限制性核酸内切酶
限制性核酸内切酶

生理意义
限制作用实际就是限制酶降解外源DNA ,维护宿主遗传稳定的保护 机制。甲基化是常见的修饰作用,可使腺嘌呤A和胞嘧啶C甲基化而受 到保护。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目 的。所以,能产生防御病毒侵染的限制酶的细菌,其自身的基因组中 可能有该酶识别的序列,只是该识别序列或酶切位点被甲基化了。但 并不是说一旦甲基化了,所有限制酶都不能切割。大多数限制酶对 DNA甲基化敏感,因此当限制酶目标序列与甲基化位点重叠时,对酶 切的影响有3种可能,即不影响、部分影响、完全阻止。对甲基化 DNA的切割能力是限制酶内在和不可预测的特性,因此,为有效的切 割DNA,必须同时考虑DNA甲基化和限制酶对该类型甲基化的敏感 性。另外,现在很多商业限制酶专门用于切割甲基化DNA。
E
Escherichia
(属)
co
coli
(种)
R
RY13
(品系)
I
的结构,辅因子的需求切位与作用方式,可将限 制酶分为三种类型,分别是第一型(Type I)、第二型(Type Ⅱ) 及第三型(Type Ⅲ)。
类型
第一型限制酶 同时具有修饰(modification)及识别切割(restriction)的作用;另有识别 (recognize)DNA上特定碱基序列的能力,通常其切割位(cleavage site)距离 识别位(recognition site)可达数千个碱基之远。例如:EcoB、EcoK。
第二型限制酶 只具有识别切割的作用,修饰作用由其他酶进行。所识别的位置多为短的回文 序列(palindrome sequence);所剪切的碱基序列通常即为所识别的序列。是遗 传工程上,实用性较高的限制酶种类。例如:EcoRI、HindⅢ。
限制性核酸内切酶

限制性核酸内切酶限制性核酸内切酶:是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。
限制性核酸内切酶的分类:依照限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,别离是第一型(Type I)、第二型(Type II)及第三型(Type III)。
第一型限制酶同时具有修饰(modification)及认知切割(restriction)的作用;还有认知(recognize)DNA 上特定碱基序列的能力,通常其切割位(cleavage site)距离认知位(recognition site)可达数千个碱基之远,并非能准确信位切割位点,因此并非经常使用。
例如:EcoB、EcoK。
第二型限制酶只具有认知切割的作用,修饰作用由其他酵素进行。
所认知的位置多为短的回文序列(palindrome sequence);所剪切的碱基序列通常即为所认知的序列。
是遗传工程上,有效性较高的限制酶种类。
例如:EcoRI、HindIII。
第三型限制酶与第一型限制酶类似,同时具有修饰及认知切割的作用。
可认知短的不对称序列,切割位与认知序列约距24-26个碱基对,并非能准确信位切割位点,因此并非经常使用。
例如:EcoPI、HinfIII。
限制酶在遗传学方面的应用:1、在甚因工程方面利用能产生“粘性结尾”的限制酶, 进行DNA的体外重组, 是较为方便的, 只要用同一限制酶处置不同来源的DNA, 由于所产生的水解片段具有相同的粘性结尾, 能够彼此“粘合”,再经连接酶处置, 就成为重组DNA分子了. 目前, 基因工程上, 限制酶要紧应用于以下两方面(1)目的基因与载体的重组细菌细胞中的限制酶能水解外源DNA , 因此必需通过适当的载体(质粒或噬菌体)的帮忙才能将外源DNA引人受体细胞并在其中增殖和表达。
将供体DNA与载体用一样的限制酶处置, 使载体带上各类各样的外源DNA片断, 然后引人受体细菌细胞增殖, 菌细胞增殖, 再挑选出所需的菌株, 便取得带有某一目的基因的繁衍系.用这种方式, 已成功地将酵母菌的咪哇甘油磷酸脱水酶基因、夕一异丙基苹果酸脱氢酶基因和色氨酸合成酶基因通过几噬菌体转人大肠杆菌,并表达了信息.(2)建造新的基因载体作为基因载体,在引人受体细胞后, 必需有较高的复制率, 以求取得大量的基因产物;必需具有一个选择性标志, 以便挑选;还要有一最多种限制酶的作用位点(每种酶只有一个切口);也要求利用平安。
限制性核酸内切酶切割原理方法结果分析及应用

5.DNA 酶 切 位 点 没 有 甲 基 化
( 如 Dpn1) 6.DNA 位点上存在其它修饰 7.DNA 不存在该酶识别顺序
验证
二 . 如果 DNA 切割不完全? 1. 内切酶活性下降 2. 内切酶稀释方法不正确 3.DNA 不纯,反应条件不佳 4. 内 切 酶 识 别 的 DNA 位 点 上 的 碱 基 被 甲 基 化 或 存 在其它修饰 5. 部分 DNA 溶液粘在管壁上 6. 内切酶溶液粘度大,取样不准 7. 酶切后 DNA 粘性末端退火 8. 由于反应溶液、温度使内切酶变性 9. 过度稀释使酶活性降低
应用二
利用pBR322作为载体重组人体的抑生长激素也是一 个经常提到的应用例子。其过程和水稻叶绿体基因重组 大同小异,只是除了在质粒载体上插入抑生长激素基因 外,还将含有lac操纵子起始部分的片段(包括启动子, 操作区,核糖体集合位点和β-半乳糖苷酶的主要部分) 插在抑生长激素基因的旁边。由于有了lac操作子的控 制,重组基因产生的蛋白质的调节就变得比较容易了
限制性核酸内切酶切割原理、
方法、结果分析及应用
PPT制作:杜雨濛、张佳佳、陈靓
课堂内容回顾:
1、定义: 1、定义:限制性核酸内切酶是可以识别特 定的核苷酸序列,并在每条链中特定部位的 两个核苷酸之间的磷酸二酯键进行切割的一 类酶,简称限制酶。 2、分类:
(根据酶的基因、蛋 白质结果、依赖的辅 助因子及DNA裂解的 特异性,将限制性内 切酶分为三种类型)
解决方法 1. 用 5-10 倍量过量消化 2. 用酶贮藏液或反应缓冲液稀释酶 3. 同上 4. 同上
5. 反应前离心数秒
6. 将内切酶稀释,增大取样体积 7. 电泳前将样品置 65 ℃保温 5-10 分钟,取出 后置冰浴骤冷 8. 使用标准反应缓冲液及温度 9. 适当稀释酶液,反应液稀释的酶不能贮藏 10. 使用最佳反应体系
限制性核酸内切酶

外切开 DNA 链,并且要求同一 DNA分子中存在两个反向的识别序列以 完成切割。
这类酶很少能达到完全切割。
Ⅳ 型限制性内切酶
识别经典甲基化的和修饰的 DNA。以 E. coli 的 McrBC 酶
1. 能在其识别序列内部或附近特异地切开 DNA 链。它们产 生确定的限制性片段和凝胶电泳条带,因此是唯一一类用 于 DNA分析和克隆的限制性内切酶。 2. Ⅱ型限制性内切酶由一群性状和来源都不尽相同的蛋白组 成,因而它们的氨基酸序列可能截然不同。 3. 它们一般以同源二聚体的形式结合到 DNA 上,识别对称 序列;
限制性核酸内切酶
于雪 果树学 1502011010
概念
• 限制性核酸内切酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列(一般48bp),并在此处切割DNA双链的核酸内切 酶。 • 主要存在于原核生物,是原核生物自我保 护的一种机制。
发现和历史
在本世纪中期,Arber等人对λ 噬菌体在大肠杆菌 不同菌株上的平板培养效应的研究为基础,发现了原 核生物体内存在着寄主控制的限制和修饰系统。
4. 而另一些识别非连续性序列(如 BglI 识别CCNNNNNGGC,其中的两 个半识别序列是不相连的)。
另一种比较常见的 Ⅱ 型限制性内切酶
• ⅡS 型酶,如 FokI ,它们在识别位点之外切开 DNA。这些酶大小居中,约 400-650 个氨基酸,由 DNA 结合域和切割 DNA 的功能域组成。它们识别连续 的非对称序列。 • 一般认为这些酶主要以单体的形式结合到 DNA 上,与邻近酶分子的切割功能
分类
至少存在 4 种不同类型的 R -M 系统:类型Ⅰ、Ⅱ、Ⅲ、
限制性内切酶

生技2班 张维嘉 楼辉辉 梁竟一 冯夏艳 孟慧 毛荣 殷智强
限制性核酸内切酶是可以识别DNA的特异序列,并在识别位点 或其周围切割双链DNA的一类内切酶,简称限制酶。 根据限制酶的结构,辅因子的需求切位与作用方式,可将限制 酶分为三种类型,分别是第一型、第二型及第三型。 Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基 化的DNA的水解; Ⅱ型限制性内切酶只催化非甲基化的DNA的水解; III型限制性内切酶同时具有修饰及认知切割的作用。
用于DNA基因组物理图谱的组建;基因的定位和基因分离;DNA分子碱基 序列分析;比较相关的DNA分子和遗传工程。 限制性核酸内切酶是由细菌产生的,其生理意义是提高自身的防御能力. 限制酶一般不切割自身的ype II restriction enzyme ) 识别序列: 5'GGGCC^C 3‘ BamHI(类型:Type II restriction enzyme ) 识别序列: 5' G^GATCC 3' BglII (类型:Type II restriction enzyme ) 识别序列: 5' A^GATCT 3' EcoRI (类型:Type II restriction enzyme ) 识别序列: 5' G^AATTC 3' HindIII (类型:Type II restriction enzyme ) 识别序列: 5' A^AGCTT 3' KpnI (类型:Type II restriction enzyme ) 识别序列: 5' GGTAC^C 3' NcoI (类型:Type II restriction enzyme ) 识别序列: 5' C^CATGG 3' NdeI (类型:Type II restriction enzyme ) 识别序列: 5' CA^TATG 3' NheI (类型:Type II restriction enzyme ) 识别序列: 5' G^CTAGC 3' NotI (类型:Type II restriction enzyme ) 识别序列: 5' GC^GGCCGC 3' SacI (类型:Type II restriction enzyme ) 识别序列: 5' GAGCT^C 3' SalI (类型:Type II restriction enzyme ) 识别序列: 5' G^TCGAC 3' SphI (类型:Type II restriction enzyme ) 识别序列: 5' GCATG^C 3' XbaI (类型:Type II restriction enzyme ) 识别序列: 5' T^CTAGA 3' XhoI (类型:Type II restriction enzyme ) 识别序列: 5' C^TCGAG 3'
基因工程中常用的三种工具酶

一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。
2.类型:来自原核生物,有三种类型。
Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。
Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。
另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。
同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。
与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。
常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。
显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。
但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。
Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。
三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。
限制性内切核酸酶的酶切与鉴定实验原理及步骤、注意事项

实验四限制性内切核酸酶的酶切与鉴定一、实验原理限制性内切酶是一类能识别双链DNA分子中特异核苷酸序列的DNA水解酶,主要存在于原核生物中。
根据限制酶的识别切割特性、催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ型三大类。
其中Ⅱ类酶在分子克隆和基因操作中最为有用,是常用的分子生物学工具酶。
限制性内切酶识别序列长度一般为4~8个呈回文序列的特异核苷酸对。
一般情况下,识别序列越长,在同一DNA分子中识别位点出现的频率就越小。
许多限制性内切酶的酶切位点已被确定。
例如EcoRl 酶的识别与切割序列为以下6个碱基对。
5′……GAATTC……3′3′……CTT AAG…… 5′这些末端为互补的,即粘性末端,并可在连接酶的催化下与由EcoR I产生的其它分子末端相连接。
限制性内切酶主要用于基因组DNA的片段化、重组DNA分子的构建与鉴定、载体中目的基因片段的分离与回收以及DNA分子物理图谱的构建等。
根据酶切目的和要求不同,可有单酶切、双酶切或部分酶切等不同方式。
根据酶切反应的体积不同,可分为小量酶切反应和大量的酶切反应。
小量酶切反应主要应用于质粒的酶切鉴定,体积为20 μl, 含0.2~1 μg DNA,大量酶切反应用于制备目的基因片段,体积为50~100 μl,DNA用量在10~30ug。
本实验为EcoR I对质粒pUC18的小量酶切。
在质粒的双链环状DNA分子上有多个限制性内切核酸酶酶切位点。
在用特定的限制性内切核酸酶对质粒进行酶切反应后,通常可采用琼脂糖凝胶电泳进行鉴定酶切效果。
二、仪器与试剂1.仪器:水浴锅、离心管、移液器、吸头、电泳设备等。
2.试剂:质粒pUC18、EcoR I限制性内切核酸酶、内切酶反应缓冲液、琼脂糖、电泳缓冲液、6×上样缓冲液、溴化乙啶染液、无菌水等。
限制性核酸内切酶与核酸内切酶、外切酶

限制性核酸内切酶百科名片其3′→5′外切酶活性使双链DNA分子产生出单链区,经过这种修饰的DNA 再配合使用Klenow酶,同时加进带放射性同位素的核苷酸,便可以制备特异性的放射性探针。
核酸内切酶核酸内切酶(endonuclease)在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。
从对底物的特异性来看,可分为DNaseⅠ、DNaseⅡ等仅分解DNA的酶;脾脏RNase、RNaseT1等仅分解RNA的酶。
如链孢霉(Neurospora)的核酸酶就是既分解DNA又分解RNA的酶。
一般来说,大都不具碱基特异性,但也有诸如脾脏RNase、RNaseT1等或限制性内切酶那种能够识别并切断特定的碱基或碱基序列的酶。
[1]寡核苷酸,是一类只有20个以下碱基对的短链核苷酸的总称(包括脱氧核糖核酸DNA或核糖核酸RNA内的核苷酸),寡核苷酸可以很容易地和它们的互补对链接,所以常用来作为探针确定DNA或RNA的结构,经常用于基因芯片、电泳、荧光原位杂交等过程中。
RNA聚合酶科技名词定义中文名称:RNA聚合酶英文名称:RNA polymerase定义1:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:生物化学与分子生物学(一级学科);酶(二级学科)定义2:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:细胞生物学(一级学科);细胞遗传(二级学科)定义3:以DNA或RNA为模板合成RNA的酶。
所属学科:遗传学(一级学科);分子遗传学(二级学科)本内容由全国科学技术名词审定委员会审定公布RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。
是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。
因为在细胞内与基因DNA的遗传信息转录为RNA有关,所以也称转录酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五 、影响核酸内切限制酶活性的因素
(1)DNA的纯度 (2)DNA的甲基化程度 (3)酶切消化反应的温度 (4)DNA的分子结构 (5)星星活性
第三节
DNA聚合酶
间断(discontinuity):在DNA的一条链上某一位置两 个相邻的核苷酸之间的磷酸二酯键发生断裂。
缺刻(nick):某一位置上丢失了一个或几个核苷酸。
三、大肠杆菌DNA聚合酶I大片段 (Klenow片段) 1、性质 它具有5’→3’聚合活性和3’→5’外 切酶活性,失去了5‘→3‘的核酸外切酶活性.
四、T4噬菌体DNA聚合酶
1、性质 具有 5 ’ → 3 ’聚合酶活性及 3 ’ → 5 ’外切核酸酶活性。其 3’ →5’外切酶活性对单链 DNA的作用比对双链 DNA的作 用更强。它的外切核酸酶活性比kenow片段要强200倍。
思考题: 流感嗜血杆菌(Haemophilus influenzae)d菌株 有三种限制酶,分别怎么表示?
Hind I、HindII、HindIII
BaciUus amyloliquefaciens H Streptomyces albus I
第二节 DNA分子片段化
一、天然DNA的制备
1、天然DNA的来源 ①染色体DNA
3,5磷酸二酯键
核糖核酸酶(RNase):
脱氧核糖核酸酶(DNase): 核酸外切酶(exonuclease): 核酸内切酶(endonuclease):
限制性核酸内切酶:
二、限制性核酸内切酶的分类
主要特性 限制修饰 I 型 多功能 II 型 单功能 III 型 双功能
蛋白结构
辅助因子 识别序列 切割位点
2、用途 1 )补平或标记限制性内切酶消化 DNA 后产生的 3 ’凹端。 2)对带有3’突出端的DNA分子进行末端标记。
五、T7噬菌体DNA聚合酶 1、性质 持续合成能力最强 3’→5’外切核酸酶活性为 klenow 片段的1000 倍 没有5’→3’外切酶活性。
平末端 粘性末端 1单位酶活性(1unit 1U):在最适反应条件
下1小时完全切割1ugλDNA样品的酶量。 同序同裂酶(识别及酶切位点相同): 同序异裂酶(识别位点相同但酶切位点不同): 同尾酶(酶切位点不同但产生相同的粘性末 端):
酶切位点的计算:
四核苷酸识别序列:44 = 256 六核苷酸识别序列:46 = 4096 2个假设:a 随机排列;b GC含量50% 如:用BglⅡ(A/GATC/T)酶切λDNA49Kb): 理论上的切点数: 49000/4096=12个 实际情况?
3、双酶切法
应先用需要较低盐浓度缓冲液的酶进行切割,然后调节缓冲
液的盐浓度,再加入需要较高盐浓度缓冲液的酶进行切割。
如果两种限制性核酸内切酶的最适反应温度不同,则应先用 最适反应温度较低的酶进行切割,升温后再加入第二种酶进 行切割。 若两种限制性核酸内切酶的反应系统相差很大,会明显影响 双酶切结果,则可以在第一种酶切割后,经过凝胶电泳回收 需要的 DNA 片段,再选用合适的反应系统,进行第二种限制 性核酸内切酶的切割。
三、限制性核酸内切酶的命名
1973年H.Smith和D.Nathans提议 ①每一种酶都由产生并纯化生出该酶的细菌的种属名中的三个 英文字母合起来代表: 第一个字母采用细菌属名的第一个字母大写; 第二和第三个字母小写,采用细菌种名的前两个字母; 如大肠杆菌(Escherichia coli)用Eco表示,代表从 大肠杆菌中分离出的限制性内切酶。 ②第四个字母表示菌株的类型(大小写均有),如EcoR中的 R代表大肠杆菌R株。 ③如果一个菌株有几种限制酶,则在代表菌株的字母后用罗马 数字表示。
4、部分酶切
当某种限制性核酸内切酶在待切割的 DNA 分子上有多个
识别序列,并且其中一个识别序列正好在切割后需要回收待
用的DNA片段上,若完全酶切,势必将此待用的DNA片段从 中切断。在此情况下,对DNA样品进行部分酶切,经过凝胶 电泳,根据待用DNA片段的大小,可回收待用的DNA片段
5、DNA分子的限制性图谱
第二章 基因工程的工具酶
第一节 限制性核酸内切酶
一、限制性核酸内切酶的发现
限制 (restriction) 修饰 (modification) 限制性核酸内切酶的生物学功能:自我保护功能(只 切外来的DNA,自身DNA被甲基化后切不动)
核酸酶:水解断裂多核苷酸链的两个相邻核苷酸的
异源三聚体Leabharlann ATP,Mg2+,SAM 特异性非对称 性序列 距识别序列1kb 处随机性切割 无应用价值
同源二聚体
Mg2+
异源二聚体
ATP, Mg2+ ,SAM
特异性4-8bp旋 特异性非对称 转对称序列 性序列 识别序列内或 附近特异性切 割 应用广泛 距识别序列下 游 24-26bp 无应用价值
用途
四、限制性核酸内切酶反应
1、限制性核酸内切酶反应缓冲液
2、单酶切法
若DNA样品是环状DNA分子,完全酶切后,产 生与识别序列数(n)相同的DNA片段数,并且 DNA片段的两末端相同
若DNA样品本来就是线形 DNA片段,完全酶切
的结果,产生n+ 1个 DNA片段数,其中有两个片 段的一端仍保留原来的末端
②病毒和噬菌体DNA
③质粒DNA
④线粒体和叶绿体DNA
2、天然DNA的提取
①准备生物材料。 ②裂解细胞。
③分离和抽提DNA。
二、DNA的纯化
琼脂糖凝胶电泳洗脱法 适用于小剂量 DNA 的纯化和酶切 DNA 片 段的回收。
三、 DNA的浓缩
乙醇沉淀法 在含一价阳离子的DNA溶液中加入2体 积的无水乙醇,使DNA沉淀(-20℃, 时间在30min以上) 通过离心收集沉淀的DNA 溶于适量的TE缓冲液或无菌水中
根据模板和作用方式的不同分为三类: (1)以DNA聚合酶I为代表的“合成型” (2)以klenow聚合酶为代表,只有聚合酶活
性和部分外切酶的活性
(3)逆转录酶类,以RNA作为聚合模板
二、大肠杆菌DNA聚合酶I(全酶)
1、性质: ①5’→3’ DNA聚合酶活性 ②3’→5’外切核酸酶活性 ③5’→3’外切核酸酶活性