刚性悬挂基本参数及振动特性研究
《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能已成为评价汽车舒适性和稳定性的重要指标。
动力总成悬置系统作为汽车的重要组成部分,其振动问题直接影响着汽车的乘坐舒适性和行驶安全性。
因此,对汽车动力总成悬置系统进行振动分析,并在此基础上进行优化设计,对于提高汽车的整体性能具有重要意义。
本文旨在分析汽车动力总成悬置系统的振动特性,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器等动力总成部件与车身的重要装置,其主要作用是减少动力总成传递到车身的振动和噪声,保证汽车行驶的平稳性和舒适性。
该系统通常由发动机悬置、变速器悬置等组成,其性能的优劣直接影响到汽车的乘坐舒适性和行驶安全性。
三、汽车动力总成悬置系统振动分析(一)振动产生原因汽车动力总成悬置系统的振动主要来源于发动机的运转和道路的不平度等因素。
发动机的运转会产生周期性激励力,导致动力总成产生振动;而道路的不平度则会使汽车产生颠簸,进一步加剧动力总成的振动。
这些振动会通过悬置系统传递到车身,影响汽车的乘坐舒适性和行驶安全性。
(二)振动分析方法针对汽车动力总成悬置系统的振动问题,常用的分析方法包括理论分析、仿真分析和实车测试等。
理论分析主要是通过建立数学模型,对系统的振动特性进行预测和分析;仿真分析则是利用计算机软件对系统进行模拟分析,预测系统的振动特性;实车测试则是通过在实际道路上进行测试,获取系统的振动数据,为优化设计提供依据。
四、汽车动力总成悬置系统优化设计(一)设计目标汽车动力总成悬置系统的优化设计旨在提高系统的减振性能和隔噪性能,保证汽车行驶的平稳性和舒适性。
具体目标包括降低动力总成的振动和噪声传递到车身的幅度,提高乘坐舒适性;减少发动机运转对汽车行驶稳定性的影响,提高行驶安全性。
(二)优化设计方案针对汽车动力总成悬置系统的振动问题,可以采取以下优化设计方案:1. 改进悬置结构设计。
悬架系统特性之刚度分析

悬架系统力学特性悬架对车辆性能的影响:转向时,由于悬架系统的存在,使得车身在离心力的作用下会出现侧倾,从而造成左、右车轮的垂直载荷分配不均,引起左、右两侧车轮的地面附着力的变化,而其将对车辆操纵稳定性带来影响,因此,悬架分析又是操纵稳定性分析中的重要内容。
悬架的特性主要体现在刚度上。
以下主要分析典型扭杆悬架的刚度特性。
扭杆悬架扭杆悬架的特点:结构简单、工作可靠、使用寿命长、单位质量变形能大。
扭杆弹簧在A处,垂直纸面向里(一)参数说明:1)d-扭杆直径;2)L-扭杆工作长度;3)a-平衡肘长度;4)α-平衡肘的初始安装位置与水平线的夹角;5)α-负重轮受力后平衡肘的与水平线的夹角,规定在水平线以下为正,水平线以上为负。
(二)受力分析平衡肘在受到垂直方向的力P 作用时,扭杆一端从0α位置变到了α位置,则在扭杆上作用的扭矩为M :cos M Pa α=设在扭矩M 作用下,扭杆的扭角为:0M L G Jθαα=-=式中,J 为扭杆断面的极惯性矩,对实心圆杆有:440.132d J d π=≈;G 为扭杆材料的切变弹性模量(对钢,74530.5~79433.8G M P a =)。
由上两式可得:()0cos G J P La ααα-=由于刚度是力对位移的微分,所以要求刚度,还得需要确定位移。
负重轮行程为:()0sin sin f a αα=-则可得扭杆悬架的线刚度为:()0221cos x dPtg dPG J d m df df La daααααα--=== 把J 的表达式代入上式得:()4022132cos x tg G d m Laαααπα--=当0α=时,即平衡肘处于水平位置,此时可得 40232x G d m Laπ=(三)扭杆悬架刚度特性的影响因素 1)扭杆直径d 的影响,d 越大,刚度越大; 2)扭杆工作长度L 的影响,L 越长,刚度越小; 3)平衡肘长度a 的影响,平衡肘越长,刚度越小;4)工作位置α的影响。
汽车悬挂系统的动力学性能研究

汽车悬挂系统的动力学性能研究悬挂系统是汽车的重要组成部分,对汽车的行驶稳定性、舒适性和安全性有着重要的影响。
本文将对汽车悬挂系统的动力学性能进行研究,探讨各种参数对汽车悬挂系统的影响。
一、悬挂系统的基本原理悬挂系统通过连接车身和车轮,起到减震和支撑的作用。
它由弹簧、减振器和悬挂装置组成。
弹簧提供弹性支撑力,减振器用于吸收和消散振动能量,悬挂装置则连接弹簧和减振器。
二、悬挂系统的动力学参数1. 自由长度(Free Length):指弹簧在无任何载荷和自身重量作用下的长度。
2. 刚度(Stiffness):指弹簧在单位变形时提供的弹性支持力。
3. 阻尼(Damping):指减振器在振动过程中吸收和消散的能量。
4. 冲击减缓(Impact Absorption):指悬挂系统对于冲击的吸收能力。
5. 自由回弹(Free Rebound):指悬挂系统在载荷突然消失时的回弹情况。
三、参数对悬挂系统的影响1. 刚度对悬挂系统的影响刚度的增加会使得悬挂系统更加坚固,减小车身的倾斜和侧倾,提高行驶稳定性。
然而,过高的刚度也会降低车辆的乘坐舒适性。
因此,刚度的选择需要综合考虑车辆的使用环境和舒适性需求。
2. 阻尼对悬挂系统的影响阻尼的增加可以有效地减少车身的弹跳和摇晃,提高车辆的行驶稳定性和乘坐舒适性。
但是,过高的阻尼会降低车辆的悬挂效率,影响悬挂系统的工作性能。
3. 悬挂装置对悬挂系统的影响悬挂装置的形式多样,如麦弗逊式、双叉臂式、多连杆式等。
不同的悬挂装置对车辆的稳定性、行驶性能和悬挂效果有着不同的影响。
在设计和选择悬挂装置时,需要根据车辆的类型和用途进行合理的匹配。
四、悬挂系统的优化方法1. 悬挂系统的参数调整通过调整悬挂系统的刚度和阻尼等参数,可以在保证行驶稳定性的前提下,提高乘坐舒适性。
2. 悬挂系统的材料选择选择合适的材料可以提高悬挂系统的刚度和强度,提高其疲劳寿命和耐久性。
3. 悬挂系统的结构优化通过优化悬挂系统的结构设计,如减小悬挂部件的质量和惯性矩,可以提高悬挂系统的动力学性能和能效。
发动机悬置设计中的动、静刚度参数研究

・
设计・ 算 ・ 究 ・ 计 研
发 动机 悬置设计 中的动 、 刚度参数研 究 静
刘祖斌 刘 英 杰
( 国第 一 汽车集 团公 司技 术 中心 ) 中
【 要 】 对 发 动 机 动 力 总 成 悬 置 的动 、 刚 度 参 数 及 其 在 悬 置 匹 配 中的 应 用 技 术 进 行 理 论 和试 验 分 析 的 基 础 摘 在 静 上 , 出 了 动 力 总 成 悬 置 匹配 计 算 中关 于 动 、 刚度 的选 取 原 则 : 算 静 变 形 时 采 用 静 刚 度 ; 算 刚 体 模 态 时采 用 动 提 静 计 计 刚度 ; 算 动力 总成 关 键 点 位 移 量 时 宜 动 、 刚 度 同时 采 用 。指 出 , 同承 载 状 态 下 动 刚 度 值 主 要 受 频 率 、 载 荷 和 计 静 不 预
A () 2
响计 算 和分析 的准确性 。 文在 进行 大量 试验 、 本 计算
及理 论分 析 的基础 上 , 对悬 置动 、 刚度参 数选 用提 静 出了一些 见解 , 设计人 员 和质量 控 制人员 参 考 。 供
式 中 , 为 动 态力 或 动 态力 矩 的峰 一 值 ; A 峰 A如 为 动态 位 移或 动态 转 角 的峰一 峰值 。
Ke r s: we t a n, o y wo d Po r r i M untng de i n, i sg Dyna c tfne sM o mi si s , de
1 前 言
有关发 动 机动力 总成 悬置 匹 配计算 的理论 问题 有大 量文 献资 料 可 以查 阅 I 1 。但在 实 际工 作 中 , 对 于悬置 动 、静 刚度等 一些 重要设 计 输入参 数 的选 用 存 在一定 的问题 , 而这 些参 数选 取正 确与 否 , 直接 影
商用车驾驶室悬置系统隔振特性与优化研究

商用车驾驶室悬置系统隔振特性与优化研究一、本文概述随着商用车市场的不断发展和技术的进步,商用车驾驶室的舒适性和安全性日益受到人们的关注。
驾驶室悬置系统作为商用车的重要组成部分,其隔振特性对驾驶室的舒适性和整车的稳定性具有重要影响。
因此,对商用车驾驶室悬置系统的隔振特性进行深入研究和优化,对于提高商用车驾驶室的舒适性和整车的性能具有重要意义。
本文旨在研究商用车驾驶室悬置系统的隔振特性,并通过优化方法改善其性能。
对商用车驾驶室悬置系统的基本结构和工作原理进行介绍,明确研究对象和范围。
分析商用车驾驶室悬置系统的隔振特性,包括振动传递特性、隔振效率等方面,为后续的优化研究提供理论基础。
接着,采用先进的仿真分析方法和实验手段,对商用车驾驶室悬置系统的隔振特性进行定量评估,揭示其存在的问题和不足。
基于仿真分析和实验结果,提出商用车驾驶室悬置系统的优化方案,并通过实验验证优化效果,为商用车驾驶室悬置系统的设计和改进提供指导。
本文的研究不仅有助于深入理解商用车驾驶室悬置系统的隔振特性,而且可以为商用车的设计和制造提供理论依据和技术支持,对于推动商用车行业的进步和发展具有重要意义。
二、商用车驾驶室悬置系统隔振理论基础商用车驾驶室悬置系统的隔振特性对于提高驾驶员的舒适性和减少车辆振动对驾驶室内部构件的影响至关重要。
为了深入了解商用车驾驶室悬置系统的隔振特性,并对其进行优化研究,首先需要建立其隔振理论基础。
隔振理论的核心在于通过合适的悬置系统设计和参数调整,减少或隔离来自车辆底盘的振动传递至驾驶室。
商用车驾驶室悬置系统通常由橡胶悬置、液压悬置或空气悬置等构成,这些悬置元件具有良好的弹性和阻尼特性,能够在一定程度上吸收和衰减振动能量。
在隔振理论中,传递函数是一个关键概念,它描述了振动从输入端到输出端的传递关系。
对于商用车驾驶室悬置系统,传递函数可以通过建立系统的力学模型,结合振动分析方法来求解。
通过分析传递函数的频率响应特性,可以了解悬置系统在不同频率下的隔振效果,从而指导悬置系统的设计和优化。
车辆工程中的悬挂系统刚度优化研究

车辆工程中的悬挂系统刚度优化研究在车辆工程领域,悬挂系统是一个至关重要的组成部分,它直接影响着车辆的行驶性能、舒适性和安全性。
悬挂系统的刚度优化则是提升这些性能的关键环节之一。
悬挂系统的主要作用是连接车架(或车身)与车轮,传递二者之间的力和力矩,并缓冲路面冲击,减少车身振动。
其刚度特性决定了车辆在行驶过程中的姿态、操控稳定性以及乘客的舒适感受。
悬挂系统刚度不足可能导致车辆在行驶中出现过度的车身倾斜和起伏,影响操控性和稳定性。
例如,在高速转弯时,车身可能会侧倾严重,增加翻车的风险;在制动时,车头可能会过度下沉,影响制动效果。
而悬挂刚度过大,则会使车辆对路面颠簸的过滤能力变差,导致乘坐舒适性下降,同时也可能增加零部件的磨损和疲劳损坏。
为了实现悬挂系统刚度的优化,首先需要对悬挂系统的结构和工作原理有深入的了解。
常见的悬挂类型包括麦弗逊式、双叉臂式、多连杆式等。
不同类型的悬挂在结构和性能上各有特点,其刚度特性也有所不同。
在进行刚度优化时,需要综合考虑多种因素。
车辆的使用场景是一个重要的考量因素。
例如,赛车通常需要较高的悬挂刚度以获得出色的操控性能,而家用轿车则更注重舒适性,需要相对较软的悬挂设置。
此外,车辆的重量、轴距、轮距等参数也会对悬挂刚度的优化产生影响。
材料的选择也是影响悬挂系统刚度的关键因素之一。
高强度的钢材或铝合金可以在保证结构强度的同时减轻重量,从而改变悬挂系统的刚度特性。
同时,制造工艺的精度和质量也会对悬挂的性能产生重要影响。
在实际的优化过程中,通常会采用计算机模拟和实验测试相结合的方法。
计算机模拟可以快速地对不同的悬挂参数进行分析和比较,预测悬挂系统在各种工况下的性能表现。
通过建立准确的数学模型,可以模拟车辆在不同路面条件下的行驶情况,计算出车身的振动幅度、车轮的接地力等关键指标。
然而,计算机模拟结果往往需要通过实验测试来进行验证和修正。
实验测试可以采用道路试验或台架试验的方法。
道路试验能够真实地反映车辆在实际行驶中的悬挂性能,但受到环境因素的影响较大,测试结果的重复性和可控性相对较差。
悬挂系统的动力学特性分析

悬挂系统的动力学特性分析悬挂系统是汽车重要的一部分,它直接影响着车辆的操控性能和乘坐舒适度。
悬挂系统的动力学特性分析,对于了解和优化汽车的行驶稳定性和舒适性具有重要意义。
本文将从悬挂系统的结构、动力学模型和参数对动力学特性的影响等方面进行论述。
悬挂系统是汽车重要的组成部分之一,主要由弹簧和减振器组成。
弹簧起到支撑车身和吸收地面不平度的作用,而减振器则是消除车身在弹性变形后的反弹运动。
这两个组件的设计和参数对悬挂系统的动力学特性有着直接的影响。
一方面,弹簧的刚度决定了悬挂系统的支撑能力和舒适性。
较大的弹簧刚度可以提高悬挂系统的支撑能力,增强车辆的操控稳定性,但同时也会降低乘坐舒适度。
而较小的弹簧刚度则会导致车辆在弯道行驶时的侧倾增大,影响操控性能。
因此,弹簧的刚度选择需综合考虑车辆的使用环境和悬挂系统的性能需求。
另一方面,减振器对悬挂系统的动力学特性也有着重要的影响。
减振器不仅要具备吸收和控制车身的振动能力,还需要在不同路况下提供适当的阻尼。
过大的减振器阻尼会导致车身在通过不平路面时的反弹减缓过快,使乘坐感觉硬直,降低乘坐舒适度。
而过小的减振器阻尼则会导致车身在经过不平路面时的反弹过大,影响悬挂系统的稳定性和操控性能。
因此,减振器的阻尼调整需要在保证乘坐舒适度的前提下,兼顾车辆的操控性能。
除弹簧和减振器外,悬挂系统的动力学特性还与车身的刚度分布和质量分布密切相关。
车身刚度分布的不均匀性会导致车轮在通过不平路面时的振动幅度不一致,进而影响车辆的稳定性。
而车身重心高度的改变也会对车辆的侧倾和操控过程中的姿态变化产生一定的影响。
动力学特性分析需要建立悬挂系统的数学模型。
典型的悬挂系统模型包括单自由度模型、双自由度模型和多自由度模型等。
这些模型基于牛顿第二定律和哈肯方程,描述了悬挂系统中弹簧、减振器和车身之间的力学关系。
通过数学模型,可以分析和预测悬挂系统在不同工况下的动力学响应,为优化悬挂系统的设计和调整提供理论支持。
发动机悬置动静刚度参数研究论文

发动机悬置设计中的动、静刚度参数研究摘要:本文在对动力总成悬置设计中的悬置静、动刚度参数及其在悬置匹配中的应用技术进行详细的理论和试验分析的基础上,提出了在动力总成悬置匹配计算中关于静、动刚度的选取原则,不同状态下的动刚度采用原则。
本研究对于发动机悬置的设计、生产工艺及质量控制都具有实际的指导意义。
关键词: 动力总成 悬置匹配 动刚度 模态A study on dynamic stiffness and static stiffness parametersof engine mounting designAbstract: Basing on the theoretical and testing study on static stiffness and dynamic stiffness of mounting and their application, several design problems are put forward, which include the chosen principle of static stiffness and dynamic stiffness and the adopted principle of dynamic stiffness in different state .The study will be helpful for the design and quality control of engine mounting in actual productionKeywords: power train, mounting design; dynamic stiffness; mode.1. 前言有关发动机动力总成悬置匹配计算的理论问题已被研究的相当透彻,并有大量文献资料可以查阅[1-4]。
但在实际工作中,对于诸如悬置动、静刚度等一些重要的设计输入参数的选用存在着一定的问题,而这些参数选取正确与否,直接影响计算和分析的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚性悬挂基本参数及振动特性研究
作者:刘英杰
来源:《中国科技博览》2015年第20期
[摘要]随着城市轨道交通的发展,刚性接触悬挂的应用逐渐增多,但对刚性接触悬挂的研究在我国尚处于起步阶段,其理论体系还不完善,还有许多工作要做。
本论文介绍了刚性接触悬挂的基本特点,说明刚性接触网悬挂具有简单的结构和支撑,同样可以节省隧道的建设费用;提出了在确定刚性接触悬挂锚段长度及跨距长度时应考虑的因素,并对各种因素进行了较为详细的分析;比较了不同速度,不同吊点间距下接触网刚性悬挂的振动特性。
[关键词]接触网;刚性悬挂;振动特性
中图分类号:U225.2 文献标识码:A 文章编号:1009-914X(2015)20-0067-01
1 架空刚性接触网简介
1.1 刚性悬挂的基本组成
架空刚性悬挂由支持体、绝缘子、汇流排和与受电弓接触的接触面或接触线组成。
不同的工程、不同的设计者所采用的支持体、绝缘子、汇流排和接触线不同。
典型断面主要有两种:日本的“T”型架空刚性悬挂(双线、单线);法国、瑞士等国家采用的“?”型架空刚性悬挂。
1.2 刚性悬挂的基本特点
架空刚性接触悬挂一般采用具有相应刚度的导电轨或具有相应刚度的汇流排与接触线组成。
刚性接触悬挂由“?”型汇流排、接触线、绝缘子以及悬挂定位装置等组成,与柔性接触悬挂有较大差异和明显特点:
1.汇流排是刚度较大的断面成“?”型铝质导电体,通过定位悬挂装置,悬挂于轨道的上方。
接触线被安放在汇流排的夹线槽中,接触线被汇流排自然夹紧,接触悬挂两端不设张力补偿装置,汇流排和接触线的轴向没有补偿张力。
从而避免了钻弓、烧融、磨耗不均匀、高温软化、线材缺陷以及弓网故障等各种原因造成的断线事故。
因此刚性悬挂的故障一般是点故障,范围很小。
2.由于是刚性悬挂,悬挂本身不存在负荷集中点和硬点,所以悬挂与受电弓接触时,悬挂的抬升量很小,弓网之间的接触压力变化量很小,弓网间接触良好,不存在离线拉弧现象,接触线的磨耗均匀。
3.架空刚性接触悬挂锚段和跨距较小,跨距与速度关系密切,其“Z”字值没有明显的拐点。
“?”型汇流排一般长度为10 m或12 m,锚段架设长度一般不超过250 m,整个悬挂布置成正弦曲线,即2个锚段构成一个完整周期的正弦波。
其“Z”字值没有明显的转折点,其拉出值呈周期变化,最大拉出值一般不超过220 mm。
4.锚段关节、线岔结构简单,容易实现电分段功能。
架空刚性接触悬挂的锚段关节采用两段接触悬挂侧向相互平行且错开,平行段的长度为4m,端部向上弯曲70 mm左右,两悬挂的水平距离根据需要而定,一般非绝缘关节为200 mm,绝缘关节为250 mm,采用无交叉线岔结构,正线接触悬挂不中断,单独一根侧线与正线接触悬挂侧向错开,其水平间距一般为200 mm,侧线悬挂端部向上弯曲70 mm 左右,架空刚性接触悬挂的电分段有两种结构:绝缘锚段关节式与分段绝缘器式。
柔性悬挂的侧线或渡线只能采用分段绝缘器来实现电分段。
而架空刚性悬挂可采用绝缘锚段关节代替分段绝缘器来实现电分段,这样不仅节省投资,而且还减少了维修的工作量。
5.安装精度要求高,架空刚性接触悬挂的接触线高度误差为5 mm,锚段关节和线岔处两悬挂的高差为0~1 mm,且两悬挂的中心线要与受电弓的中心重合。
在曲线地段,为了保证接触线不出现偏磨现象,汇流排横断面的中心线要与轨面垂直。
这几个参数与轨道参数关系密切,轨道的超高略加改变或起拨道床时,对接触线的高度及接触线的偏磨都将产生影响,尤其对锚段关节和线岔处两接触线的高差影响大,如不及时跟随调整,可能发生打弓拉弧现象,严重时还会使接触线和受电弓受到损伤。
6.架空刚性接触悬挂相对于柔性接触悬挂而言,结构高度小,可以不考虑受流时导线的抬升、接触线的振动以及链形悬挂结构高度占用的空间,因而所用净空至少相差100~150 mm。
另外,架空刚性接触悬挂在锚段关节和线岔处,尤其是复式道岔处,无需设置下锚补偿装置,安装简单,不需要隧道额外增加空间,所以架空刚性接触悬挂能够很好地满足低净空隧道要求,更适用于地铁。
7.维护检修、事故处理简单。
架空刚性接触悬挂结构简单,零部件较少,各零部件的连接牢靠,事故几率低,无论是日常维护检修,还是事故抢修、接触线更换,架空刚性接触悬挂的工作量比柔性接触悬挂要少
1.3 本文的主要研究内容及研究方法
随着城市轨道交通日新月异的发展,城市轨道交通领域不断采用新的技术和新的产品,刚性接触悬挂本身有很多优点,所以它是城市轨道交通领域的一个发展方向。
本论文“刚性悬挂
基本参数及振动特性分析”正是适应我国城市轨道交通中采用接触网刚性悬挂逐步推广而提出的一个课题,希望能为我国城市轨道交通的发展提供技术支持。
本论文的研究内容及研究方法如下:
首先论述了城市轨道交通领域中接触网刚性悬挂的技术并对比了柔性悬挂技术,刚性接触悬挂的应用前景是十分广阔的,不单是城市轨道交通领域中应用,而且在大铁路中的一些低净空的隧道也被采用。
从而给出了本课题研究的背景以及研究的必要性。
2 影响刚性悬挂锚段长度的因素分析
2.1 确定锚段长度应考虑的因素
锚段是指将接触线分成一定长度的机械分段。
柔性悬挂锚段需要张力补偿,刚性悬挂锚段没有张力补偿。
同一锚段内,刚性悬挂由数段刚性梁对接而成,其锚段长度同柔性悬挂相比有所区别。
锚段长度主要决定于以下几个因素:
1.环境温度变化对锚段长度的影响
刚性梁具有热胀冷缩的特性。
设计、施工时,必须在锚段两边终端悬挂点预留一定的伸出长度(称为终端悬挂点伸出段) .
2.牵引负荷电流对锚段长度的影响
地铁、轻轨的牵引负荷是一个间断性的波动负荷。
为了研究方便,常常应用仿真计算或平均运量法计算出通过汇流排及接触线横截面积的持续最大有效电流。
因为汇流排及接触线有一定的阻抗,所以当有效电流通过汇流排及接触线时,就会产生能量损失。
该电能损失使汇流排及接触线的温度不断升高,长度不断伸长,直至汇流排及接触线产生的电能损失与散入空气中的热能达到平衡并被带走时。
3.故障短路电流对锚段长度的影响
故障短路电流是一个瞬时电流,供电系统的继电保护使短路电流的持续时间一般都远小于1s,所以该短路电流不会使汇流排及接触线持续升温。
4.“S”取值对最小锚段长度的影响
由于刚性接触悬挂是有一定刚度的,它不能像柔性接触线那样随意弯曲,所以“S”值的取值大小与最小锚段长度的确定有着密切的关系。
5.膨胀接头可移动量对最大锚段长度的影响
由于膨胀接头的可移动量是有一定限度的,如果锚段长度太长的,那么锚段的热膨胀变化量就有可能超出膨胀接头的可移动量,所以膨胀接头的可移动量与最大锚段长度的确定有着密切的关系。
3 结论
刚性接触悬挂具有结构简洁,占用净空少,节省隧道建设费用的优点,在城市轨道交通中得到广泛应用。
本轮文分析了影响刚性接触悬挂锚段长度及跨距长度的各种因素。
并建立了刚性悬挂仿真模型,对刚性悬挂的振动特性进行了仿真分析。
综上所述,本文首先比较分析了刚性与柔性悬挂,分析了影响刚性接触悬挂锚段及跨距长度的各种因素。
对刚性接触悬挂的横向振动建立了模型,考虑了不同荷载作用下的影响,并用数学软件MATLAB进行了仿真分析,得出了跨距长度与机车运行速度之间的关系。
为刚性接触网的施工设计提供了一定的科学依据与技术支持。
参考文献
[1] 武清玺等.动力学基础.南京:河海大学出版社,2001;
[2] 谭冬华.架空刚性接触悬挂的特点及其维修. 电气化铁道 2003(3);
[3] 中铁电气化局集团公司译.电气化铁道接触网.北京:中国电力出版社,2004;
[4] 董昭德.城市轨道交通接触网讲义,2005;
[5] 高淑英、沈火明.线性振动方程. 北京:中国铁道出版社,2003;
[6] 李会杰、田志军.接触网刚性悬挂平面布置研究.铁道学报2003(2);。