质谱原理及使用解读
质谱的原理分析及应用

质谱的原理分析及应用一、质谱的基本原理质谱是一种用于分析化学样品的方法,通过对样品中分子的离子化、分子离子对的分裂和分子离子对的检测,得到样品中各种化学物质的质量-荷电比,从而可进行结构鉴定和定量分析。
质谱的基本原理包括以下几个方面:1.离子化:将样品中的分子经过加热或电离辐射等方式转化为电离态,通常是产生正离子或负离子。
2.质量分析:利用质谱仪对离子化的样品进行质量分析,根据离子的荷电比(m/z值),确定化合物的质量。
3.离子对的分裂:离子在磁场中根据其质荷比进行分裂,不同质荷比的离子离开基准轨道并分裂为多个离子。
4.离子检测:利用离子检测器对分裂后的离子进行检测,根据离子的信号强度和荷电比(m/z值),获得样品的质谱图谱。
二、质谱的应用质谱作为一种强大的分析工具,在许多领域得到广泛的应用。
以下是质谱在不同领域的应用:1. 化学分析•定性分析:通过对样品中化合物的质谱图谱进行解析,确定化合物的结构和组成。
•定量分析:利用质谱的灵敏度和选择性进行化合物的定量分析,如药物分析、环境监测等。
2. 生物医学•蛋白质组学:质谱可以用于蛋白质的组成和结构鉴定,研究蛋白质的功能和代谢。
•代谢组学:通过对生物样品的质谱分析,了解代谢产物的种类和含量,研究生物体的代谢过程和疾病机制。
3. 环境与食品安全监测•环境污染物检测:质谱可以用于检测土壤、水体、大气中的污染物,如重金属、农药等。
•食品安全监测:通过质谱分析,检测食品中的农药残留、重金属、食品添加剂等有害物质。
4. 新药研发•药物代谢动力学:通过质谱分析,研究药物在体内的代谢过程、代谢产物的结构和代谢动力学参数,为药物的临床应用提供依据。
•药物安全性评价:质谱可以用于检测药物代谢中的不良反应和代谢产物的毒性,评估药物的安全性。
三、质谱的发展趋势随着科技的进步和对更高分辨率、更高灵敏度的需求,质谱技术也在不断发展。
以下是质谱技术的发展趋势:1.高分辨质谱:发展高分辨质谱仪器,提高质谱的分辨率和信号强度,实现更精确的分析和鉴定。
质谱的原理和图谱的分析

(4)快原子轰击(fast atom bombardment, FAB) 用高能量的快速Ar原子束轰击样品分子(用液体基质负载样品并涂敷在靶上,常用基质有甘油、间硝基苄醇、二乙醇胺等),使之离子化。 FAB灵敏度高,适用于对热不稳定、极性强的分子,如肽、蛋白质、金属有机物等。 样品分子常以质子化的[M+H]+离子出现 基质分子会产生干扰峰。
◎分子中含1Cl 和1Br (a1+b1) (a2+b2), M : M+2 : M+4≈3 : 4 : 1 (3a+b)(a+b)=3a2+4ab+b2
查Beynon表法
C H N O m/z M+1 M+2
从离子源出口到达检测器之前裂解并被记录的离子称亚稳离子,其动能小于离子源生成的离子,以低强度于表观质量m*(跨2~3质量单位)处记录下来,其m/z一般不为整数。 m*=m22/m1
01
在质谱中,m*可提供前体离子和子离子之间的关系。
02
离子在离子源的运动时间约106s数量级, 寿命小于 106s的离子在离子源内进一步裂解。离子从离子源到达检测器的时间约为105s数量级,离子寿命大于105s,足以到达检测器。寿命在106s到 105s的离子可产生亚稳离子。
(2)同位素离子
含有同位素的离子称为同位素离子。 与同位素离子相对应的峰称为同位素离子峰。
分子离子在电离室中进一步发生键断裂生成的离子。
经重排裂解产生的离子称为重排离子。 其结构并非原来分子的结构单元。
02
(5)母离子与子离子
任何一个离子(分子离子或碎片离子)进一步裂解生成质荷比较小的离子。 前者称为母离子,后者称为子离子。
简述质谱的工作原理和应用

简述质谱的工作原理和应用1. 质谱的工作原理质谱是一种用来测量物质中化学元素的相对丰度和原子或分子的结构的分析技术。
其工作原理主要包括以下几个步骤:1.1. 采样质谱分析的第一步是采样。
样品可以是固体、液体或气体,需要根据不同的样品性质选择合适的采样方法。
常用的采样方法包括气相微量采样和液相微量采样。
1.2. 电离采样后,样品中的分子或原子需要被电离成带电离子,以便通过磁场分离不同的质荷比。
常用的电离方法有电子轰击电离、化学电离和电喷雾电离。
1.3. 分离在质谱仪器中,应用磁场或电场将带电离子分离成不同的质荷比。
这种分离过程称为质谱分析的核心部分。
分离后的离子会进入到一个称为质量分析器的扇形或环形区域。
1.4. 检测分离后的带电离子被检测器捕获并转换成电流信号。
这个信号经过放大和处理后,就可以用于定量或定性分析。
2. 质谱的应用质谱具有高灵敏度、高分辨率和高特异性的优点,因此被广泛应用于多个领域。
2.1. 环境分析质谱技术可以用于环境样品的分析,例如大气颗粒物、水中的污染物和土壤样品中的有机化合物。
它可以提供快速准确的分析结果,帮助监测环境中的污染物并评估其对环境和人体健康的影响。
2.2. 药物分析质谱在药物分析中起着关键的作用。
它可以用于药物的鉴定、定量和代谢研究。
通过质谱分析,可以确定药物的结构以及其在人体内的代谢途径和代谢产物,为药物研发和治疗优化提供有力支持。
2.3. 食品安全质谱可以应用于食品安全领域,用于检测食品中的农药残留、重金属、添加剂和食品中的有害物质。
通过质谱技术,可以快速准确地检测食品中的安全隐患,保障公众的身体健康。
2.4. 生物医学研究质谱在生物医学研究中有广泛的应用。
它可以用于蛋白质组学、代谢组学和脂质组学等研究领域,帮助科研人员了解生物体内的代谢途径、蛋白质结构和功能,从而开展疾病诊断、治疗和药物研发等工作。
2.5. 爆炸物检测质谱可以被应用于爆炸物检测领域。
由于爆炸物的独特化学特性,质谱技术可以快速准确地识别出爆炸物的存在和类型,为安全防范工作提供重要的支持。
质谱仪的基本原理和操作步骤

质谱仪的基本原理和操作步骤引言:质谱仪是一种广泛应用于化学、生物、环境等领域的分析仪器。
它通过分析样品中分子或原子的质量和结构,提供了重要的数据。
本文将介绍质谱仪的基本原理和操作步骤。
一、质谱仪的原理:1. 电离:质谱仪中,样品首先被电离成带电粒子。
最常用的电离技术是电子轰击电离,即用高能电子轰击样品分子,使其失去电子而带电。
其他常用的电离技术还包括化学电离、光解电离等。
2. 分离:电离后,带电粒子会被引入质谱仪的分离部分。
分离的原理是基于粒子在电场或磁场中的分辨率。
常见的分离技术有时间飞行法和磁扇形法。
时间飞行法基于不同离子飞行时间的差异,将粒子分离。
磁扇形法则是通过施加磁场,使得离子在磁场中的轨迹受到影响,从而实现分离。
3. 检测:分离好的粒子通过检测器进行检测和信号采集。
检测器的种类有很多,最常用的是离子倍增器和光电离器。
它们能够接受质谱仪中离子的信号,并将其转化为电信号。
4. 数据处理:检测到的离子信号经过放大和处理,最终转化为质谱图。
质谱图显示了样品中各种离子的相对丰度和质量。
通过分析质谱图,可以确定样品组分并检测有害物质。
二、质谱仪的操作步骤:1. 准备样品:在进行质谱分析之前,需要准备样品。
样品通常是溶液或气体,要求无害、纯净且浓度适中。
2. 样品引入:样品可以通过气体色谱或液相色谱等分离技术引入质谱仪。
其中,气体色谱质谱联用技术最常用。
样品分子先通过气相色谱分离,再进入质谱仪进行质谱分析。
3. 设置参数:根据所检测的样品类型和目的,需要设置质谱仪的相关参数。
这些参数包括电子能量、离子进入质谱仪的速度、电场强度等。
合理设置这些参数可以提高分析结果的准确性和灵敏度。
4. 开始质谱分析:设置好参数后,开始质谱分析。
样品中的分子将被电离,然后进入质谱仪进行分离和检测。
此时,质谱仪会产生质谱图,并通过电脑进行数据处理和分析。
5. 结果解读:得到质谱图后,需要对其进行解读。
通过比对数据库中已有的质谱图,可以确定样品中的化合物组成;通过对谱峰的相对丰度进行分析,可以定量检测样品中各组分的含量。
质谱仪的原理与使用注意事项

质谱仪的原理与使用注意事项质谱仪是一种广泛应用于化学分析领域的仪器,它通过将样品中的分子离子化后,利用分子离子在电磁场中的运动趋势来分析和确定化合物的种类和结构。
本文将介绍质谱仪的原理以及使用质谱仪时需要注意的事项。
一、质谱仪的原理质谱仪的工作原理主要包括:样品的制备、离子化、分离与探测。
下面将分别介绍这些原理。
1. 样品的制备在使用质谱仪前,需要将待分析的样品制备成气态或者液态,以便进一步进行离子化。
常用的样品制备方法包括气相色谱(GC)、液相色谱(LC)等。
2. 离子化质谱仪的核心步骤是将样品中的分子转化成离子。
这可以通过两种主要的离子化方法实现。
一是电离法,即利用高能电子束、激光束或者高温等条件将样品中的分子碰撞离子化;二是化学离子法,利用化学反应将样品中的分子转化成离子。
3. 分离离子化后的分子离子被引入质谱仪的分析区域,其中通过一系列的离子分离手段使得不同离子具有不同的运动趋势。
主要的分离方法有质量过滤、分子束法、四极杆、飞行时间法等。
4. 探测质谱仪中的探测器接收离子并将其转化为探测信号。
根据离子所带电荷的不同,常用的探测器有电子倍增器(EM)和离子多极放大器(IAP)等。
二、使用质谱仪的注意事项在使用质谱仪时,需要注意以下事项,以确保实验结果的准确性和可靠性。
1. 样品的准备样品应该充分纯净,避免污染或残留物的影响。
在液体样品的制备过程中,要注意挥发性溶剂的选择,并避免样品的热解或分解。
2. 仪器的操作操作质谱仪时,应遵循仪器使用手册中的操作规程。
保证仪器的稳定性和准确性,避免对仪器造成人为损坏。
3. 质谱仪条件的选择在进行质谱仪分析时,需要根据待测物的特性选择合适的离子化方法、分离手段和探测器等条件。
不同的待测物可能需要不同的分析条件,要结合实际情况进行调整。
4. 实验结果的解读质谱仪的结果通常以质谱图的形式呈现,需要仔细解读。
掌握常见的碎裂规律和质谱图解释方法,可以帮助我们准确判断待测物的结构和组成。
质谱的原理及应用

质谱的原理及应用1. 质谱的基本原理质谱是一种重要的分析技术,它利用离子化技术将待测物质转化为离子,并通过对离子进行分析,得到物质的分子结构、组成和质量信息。
质谱的基本原理包括样品离子化、离子分离、离子检测和质量分析。
1.1 样品离子化样品离子化是质谱的第一步,常见的离子化方法包括电离和化学离子化。
电离通常采用电子轰击、电子喷雾和激光离化等方法。
1.2 离子分离离子分离是质谱的关键步骤,通过施加电场或磁场,可以将离子按照质荷比进行分离。
常见的离子分离方法包括质量过滤、离子阱和飞行时间法等。
1.3 离子检测离子检测是质谱的关键环节,常见的离子检测方法包括电子增强器、多极杆和检测器等。
离子检测器会将离子转化为电信号,并进行放大和信号处理。
1.4 质量分析质量分析是质谱的核心内容,通过质谱仪器对离子进行质量分析,可以得到物质的质量谱图。
常见的质谱分析方法包括质谱仪、质谱图和质谱库的利用。
2. 质谱的应用领域质谱作为一种高灵敏度和高分辨率的分析方法,已广泛应用于多个领域。
2.1 生物医药领域质谱在生物医药领域中主要应用于药物代谢动力学研究、蛋白质组学和分子诊断等。
通过质谱技术可以分析药物在体内的代谢途径、代谢产物和代谢酶等,对药物的疗效和安全性进行评估。
此外,质谱还可以用于分析蛋白质组的组成和结构,帮助研究蛋白质功能及其与疾病之间的关系。
2.2 环境监测领域质谱在环境监测领域中主要用于有机污染物和无机污染物的检测与分析。
通过质谱技术可以对空气、水体、土壤等中的污染物进行快速、准确的分析,有助于环境质量评估和环境治理。
2.3 食品安全领域质谱在食品安全领域中起着重要的作用,可以用于检测食品中的农药残留、重金属污染和毒素等。
通过质谱技术可以对食品样品进行快速筛查和定量分析,保障食品质量和食品安全。
2.4 新能源领域质谱在新能源领域中用于催化剂研究、电池材料分析和新能源开发等。
通过质谱技术可以研究催化剂的表面结构和反应机理,评估催化剂的催化活性和稳定性。
化学分析中质谱仪的工作原理及常见问题解析
化学分析中质谱仪的工作原理及常见问题解析质谱仪是一种广泛应用于化学分析领域的仪器,它通过分析样品中的离子质量和相对丰度来研究化合物的结构和组分。
这种仪器在有机化学、生物化学、环境科学和药物研发等领域发挥着重要的作用。
本文将介绍质谱仪的工作原理和常见问题的解析。
一、质谱仪的工作原理1. 电离质谱仪的工作从样品电离开始。
常见的电离方式有电子轰击电离(EI)、化学电离(CI)和电喷雾电离(ESI)等。
在电子轰击电离中,样品分子通过与高能电子碰撞形成离子。
在化学电离中,通过引入反应气体,使样品与气体反应产生离子。
在电喷雾电离中,样品通过喷雾进入质谱仪,并与电离源中的高电压形成离子。
2. 分离离子化的样品进入质谱仪后,需要经过一系列的分离步骤,以便根据质荷比(m/z)分辨不同离子。
最常见的分离方式是使用磁场进行离子偏转,即质量分析器。
质量分析器主要有四极杆质量分析器(QMS)、磁扇形质量分析器(MSFT)、质子传递反应区三重四极杆(QqQLIT)和飞行时间质量分析器(TOF)等。
3. 检测分离后的离子进入质谱仪的检测器,检测器测量离子的相对丰度。
最常见的检测器包括离子倍增器和光子多级电子增益器(PMT)。
离子倍增器是一种将离子转变成光子,然后通过增强光信号的方式来增强离子信号强度的装置。
PMT则是通过光电效应将光子转化为电子,并进行多级倍增,增强离子信号。
二、质谱仪常见问题解析1. 质谱仪的信号强度低信号强度低可能是由于以下几个原因导致的:- 样品浓度不足:可以尝试增加样品浓度,以提高信号强度。
- 电离效率低:可以尝试更换离子化方法或优化电离参数。
- 分析条件不适合:可以调整质谱仪的分析条件,如电压、气流速率等。
- 检测器故障:可以检查检测器是否正常工作,如清洗检测器、更换灯泡等。
2. 质谱仪的峰形畸变峰形畸变可能是由于以下原因引起的:- 气相进样问题:可以检查气相进样系统是否正常工作,如压力是否稳定、温度是否适宜等。
质谱分析技术的原理和应用
质谱分析技术的原理和应用质谱分析技术作为当代分析化学的重要手段,具有高灵敏度、高选择性和高分辨率等特点,被广泛应用于医药、环境、食品安全等领域。
下面我们将从质谱分析的基本原理、仪器构成以及应用案例等方面进行论述。
一、质谱分析的基本原理1. 质谱分析的基本步骤质谱分析主要包括样品的制备、离子化、加速、分离以及离子检测和信号处理等步骤。
首先,样品被制备成气体、液体或固体状态,然后通过离子源将样品中的分子或原子离子化。
离子化后的离子被加速,并根据质荷比(m/z)经过磁场或者电场的作用分离。
最后,离子被转化为电流信号,通过信号处理器获得质谱图。
2. 质谱分析的原理质谱分析的原理基于质荷比的选择性分离和检测。
在磁场或电场作用下,带有不同质荷比的离子会分别偏转。
利用质谱仪中的质荷比分离器,可以将离子按照它们质荷比的大小进行分离和检测。
通过测量质荷比和强度,可以确定样品中不同的成分和它们的相对含量。
二、质谱仪器的构成质谱仪由离子源、分离器、检测器和数据系统等部分构成。
1. 离子源离子源是将样品中的分子或原子离子化的部分,常用的离子源有电喷雾源(ESI)、大气压化学电离源(APCI)和电子轰击源(EI)等。
不同的离子源选择取决于样品的性质和目的。
2. 分离器分离器根据质荷比的差异将离子分离。
常见的分离器有磁扇形质量分析器(Sector Mass Analyzer)、四极杆质量分析器(Quadrupole Mass Analyzer)和飞行时间质量分析器(Time-of-Flight Mass Analyzer)等。
每种分离器都有其特定的分离原理和适用范围。
3. 检测器检测器用于将离子转化为检测信号。
常见的检测器有离子多极管检测器(Ion Multiplier Detector)和光电倍增管检测器(Photomultiplier Tube Detector)等。
检测器的选择也与样品的性质有关。
4. 数据系统数据系统负责信号的采集、处理和分析。
质谱鉴定的原理-概述说明以及解释
质谱鉴定的原理-概述说明以及解释1.引言1.1 概述概述部分的内容可以简单介绍质谱鉴定的原理及其在化学、生物等领域中的应用。
具体内容如下:在现代科学研究中,质谱鉴定作为一种重要的分析技术,被广泛应用于化学、生物、药物、环境等众多领域。
质谱鉴定基于物质分子的相对质量和相对丰度之间的关系,通过测量分子离子的质荷比,可以得到样品中各种分子的成分及其相对含量信息。
其原理是基于样品中的分子在质谱仪中被电离、分离、检测的过程。
质谱鉴定的基本原理主要包括样品的离子化、质谱仪中的离子分离和检测。
首先,样品经过特定的离子化方式产生离子,一般常用的离子化方法有电子轰击离子化(EI)、化学电离(CI)、电喷雾(ESI)和飞行时间(TOF)等。
然后,产生的离子通过电场或磁场的作用进行分离,并按照质荷比的大小被分离到不同位置。
最后,离子到达检测器时,其相对丰度被测量并以质谱图的形式展示出来。
质谱图可以提供物质的相对分子质量、分子结构、含量和同位素组成等重要信息。
质谱鉴定在化学领域中有着广泛的应用。
例如,在有机化学中,质谱鉴定可用于确定化合物的分子式、分子量、结构和官能团等信息,为有机物的合成和鉴定提供重要参考。
在生物化学中,质谱鉴定可用于研究蛋白质和核酸的结构、识别代谢产物、鉴定生物标志物等。
此外,质谱鉴定还在食品安全、环境监测、药物研发和毒理学等领域中发挥着重要的作用。
总之,质谱鉴定作为一种高效、快速的分析技术,在多个领域中得到广泛应用。
通过测量样品中分子离子的质荷比,质谱鉴定能够提供有关样品成分、结构和含量等关键信息,为科学研究和实际应用提供了有力支持。
文章结构:本文将从引言、正文和结论三个部分来探讨质谱鉴定的原理。
引言部分(1.1 概述)将首先对质谱鉴定进行整体概述,介绍质谱鉴定的基本概念和作用。
通过概述,读者可以对质谱鉴定有一个初步的了解。
引言部分(1.2 文章结构)将详述本文的结构安排。
通过对文章的结构进行说明,读者可以清晰地了解到本文的内容框架,使读者对接下来的内容有一个整体的把握。
质谱分析的原理和应用
质谱分析的原理和应用1. 质谱分析的概述质谱分析是一种基于质量-电荷比(m/z)的技术,用于确定和分析化合物的结构和组成。
它通过将样品中的分子分离出来,然后通过质谱仪测量其质量和相对丰度,从而得到样品的分子信息。
2. 质谱分析的原理质谱分析的原理基于以下几个步骤:2.1 样品的离子化样品通常需要经过离子化过程,将其转化为带电的离子,以便在质谱仪中进行分析。
离子化的方法包括电离、化学离子化和表面离子化等。
2.2 离子的分离离子化后的样品会进入质谱仪的分离部分,其中常用的方法包括质量过滤和离子阱。
质量过滤通过磁场、电场或电磁场分离离子,离子阱则利用电场对离子进行操控。
2.3 质谱仪的测量分离后的离子进入质谱仪的测量部分,一般是通过测量离子的质量-电荷比(m/z)来进行分析。
常用的测量方法包括质谱质量分析器(MS)和时间飞行质谱仪(TOF)等。
3. 质谱分析的应用质谱分析在许多领域中都有广泛的应用,以下是几个主要的应用领域:3.1 药物研发与分析质谱分析在药物研发和分析中发挥着重要的作用。
它可以用于药物分子的结构鉴定、药物代谢产物的分析、药物质量控制等方面。
通过质谱分析,可以确定药物的质量、纯度和稳定性,确保药物的安全性和有效性。
3.2 环境监测质谱分析在环境监测中被广泛应用。
它可以用于检测和分析环境中的有机物、无机物和有毒物质等。
通过质谱分析,可以快速准确地确定环境污染物的种类和浓度,为环境治理和保护提供科学依据。
3.3 食品安全检测质谱分析在食品安全检测领域也有重要的应用。
它可以用于分析食品中的农药残留、食品添加剂、重金属等有害物质。
通过质谱分析,可以及时发现食品中的安全隐患,保障公众的食品安全。
3.4 化学反应的机理研究质谱分析在化学反应的机理研究中扮演着重要的角色。
通过质谱分析,可以追踪反应物和产物之间的转化过程,揭示反应机理并提供相应的反应动力学信息。
这对于新药研发、化学合成和催化剂设计等具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rneed
27.995 28.006 27.995
பைடு நூலகம்
2545
质谱仪的分辨率: Rsp=245/0.52=471
Rsp<Rneed,
故不能满足要求。
质谱仪的分辨本领由几个因素决定:
1)、离子通道的半径; 2)、加速器与收集器狭缝宽度; 3)、离子源的性质。
质谱仪的分辨本领几乎决定了仪 器的价格。分辨率在500左右的质谱 仪可以满足一般有机分析的要求,此 类仪器的质量分析器一般是四极滤质 器、离子阱等,仪器价格相对较低。
R
m1
m1
m2 m1 m
其中m1、m2为质量数,而且规定 m1<m2,故在两峰质量数较小时,要求 仪器分辨率越大。
而在实际工作中,有时很难找到相 邻的且峰高相等的两个峰,同时峰谷又 为峰高的10%。在这种情况下,可任选 一单峰,测其峰高5%处的峰宽W0.05即 可当作上式中的Δm,此时分辨率定义 为:
质谱分析器的电磁场中,根据所选择 的分离方式,最终实现各种离子按m /z进行分离。
(二)质谱仪的主要性能指标
1.质量测定范围 质谱仪的质量测定范围表示质谱仪 所能够进行分析样品的相对原子质量( 或相对分子质量)范围,通常采用原子 质量单位(unified atomic mass unit, 符号u)进行度量。原子质量单位是由 12C来定义的,即一个处于基态的12C中 性原子的质量的1/12,即
2.进样系统
进样系统的目的是高效重复地将样品 引入到离子源中并且不能造成真空度的降 低。目前常用的进样装置有三种类型:间 歇式进样系统、直接探针进样及色谱进样 系统。一般质谱仪都配有前两种进样系统 以适应不同的样品需要,有关色谱进样系 统将在专门章节介绍。
(l)间歇式进样系统
该系统可用于气体、液体和中等蒸气 压的固体样品进样,典型的设计如下图所 示。
绝对灵敏度是指仪器可以检测到 的最小样品量;相对灵敏度是指仪器 可以同时检测的大组分与小组分含量 之比;分析灵敏度则指输入仪器的样 品量与仪器输出的信号之比。
(三)质谱仪的基本结构
质谱仪是通过对样品电离后产生的 具有不同m/z的离子来进行分离分析的 。质谱仪须有进样系统、电离系统、质 量分析器和检测系统。为了获得离子的 良好分析,必须避免离子损失,因此凡 有样品分子及离子存在和通过的地方, 必须处于真空状态。
(2)直接探针进样对那些在 间歇式进样系统的条件下无法变 成气体的固体、热敏性固体及非 挥发性液体试样,可直接引入到 离子源中,下图所示为一直接引 入系统。
R = m/W0.05
如果该峰是高斯型的,上述两式计 算结果是一样的。
【例21.1】要鉴别N+2(m/z为 28.006)和CO+(m/z为27.995)两个 峰,仪器的分辨率至少是多少? 在某质谱 仪上测得一质谱峰中心位置为245u,峰 高5%处的峰宽为0.52u,可否满足上述要 求?
解: 要分辨N+2和CO+,要求质谱仪 分辨率至少为:
通过可拆卸式的试样管将少量(10 ~ 100μg)固体和液体试样引入试样贮存器 中,由于进样系统的低压强及贮存器的加 热装置,使试样保持气态。实际上试样最 好在操作温度下具有1.3~0.13Pa的蒸气压 。
由于进样系统的压强比离子源的 压强要大,样品离子可以通过分子漏 隙(通常是带有一个小针孔的玻璃或 金属膜)以分子流的形式渗透过高真 空的离子源中。
1u
1 12
(
12.00000 g12C / mol 12C 6.02214 10 23 12C原子 / mol
12C
)
=1.66054×10-24g/12C原子 =1.66054×10-27kg/12C原子
而在非精确测量物质的场合,常 采用原子核中所含质子和中子的总数 即质量数来表示质量的大小,其数值 等于其相对质量数的整数。
测定气体用的质谱仪,一般质量 测定范围在2~100,而有机质谱仪一 般可达几千。现代质谱仪甚至可以研 究相对分子质量达几十万的生化样品 。
2.分辨本领
所谓分辨本领,是指质谱仪分开相 邻质量数离子的能力,一般定义是:对 两个相等强度的相邻峰,当两峰间的峰 谷不大于其峰高10%时,则认为两峰已 经分开,其分辨率
(一) 质谱仪的工作原理
质谱仪是利用电磁学原理,使带电 的样品离子按质荷比进行分离的装置。 离子电离后经加速进入磁场中,其动能 与加速电压及电荷Z有关,即
。
zeU 1 m 2
2
其中z为电荷数,e为元电荷 (e=1.60×10-19C),U为加速电压, m为离子的质量,υ为离子被加速后的 运动速度。具有速度υ的带电粒子进入
若要进行准确的同位素质量及有 机分子质量的准确测定,则需要使用 分辨率大于10000的高分辨率质谱仪, 这类质谱仪一般采用双聚焦磁式质量 分析器。目前这种仪器分辨率可达 100000,当然其价格也将会是低分辨 率仪器的4倍以上。
3.灵敏度
质谱仪的灵敏度有绝对灵敏度、相 对灵敏度和分析灵敏度等几种表示方法。
1.真空系统
质谱仪的离子产生及经过系统必须 处于高真空状态(离子源真空度应达 l.3×10-4~l.3×10-5Pa,质量分析器中 应达l.3×10-6Pa)。若真空度过低,则 会造成离子源灯丝损坏、本底增高、到反 应过多,从而使图谱复杂化、干扰离子源 的调节、加速极放电等问题。一般质谱仪 都采用机械泵预抽真空后,再用高效率扩 散泵连续地运行以保持真空。现代质谱仪 采用分子泵可获得更高的真空度。
第七章 质 谱 法
(Mass Spectrometry MS)
质谱法是通过将样品转化为运动的 气态离子并按质荷比(M/Z)大小进行 分离并记录其信息的分析方法。所得结 果以图谱表达,即所谓的质谱图(亦称 质谱,Mass Spectrum)。
根据质谱图提供的信息可 以进行多种有机物及无机物的 定性和定量分析、复杂化合物 的结构分析、样品中各种同位 素比的测定及固体表面的结构 和组成分析等。
从二十世纪六十年代开始,质谱
法更加普遍地应用到有机化学和生物 化学领域。化学家们认识到由于质谱 法独特的电离过程及分离方式,从中 获得的信息是具有化学本性,直接与 其结构相关的,可以用它来阐明各种 物质的分子结构。正是由于这些因素 ,质谱仪成为多数研究室及分析实验 室的标准仪器之一。
7-l 质谱仪