三角形与△ ABC 相似,求弧 EF 的长度。
A
19.请你依据右面图框中的寻宝游戏规则,探究“寻宝 游戏”的奥秘:
A 寻宝游戏
F
B
如下图, 有三间房, 每间房 内放有两个柜子, 仅有一件宝物 藏在某个柜子中,寻宝游戏规 则:只允许进入三个房间中的一 个房间并打开其中一个柜子即 为一次游戏结束。 找到宝物为游
BC 可将其固定, ?这里所运用的几何原理是
14.如图 14,已知点 C 为反比例函数 y
的面积为

6
上的一点, 过点 C 向坐标轴引垂线,
x
垂足分别为
A、B,那么四边形
⑴用树状图表示出所有可能的寻宝情况; AOBC
⑵求在寻宝游戏中胜出的概率。
第 14 题
A
B
l
(第 15 题)
15.如图, ⊙ A 、 ⊙B 的圆心 A、 B 在直线 l 上,两圆的半径都为 1cm,开始时圆心距 AB 4cm,
B C
(图①)
(图②)
(第 25 题)
学生数(人)
3
7
5
15
10
则在这次活动中,该班同学捐款金额的 众数 是
A. 30 元
B .35 元
C. 50 元
D .100 元
10.如图,将 △ ABC 沿 DE 折叠,使点 A 与 BC 边的中点 F 重合,下列结论中:
① EF ∥ AB 且 EF
1 AB ;②FE ④ BDF
25 .问题背景:
23.如图,一盏路灯沿灯罩边缘射出的光线与地面
在 △ ABC 中, AB 、 BC 、 AC 三边的长分别为 5 、 10 、 13 ,求这个三角形的面积.

2019年北京市中考数学试卷及解析

2019年北京市中考数学试卷及解析

数学试卷第1页(共12【本文由书林工作坊整理发布,欢迎下载使用!】绝密★启用前2019年北京市高级中等学校招生考试数学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( ) A .60.43910⨯B .64.3910⨯C .54.3910⨯D .343910⨯ 2.下列倡导节约的图案中,是轴对称图形的是( )AB CD3.正十边形的外角和为( )A .180︒B .360︒C .720︒D .1440︒4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A .3-B .2-C .1-D .15.已知锐角AOB ∠如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .COM COD ∠=∠B .若OM MN =,则20AOB ︒∠= C .MN CD ∥D .3MN CD =6.如果1m n +=,那么代数式()22221m nm n m m mn +⎛⎫+⋅- ⎪-⎝⎭的值为( )A .3-B .1-C .1D .37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公学生类别5毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共12页)数学试卷第4页(共12页)下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A .①③B .②④C .①②③D .①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为 .10.如图,已知ABC △,通过测量、计算得ABC △的面积约为 2cm .(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是 .(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠=+ 。

2019-2020年中考数学真题试卷(北师大版)

2019-2020年中考数学真题试卷(北师大版)

2019-2020年中考数学真题试卷(北师大版)注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效。

考试结束,请将本试题卷和答题卡一并上交。

以下数据、公式供参考:3 ≈1.7;l 弧长=180nπR(R 为半径,l 为弧长);二次函数y =ax 2+bx +c 图象的顶点坐标是(ab ac a b 44,22--)。

一、选择题 (在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分)1.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的(■).(A)轴对称性 (B)用字母表示数 (C)随机性 (D)数形结合2.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(■).(A)+0.02克 (B)-0.02克 (C) 0克 (D)+0.04克3.要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是(■). (A)在某校九年级选取50名女生 (B)在某校九年级选取50名男生(C)在某校九年级选取50名学生 (D)在城区8000名九年级学生中随机选取50名学生 4.我市大约有34万中小学生参加了“廉政文化进校园”教育活动,将数据34万用科学记数法表示,正确的是(■ ). (A)0.34×105(B)3.4×105 (C)34×105 (D)340×1055.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( ■). (A)a <b (B)a =b (C)a >b (D)ab >06.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当(第5题)ba把白炽灯向远移时,圆形阴影的大小的变化情况是(■). (A)越来越小 (B)越来越大 (C)大小不变 (D)不能确定 7.下列计算正确的是(■).(A)3a -a =3 (B)2a·a 3=a 6(C)(3a 3)2=2a 6(D)2a÷a=2 8.一个圆锥体按如图所示摆放,它的主视图是(■).9.按图1的方法把圆锥的侧面展开,得到图2,其半径OA =3,圆心角∠AOB =120°,则AB 的长为(■).(A)π (B)2π (C)3π (D)4π 10.下列说法正确的是(■).(A)若明天降水概率为50%,那么明天一定会降水 (B)任意掷一枚均匀的1元硬币,一定是正面朝上 (C)任意时刻打开电视,都正在播放动画片《喜洋洋》 (D)本试卷共24小题11.如图是教学用直角三角板,边AC =30cm ,∠C =90°, tan ∠BAC =33,则边BC 的长为(■). (A)330 cm (B) 320 cm (C) 310 cm (D) 35 cm 12.如图,在梯形ABCD 中,AB ∥CD ,AD =BC , 点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 则下列结论一定正确的是(■). (A)∠HGF =∠GHE (B)∠GHE =∠HEF (C)∠HEF =∠EFG (D)∠HGF =∠HEF 13.如图,矩形OABC 的顶点O 为坐标原点,点 A 在x 轴上,点B 的坐标为(2,1).如果将矩形 OABC 绕点O 顺时针旋转180°,旋转后的图形为第9题图1B第11题第12题BG(A)(B)(C)(D)第8题矩形OA 1B 1C 1,那么点B 1的坐标为(■).(A)(2,1) (B)(-2,1) (C)(-2,-1) (D)(2,-1)14.夷昌中学开展 “阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三 项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是(■). (A)50 (B)25 (C)15 (D)10 15.如图,直线y =x +2与双曲线y=xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为(■).(D)(C)(B)(A)-2-1432-2-1432-2-1432-2-14320110101二、解答题 (请将解答结果书写在答题卡上指定的位置.本大题共9小题,16~19每小题7分,20~21每小题8分,22~23每小题10分,24题11分,合计75分) 16.先将代数式11)(2+⨯+x x x 化简,再从-1,1两数中选取一个适当的数作为x 的值代入求值.第14题50篮球17.解方程组⎩⎨⎧=+=-221y x y x .18.如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F.(1)证明:∠DFA =∠FAB ; (2)证明:△ABE ≌△FCE .19.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查结果分析显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随着时间x(年)逐年成直线上升,y 与x 之间的关系如图所示. (1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?20.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.Fy (万吨)(1)求这个镶嵌图案中一个正三角形的面积;(2)如果在这个镶嵌图案中随机确定一个点O ,那么点概率为多少?(结果保留二位小数)21.如图,D 是△ABC 的边BC 的中点,过AD 延长线上的点E 作AD 的垂线EF ,E 为垂足,EF与AB 的延长线相交于点F ,点O 在AD 上,AO =CO ,BC ∥EF .(1)证明:AB =AC ;(2)证明:点O 是△ABC 的外接圆的圆心;(3)当AB =5,BC =6时,连接BE ,若∠ABE =90°,求AE22.随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资。

2019年北京市中考数学试题及答案版-10页精选文档

2019年北京市中考数学试题及答案版-10页精选文档

2019年北京市高级中等学校招生考试数 学 试 卷下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.6-的绝对值等于( ) A .6B .16C .16-D .6-2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20 B .50,30 C .50,50 D .135,50 5.若一个多边形的内角和等于720o,则这个多边形的边数是( )A .5B .6C .7D .86.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( ) A .15B .25C .12D .357.若20x +=,则xy 的值为( )A .8-B .6-C .5D .68.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )2019年北京市高级中等学校招生考试 数 学 试 卷 9.在函数121y x =-中,自变量x 的取值范围是 . 10.分解因式:32a ab -= .11.如图,在ABC △中,D E ,分别是AB AC ,的中点, 若2cm DE =,则BC = cm .12.一组按规律排列的式子:2b a -,53b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).三、解答题(共5道小题,共25分) 13.(本小题满分5分)1012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭o .解: 14.(本小题满分5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来. 解: 15.(本小题满分5分)已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =. 求证:AC CD =.证明:16.(本小题满分5分) 如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标. 解:17.(本小题满分5分) 已知30x y -=,求222()2x yx y x xy y+--+g 的值. 解:四、解答题(共2道小题,共10分)CA E D BACE B y O P MO M 'MP A .O M 'M P B .O M 'M P C .OM 'M PD .18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=o,AD =BC =求DC 的长. 解: 19.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=o ,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O e 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长.解:(1)(2)五、解答题(本题满分6分) 20.为减少环境污染,自2008年6月1有偿使用制度”(以下简称“限塑令”).某班同学于6卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:(2)六、解答题(共2道小题,共9分) 21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2019年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 解: 22.(本小题满分4分)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿DG DE GF ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.AB C DA“限塑令”实施后,使用各种(11的等边三角形),点A 2所示,请直接写出此时重叠三角形A B ''(2,若重叠三角形A B C'''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用). 解:(1)重叠三角形A'(2)用含m m 的取值范围为. 七、解答题(本题满分23.已知:关于x 0)m >. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤.(1)证明: (2)解:(3)解:八、解答题(本题满分7分)24.在平面直角坐标系xOy 中,抛物线y x =(点A 在点B的左侧),与y 轴交于点C ,点B 的坐标为3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠两角和的度数. 解:(1)(2) (3)九、解答题(本题满分8分) 25.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,的中点,连结PG PC ,.若60ABC BEF ∠=∠=o,探究值.图1备用图备用图x小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及PGPC的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEFαα∠=∠=<<o o,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).解:(1)线段PG与PC的位置关系是;PGPC=.(2)2019年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名.2.第Ⅰ卷是选择题,机读阅卷.3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷(机读卷共32分)一、选择题(共8道小题,每小题4分,共32分)(非机读卷共88分)二、填空题(共4道小题,每小题4分,共16分)三、解答题(共5道小题,共25分)13.(本小题满分5分)112sin45(2π)3-⎛⎫+-- ⎪⎝⎭o2132=⨯+-····················································································4分DABEFCPG图1D CGPA BEF图22=. ··································································································· 5分14.(本小题满分5分)解:去括号,得51286x x --≤. ···································································· 1分 移项,得58612x x --+≤. ··········································································· 2分 合并,得36x -≤. ······················································································· 3分 系数化为1,得2x -≥. ················································································· 4分·············································································· 5分15.(本小题满分5分)证明:AB ED Q ∥,B E ∴∠=∠. ······························································································· 2分 在ABC △和CED △中,ABC CED ∴△≌△. ···················································································· 4分 AC CD ∴=. ······························································································· 5分 16.(本小题满分5分) 解:由图象可知,点(21)M -,在直线3y kx =-上, ·············································· 1分 解得2k =-.································································································ 2分∴直线的解析式为23y x =--. ······································································· 3分令0y =,可得32x =-. ∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. ······························································· 4分令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,. ································································· 5分 17.(本小题满分5分) 解:222()2x yx y x xy y +--+g22()()x yx y x y +=--g ························································································· 2分 2x yx y+=-. ··································································································· 3分 当30x y -=时,3x y =. ·············································································· 4分原式677322y y y y y y +===-. ··············································································· 5分四、解答题(共2道小题,共10分) 18.(本小题满分5分) 解法一:如图1,分别过点A D ,作AE BC ⊥于点E ,DF BC ⊥于点F . ····································· 1分 又AD BC ∥,∴四边形AEFD 是矩形.EF AD ∴== ····································· 2分CF EC EF =-=···················································································· 4分在Rt DFC △中,90DFC ∠=o,DC ∴=== ············································· 5分 解法二:如图2,过点D 作DF AB ∥,分别交AC BC ,于点E F ,. ···················· 1分90AED BAC ∴∠=∠=o .在Rt ABC △中,90BAC ∠=o,45B ∠=o,BC =sin 4542AC BC ∴===o g ································································· 2分在Rt ADE △中,90AED ∠=o,45DAE ∠=o,AD =3CE AC AE ∴=-=. ·················································································· 4分 在Rt DEC △中,90CED ∠=o,DC ∴===. ························································· 5分 19. (本小题满分5分)解:(1)直线BD 与O e 相切. ········································································ 1分 证明:如图1,连结OD .90C ∠=o Q , 90CBD CDB ∴∠+∠=o .又CBD A ∠=∠Q ,∴直线BD 与O e 相切. ·············································分(2)解法一:如图1,连结DE . AE Q 是O e 的直径, 90ADE ∴∠=o . 4cos 5AD A AE ∴==. ······················································································ 3分 4cos 5BC CBD BD ∴∠==. ··············································································· 4分A ABCDFE图2 A BCDF E 图12解法二:如图2,过点O 作OH AD ⊥于点H . 12AH DH AD ∴==.:8:5AD AO =Q ,4cos 5AH A AO ∴==. ··················· 3分 4cos 5BC CBD BD ∴∠==. ································· 4分 52BD ∴=. ·····································································五、解答题(本题满分6分)解:(1)补全图1见下图. ·············································································· 1分 9137226311410546373003⨯+⨯+⨯+⨯+⨯+⨯+⨯==(个). 这100·························· 3分 ·························· 4分 (2)图2·························· 5分 根据图表回答正确给1环保做贡献. ········································ 6分 六、解答题(共221.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米. ········································································· 1分依题意,得3061(40)602x x +=+. ···································································· 3分 解得200x =. ······························································································ 4分答:这次试车时,由北京到天津的平均速度是每小时200千米. ······························ 5分 22.解:(1)重叠三角形A B C '''. ··················································· 1分(2)用含m 的代数式表示重叠三角形A B C '''2)m -; ······················· 2分m 的取值范围为843m <≤. ··········································································· 4分七、解答题(本题满分7分)23.(1)证明:2(32)220mx m x m -+++=Q 是关于x 的一元二次方程,Q 当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根. ········································································ 2分(2)解:由求根公式,得(32)(2)2m m x m+±+=.A图1 塑料袋数/个“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图m11x ∴=,222m x m+=. ················································································ 4分即2(0)y m m =>为所求. ······················· 5分(3)解:在同一平面直角坐标系中分别画出2(0)y m m=>与2(0)y m m =>的图象.····························································· 6分 由图象可得,当1m ≥时,2y m ≤. ··········· 7分 八、解答题(本题满分7分)24.解:(1)y kx =Q 沿y 轴向上平移3个单位长度后经过y 轴上的点C , 设直线BC 的解析式为3y kx =+.(30)B Q ,在直线BC 上,解得1k =-.∴直线BC 的解析式为3y x =-+. ··································································· 1分 Q 抛物线2y x bx c =++过点B C ,,解得43b c =-⎧⎨=⎩,.∴抛物线的解析式为243y x x =-+. ······························································· 2分(2)由243y x x =-+. 可得(21)(10)D A -,,,.可得OBC △是等腰直角三角形.如图1,设抛物线对称轴与x 轴交于点F , 过点A 作AE BC ⊥于点E .可得BE AE ==CE =在AEC △与AFP △中,90AEC AFP ∠=∠=o,∠解得2PF =.Q 点P 在抛物线的对称轴上,∴点P 的坐标为(22),或(22)-,.····································································· 5分 x图1 0)(3)解法一:如图2,作点(10)A ,关于y 轴的对称点A ',则(10)A '-,. 连结A C A D '',,可得A C AC '==OCA OCA '∠=∠. 由勾股定理可得220CD =,210A D '=. 又210A C '=,A DC '∴△是等腰直角三角形,90CA D '∠=o, 即OCA ∠与OCD ∠两角和的度数为45o. ····················分解法二:如图3,连结BD .同解法一可得CD =AC =在Rt DBF △中,90DFB ∠=o,1BF DF ==, 在CBD △和COA △中,即OCA ∠与OCD ∠两角和的度数为45o. ·······················九、解答题(本题满分8分)25.解:(1)线段PG 与PC 的位置关系是PG PC ⊥;PGPC= ································································································· 2分 (2)猜想:(1)中的结论没有发生变化.证明:如图,延长GP 交AD 于点H ,连结CH CG ,. P Q 是线段DF 的中点, 由题意可知AD FG ∥. Q 四边形ABCD 是菱形,由60ABC BEF ∠=∠=o,且菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,可得60GBC ∠=o.Q 四边形BEFG 是菱形,即120HCG ∠=o.PGPC ∴= ······························································································· 6分 (3)PGPC=tan(90)α-o . ············································································· 8分 x x图3D CGPABFH。

2019最新北师大版中考数学试卷(含答案)

2019最新北师大版中考数学试卷(含答案)

2019最新北师大版中考数学试卷(含答案)1.请注意,本试卷分为第Ⅰ卷和第Ⅱ卷两部分。

在答题卡上填写姓名和准考证号。

2.第Ⅰ卷为选择题,共10小题,每小题3分,共30分。

在答题卡上用2B铅笔填涂对应题目的答案标号。

3.第Ⅱ卷为非选择题,将答案写在答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围为中考全部内容。

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.求|-2|的值。

A。

-2B。

2C。

1/2D。

-1/22.若二次根式3-a有意义,则a的取值范围是A。

a>3B。

a≥3C。

a≤3D。

a≠33.下列四个几何体中,左视图为圆的是A。

B。

C。

D。

4.下列计算正确的是A。

a•a2=a3B。

(a3)2=a5C。

a+a2=a3D。

a6÷a2=a35.把多项式4m2-25分解因式正确的是A。

(4m+5)(4m-5)B。

(2m+5)(2m-5)C。

(m-5)(m+5)D。

m(m-5)(m+5)6.如图是某手机店1~4月份各月手机销售总额统计图与三星手机销售额占该手机店当月手机销售总额的百分比统计图。

根据图中信息,下列结论正确的为A。

4月份三星手机销售额为65万元B。

4月份三星手机销售额比3月份有所上升C。

4月份三星手机销售额比3月份有所下降D。

3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额7.已知一元二次方程:x2-3x-1=0的两个根分别是x1、x2,则x1x2+x1x2的值为A。

-3B。

3C。

-6D。

68.一次函数y=2x-4与x轴的交点坐标是(2,),那么不等式2x-4≤0的解集应是A。

x≤2B。

x<2C。

x≥2D。

x>29.将点A(3,2)向左平移4个单位长度得到点A′,则点A′关于y轴对称的点的坐标是A。

(-3,2)B。

(-1,2)C。

(1,-2)D。

(1,2)10.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF=?图片无法显示)二、填空题11.计算:-22÷(-1/4)=88.12.地球上海洋面积约为3.61×10^7 km^2.13.数学老师布置了10道选择题,XXX将全班同学的解答情况绘成了下面的条形统计图,根据图表回答:平均每个学生做对了4道题,做对题目的众数是4,中位数是4.14.XXX早晨从家骑车去学校,先走下坡路,然后走上坡路,去时行程情况如图.若返回时,他的下坡和上坡速度仍保持不变,那么XXX从学校按原路返回家用的时间是20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2D.-1
绝密★启用前|
中考数学试题
数学
(考试时间:120分钟试卷满分:120分)
C.(m-5)(m+5)D.m(m-5)(m+5)
6.如图是某手机店1~4月份各月手机销售总额统计图与三星手机销售额占该手机店当月手机销售总额的百分比统计
图.根据图中信息,下列结论正确的为
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

A.4月份三星手机销售额为65万元
B.4月份三星手机销售额比3月份有所上升
C.4月份三星手机销售额比3月份有所下降
D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额
5.考试范围:中考全部内容。

第Ⅰ卷7.已知一元二次方程:x2-3x-1=0的两个根分别是x
1
、x
2
,则x12x2+x1x22的值为A.-3B.3C.-6D.6
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.|-2|的值是
A.-2B.2C.1
2
2.若二次根式3-a有意义,则a的取值范围是
A.a>3B.a≥3C.a≤3D.a≠3 3.下列四个几何体中,左视图为圆的是
A.B.C.D.
4.下列计算正确的是
A.a•a2=a3B.(a3)2=a5
C.a+a2=a3D.a6÷a2=a3
5.把多项式4m2-25分解因式正确的是
A.(4m+5)(4m-5)B.(2m+5)(2m-5)8.一次函数y=2x-4与x轴的交点坐标是(2,0),那么不等式2x-4≤0的解集应是A.x≤2B.x<2
C.x≥2D.x>2
9.将点A(3,2)向左平移4个单位长度得到点A′,则点A′关于y轴对称的点的坐标是A.(-3,2)B.(-1,2)
C.(1,-2)D.(1,2)
10.如图,已知△Rt ABC中,∠ACB=90°,AC=6,BC△=4,将ABC绕直角顶点C顺时针旋转90°得到△DEC,若
点F是DE的中点,连接AF,则AF=
A.4B.5C.42D.6
16.如图,菱形ABCD的三个顶点在二次函数y=ax2-2ax+3
第Ⅱ卷
二、填空题(本大题共6小题,每小题3分,共18分)
1
11.计算:-22÷(-)=__________.
4
12.地球上海洋面积约为36100万km2,可用科学记数法表示为__________km2.
13.数学老师布置了10道选择题,小颖将全班同学的解答情况绘成了下面的条形统计图,根据图表回答:平均每个学生做对了__________道题,做对题目的众数是__________,中位数是__________.
14.小亮早晨从家骑车去学校,先走下坡路,然后走上坡路,去时行程情况如图.若返回时,他的下坡和上坡速度仍保持不变,那么小亮从学校按原路返回家用的时间是__________分.
△15.如图,己知ABC中,∠C=90︒,∠A=30︒,AC=3,动点D在边AC上,以BD为边作等边△BDE(点
E、A在BD的同侧),在点D从点A移动至点C的过程中,点E移动的路线长为__________.17.(本小题满分8分)解方程:x2+x-3=0.
18.(本小题满分8分)如图,△ABC中,∠ACB=90°,CD⊥AB于点D,AO平分∠BAC,交CD于点O,
E为AB上一点,且AE=AC.
(△1)求证:AOC≌△AOE;
(2)求证:OE∥BC.
19.(本小题满分8分)甲口袋中装有两个相同的小球,它们的标号分别为2和5,乙口袋中装有两个相同的小球,
它们的标号分别为4和9,丙口袋中装有三个相同的小球,它们的标号分别为1,6,7.从这3个口袋中各随
机取出一个小球.
(1)用树形图表示所有可能出现的结果;
(2)若用取出的三个小球的标号分别表示三条线段的长,求这些线段能构成三角形的概率.
20.(本小题满分8分)某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,
B售价80元,已知用1040元购进的A数量与用650元购进B的数量相同.
(1)求A、B的进价;
(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少
种进货方案?
(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何
进货获利最大?
21.(本小题满分8分)如图,在平面直角坐标系xOy中,一次函数y
1
=ax+b(a,b为常数,且a≠0)与
反比例函数y2=
m
x错误!未找到引用源。

(m为常数,且m≠0)的图象交于点A(-2,1)、B(1,
n).
物线与y轴的交点,则点D的坐标为__________.2(a<0)的图象上,点A,B分别是该抛物线的顶点和抛
(1)求反比例函数与一次函数的解析式;
(2)连接OA、△OB,求AOB的面积;
(3)当y1<y2时,求自变量x的取值范围.
三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分10分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,
过点C作
(2)若tanP=
3
3
x2+
3
x2+
AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
4,AD=6,求线段AE的长.
23.(本小题满分10分)等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F.
(1)如图1,求∠AFB的度数;
(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG
(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于△E,若DEF面积为△1,则AHC 的面积为__________.
24.(本小题满分12分)如图,已知二次函数y=
323
3
x-3的图象与x轴交于点A,B,交y轴于点C,抛物线的顶点为D.
(1)求抛物线顶点D的坐标以及直线AC的函数表达式;
(2)点P是抛物线上一点,且点P在直线AC下方,点E在抛物线对称轴上,当△BCE的周长最小时,求△PCE 面积的最大值以及此时点P的坐标;
(3)在(2)的条件下,过点P且平行于AC的直线分别交x轴于点M,交y轴于点N,把抛物线y=
323
3
x-3沿对称轴上下平移,平移后抛物线的顶点为D',在平移的过程中,是否存在点D',使得点D',M,N三点构成的三角形为直角三角形,若存在,直接写出点D'的坐标;若不存在,请说明理由.。

相关文档
最新文档