大学物理实验-PN结温度特性数据处理
PN结正向压降与温度关系的研究实验报告

PN结正向压降与温度关系的研究实验报告实验报告:PN结正向压降与温度关系的研究实验摘要:本实验旨在研究PN结正向压降与温度之间的关系。
通过改变PN结的温度,测量对应的正向压降,并分析得出结论。
实验结果表明,PN结的正向压降与温度呈正相关关系。
引言:PN结是半导体器件中的重要组成部分,其正向压降是衡量PN结导通能力的重要参数。
正向压降与温度之间的关系对于理解和优化半导体器件的性能具有重要意义。
因此,研究正向压降与温度之间的关系对于半导体器件的应用具有重要的理论和实际意义。
实验材料和方法:1.实验材料:PN结样品、测量仪器(包括数字万用表、恒流源等)。
2.实验方法:a.搭建实验电路,将PN结样品连接到恒流源,设置合适的电流值。
b.测量不同温度下PN结的正向压降,记录实验数据。
c.对实验数据进行处理和分析,得出结论。
实验结果:在实验过程中,我们固定了恒流源的电流值为I=10mA。
通过改变PN结的温度,在不同温度下测量了对应的正向压降数据,将实验数据整理如下:温度(℃)正向压降(V)250.6300.65350.68400.7450.72500.75550.78600.82讨论和结论:实验结果表明,PN结的正向压降与温度呈正相关关系。
这可能是由于温度升高导致了载流子在PN结中的增加,进而导致了正向电流的增加,从而使正向压降增加。
此外,温度升高还可能导致半导体材料的电阻变化,进而影响了正向压降。
综上所述,通过对PN结正向压降与温度关系的研究实验,我们发现正向压降与温度呈正相关关系。
这对于理解PN结的导通特性和优化半导体器件的性能具有重要意义。
附录:实验数据表格温度(℃)正向压降(V) 250.6300.65350.68400.7450.72500.75550.78。
大学物理实验PN结正向压降温度特性的研究实验报告

实验题目:PN 结正向压降温度特性的研究实验目的:了解PN 结正向压降随温度变化的基本关系式。
在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流I F 和压降V F 存在近似关系:)exp(kTqV Is I FF = 其中q 为电子电荷,k 为玻尔兹曼常数,T 为绝对温度,I S 为反向饱和电流:])0(ex p[kTqV CT Is g r -=由上面可以得到: 11)0(n r F g F V V InT q kT T Ic In q k V V +=-⎪⎪⎭⎫ ⎝⎛-= 其中()rn F g InT qKTV T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(在上面PN 结正向压降的函数中,令I F =常数,那么V F 就是T 的函数。
考虑V n1引起的线性误差,当温度从T 1变为T ,电压由V F1变为V F : []rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫ ⎝⎛---=1111)0()0( )(111T T TV V V F F F -∂∂+=理想()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想两个表达式相比较,有:()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 综上可以研究PN 结正向压降温度特性。
实验内容:1、求被测PN 结正向压降随温度变化的灵敏度S (mv/℃)。
作∆V —T 曲线(使用Origin 软件工具),其斜率就是S 。
2、估算被测PN 结材料硅的禁带宽度E g (0)=qV g (0)电子伏。
根据(6)式,略去非线性,可得T S T V T TV T V V s F F S F g ∆⋅++=∆+=)2.273()0()( ∆T=-273.2K ,即摄氏温标与凯尔文温标之差。
大学物理实验:PN结

三 、实 验 装 置 实
PN结样品架 1、PN结样品架
A为样品室,是一个可 为样品室, 卸的筒状金属容器, 卸的筒状金属容器, 筒盖内设橡皮圈盖与 筒套具相应的螺纹, 筒套具相应的螺纹, 可使两者旋紧保持密 封。 待测PN PN结样管采用 待测PN结样管采用 3DG6晶体管 3DG6晶体管
P1
P2
一、实 验 目 的
1、了解PN结测温基本原理和应 了解PN结测温基本原理和应 PN 用 。 2、验证PN结正向压降随温度升 验证PN结正向压降随温度升 PN 高而降低的特性。 高而降低的特性。 3、学会使用PN结温度传感器测 学会使用PN结温度传感器测 PN 试仪。 试仪。
二、实 验 原 理
PN结是指P型半导体与N型半导体相接触的部分。 PN结是指P型半导体与N型半导体相接触的部分。 结是指 在同一半导体材料晶片内掺杂形成P型导电区与N 在同一半导体材料晶片内掺杂形成P型导电区与N型导 电区相接触的截面形成了P 电区相接触的截面形成了P-N结 VF 一般来说, 一般来说,对于一个理想 的PN结,其正向电流IF和压降 PN结 其正向电流I VF 存在如下近似关系: 存在如下近似关系: P
2、∆VT曲线的测定 逐步提高加热电流进行变温实验,并记录对应的∆ 逐步提高加热电流进行变温实验,并记录对应的∆V和T, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 120℃ 记录数据填入数据表。 记录数据填入数据表。 (要求电压每下降-10V,记录一次温度) 要求电压每下降-10V,记录一次温度) 3、求被测PN结正向压降随温度变化的灵敏度S(mv/℃) 求被测PN结正向压降随温度变化的灵敏度S mv/℃ PN结正向压降随温度变化的灵敏度 方法是: 方法是:作△V-T曲线,其斜率就是S。最后再通过画曲线 曲线,其斜率就是S 求得。 求得。 T 0
大学物理实验报告实验55PN结正向电压温度特性的测定

大学物理实验教案实验名称:PN 结正向电压温度特性的测定1 实验目的1)了解PN 结正向电压随温度变化的基本规律。
2)掌握用计算机测绘恒流条件下PN 结正向电压随温度变化的关系曲线。
3)确定PN 结的测温灵敏度。
2 实验仪器科学工作室接口、放大器、恒流源、计算机3 实验原理3.1实验原理PN 结是半导体器件的核心。
在P (或N )型半导体中,用杂质补偿的方法将其中一部分材料转变成N (或P )型,这样,在两种材料交界处就形成了PN 结,它保持了两种材料之间晶格的连续性。
P 区多子空穴比N 区少子空穴浓度大,空穴由P 区向N 区扩散,并与N 区的多子自由电子复合,在N 区产生正离子的电荷区;N 区多子自由电子比P 区少子自由电子浓度大,自由电子由N 区向P 区扩散,并与P 区的多子空穴复合,在P 区产生负离子的电荷区。
P 区和N 区的电荷区之间形成电场,在此电场作用下产生与扩散运动相反的情况,它阻止扩散运动的进一步加强。
最终形成两种运动的动态平衡。
我们把这个空间电荷区叫PN 结,有时也叫作耗尽层。
根据半导体理论,通过PN 结的正向电流e I IkT qV s f =(1) 式中:I f ——正向电流(mA );V f ——正向压降(V );I s ——反向饱和电流(mA );q电子电量(e );k ——波尔兹曼常数;T ——热力学温度(K )。
而:e T I kT V goq B A s -=(2)式(2)中:V go ——能带间隙电压(V );A 、B ——由PN 结工艺结构所决定的常数。
由(1)、(2)式经整理后,PN 结正向压降的温度灵敏度S 为:)(q kB T f go dT f d S V V V +--== (3)根据这一特性,PN 结可作为温度传感器来使用。
3.2实验方法本实验通过电加热的方法提供给PN 结一个温度可以变化的热源,利用精确的温度传感器测量温度。
把待测的PN 结放置热源中,并利用恒流源给定待测PN 结一个恒定电流,PN 结两端则接入一高稳定放大器进行电压放大后,连接到自定义电压传感器来测量电压。
【大学物理实验(含 数据+思考题)】PN结正向电压温度特性研究实验报告

PN 结正向电压温度特性研究一、实验目的(1)了解PN 结正向电压随温度变化的基本规律。
(2)在恒流供电条件下,测绘PN 结正向电压随温度变化的关系图线,并由此确定PN 结的测温灵敏度和被测PN 结材料的禁带宽度。
二、实验仪器PN 结正向特性综合实验仪、DH-SJ5温度传感器实验装置。
三、实验原理1、测量PN 结温度传感器的灵敏度 由半导体理论可知,PN 结的正向电流I F 与正向电压V F 满足以下关系:I F =I n (ⅇqV FkT−1)(1)式(1)中I n 是反向饱和电流,T 是热力学温度,q 是电子的电量。
由于在常温(例如300K )时,kT/q 约为0.026V ,而PN 结正向电压约为十分之几伏,所以ⅇ^((qV_F)/kT)≫1,故式(1)中括号内的−1项完全可以忽略,于是有: I F =I n ⅇqV F kT(2)其中,I n 是与PN 结材料禁带宽度及温度等有关的系数,满足以下关系:I n =CTγⅇqV g0kT(3)式(3)中C 为与PN 结的结面积、掺杂浓度等有关的常数,k 为玻尔兹曼常数,γ在一定温度范围内也是常数,V g0为热力学温度0K 时PN 结材料的导带底与价带顶的电势差,对于给定的PN 结,V g0是一个定值。
将式(3)代入式(2),两边取对数,整理后可得:V F =V g0−(k q ln C I F )T −kTqln T γ=V 1+V nr (4)其中V 1=V g0−(k q ln CI F)T (5) V n r =−kTqln T γ (6)根据式(4),对于给定的PN 结材料,令PN 结的正向电流I F 恒定不变,则正向电压V F 只随温度变化而变化,由于在温度变化范围不大时,V n r 远小于V 1,故对于给定的PN 结材料,在允许的温度变化范围内,在恒流供电条件下,PN 结的正向电压V F 几乎随温度升高而线性下降,即 V F =V g0−(k q ln CI F)T(7)为了便于实际使用对式(7)进行温标转换,确定正向电压增量∆V [与温度为0℃时的正向电压比较]与用摄氏温度表示的温度之间的关系。
大学物理实验报告23——PN结温度传感器特性

天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[exp(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。
在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。
实验线路如图1所示。
2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。
因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f fx s U R R Z I K K ==≈+ (5)由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。
PN结正向压降温度特性的研究数据处理范例 (1)

PN 结正向压降与温度关系的研究数据处理范例1. 实验起始温度时各参数纪录:实验起始温度:R T = 17.8 oC 工作电流: F I = 100 uA起始温度为R T 时的正向压降:()R F T V = 677 mV 控温电流: 0.700 A 2. V T ∆-数据纪录表3. 以T 为横坐标,V ∆为纵坐标,作V T ∆-曲线,-200-180-160-140-120-100-80-60-40-200d e l t a V /m VT/OC图1:PN 结正向压降随温度变化关系曲线4. 用图解法求出被测PN 结正向压降随温度变化的灵敏度(/)oS mV C ,并正确表示不确定度。
(温度T 和正向压降V ∆的示值误差取各自坐标最小刻度值的一半,置信概率p 取0.683)0102030405060708090100110120130-220-200-180-160-140-120-100-80-60-40-20020d e l t a V /m VT/OC图2:图解法求解PN 结正向压降随温度变化的灵敏度S(1)被测PN 结正向压降随温度变化的灵敏度S 的最佳值计算:()()121218514171 1.91/89.6115.826.2O OO mV V V V mV S mV C CT T T C -+-∆-=====-∆-- (2)被测PN 结正向压降V∆的不确定度的确定:4.1Vp u k mV ∆===(m ∆取纵坐标最小刻度值的一半)(3)被测PN 结温度变化T ∆的不确定度的确定:0.41O O Tp u k C ∆===(m ∆取横坐标最小刻度值的一半)(4)被测PN 结正向压降随温度变化灵敏度的相对不确定度和绝对不确定度的确定:2.4%S E ===2.4% 1.91/0.05/O O S S u E S mV C mV C =⨯=⨯-=(5)所以被测PN 结正向压降随温度变化灵敏度的最后结果为:()1.910.05/O S S S u mV C =±=-± (P =0.683)2.4%S E =5. 计算被测PN 结材料的禁带宽度。
大学物理实验PN结正向压降与温度特性的研究实验报告(完整)

⼤学物理实验PN结正向压降与温度特性的研究实验报告(完整)PN 结正向压降与温度特性的研究⼀、实验⽬的1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习⽤PN 结测温的⽅法。
⼆、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1)其中q 为电⼦电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是⼀个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考刘恩科半导体物理学第六章第⼆节)其中C 是与结⾯积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代⼊(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=--= (3)其中()rn F g InT qKTV T Ic In q k V V -=???? ?-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本⽅程。
令I F =常数,则正向压降只随温度⽽变化,但是在⽅程(3)中,除线性项V 1外还包含⾮线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V---=1111)0()0( (4)按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -??+=理想(5) TV F ??1等于T 1温度时的T V F ??值。
由(3)式可得r qk T V V T V F g F ---=??111)0( (6)所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=----+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相⽐较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=?理想(8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得?=0.048mV ,⽽相应的V F 的改变量约20mV ,相⽐之下误差甚⼩。