山东省泰安市2014年中考数学试题(word版)

合集下载

t泰安市历届中考数学试题及答案

t泰安市历届中考数学试题及答案

t泰安市历届中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 4答案:C4. 以下哪个表达式的结果不是整数?A. 3 × 4B. 5 ÷ 2C. 6 - 2D. 8 + 1答案:B5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______或______。

答案:正数;07. 如果一个数的立方等于它本身,那么这个数是______、______或______。

答案:1;-1;08. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是______立方厘米。

答案:249. 一个数的倒数是1/2,那么这个数是______。

答案:210. 一个三角形的内角和是______度。

答案:180三、解答题(共30分)11. 已知一个等腰三角形的两个腰边长为5cm,底边长为6cm,求这个三角形的面积。

解答:首先,我们可以将等腰三角形分成两个直角三角形,每个直角三角形的两直角边分别为3cm和2.5cm(6cm的一半)。

根据勾股定理,我们可以求出高h:h² = 5² - 2.5² = 25 - 6.25 = 18.75h = √18.75 ≈ 4.33cm然后,根据三角形面积公式 S = (底× 高) / 2,我们可以求出面积:S = (6 × 4.33) / 2 ≈ 12.99平方厘米。

12. 一个圆的周长是18.84cm,求这个圆的半径。

解答:根据圆的周长公式C = 2πr,我们可以求出半径r:18.84 = 2πrr = 18.84 / (2π) ≈ 3cm。

2014年泰安中考数学模拟试题

2014年泰安中考数学模拟试题

2014年泰安中考数学模拟试题一、选择题(共20小题,每小题3分,满分60分)1、-5的倒数是()A、 B、 C、-5 D、52、a2•a3等于()A、3a2B、a5C、a6D、a83、下列事件为必然事件的是()A、打开电视机,它正在播广告B、抛掷一枚硬币,一定正面朝上C、投掷一枚普通的正方体骰子,掷得的点数小于7D、某彩票的中奖机会是1%,买1张一定不会中奖4、下面如图是一个圆柱体,则它的正视图是()A B C D5、若⊙O1的半径为3,⊙O2的半径为1,且O1O2=4,则⊙O1与⊙O2的位置关系是()A、内含B、内切C、相交D、外切6、下列正多边形中,不能铺满地面的是()A、正三角形B、正方形C、正六边形D、正七边形7、若a、b 是正数,a-b=l,ab=2,则a+b=()A、-3B、3C、±3D、98、现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于600。

其中不正确的命题的个数是()A、1个B、2个C、3个D、4个9、下面四个图形都是由六个相同的正方形组成,将其折叠后能围成正方体的是( )10、将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( ) A 、矩形 B 、三角形 C 、梯形 D 、菱形11甲x =82分,乙x =82分,甲2S =245,乙2S =190,那么成绩较为整齐的是( ) A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定12、某商场的营业额1999年比1998年上升10%,2000年比1999年上升10%,而2001年和2002年连续两年平均每年比上一年降低10%,那么2002年的营业额比1998年的营业额( )A 、降低了2%B 、没有变化C 、上升了2%D 、降低了1.99% 13、下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为25的是( )14、某村办工厂今年前5个月生产某种产品的总量c (件)关于时间t (月)的函数图象如图所示,则该厂对这种产品来说( )A 、1月至3月每月生产总量逐月增加,4、5两月每 月生产总量逐月减少B 、1月至3月每月生产总量逐月增加,4、5两月每 月生产总量与3月份持平C 、1月至3月每月生产总量逐月增加,4、5两月均停止生产(A )(B )(C )t(月)D 、1月至3月每月生产总量不变, 4、5两均停止生产15、某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是( )16、长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数据的中位数和众数分别是( )A .36,37B .37,36C .36.5,37D .37,36.517.如图3,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°, 则∠DCE 的大小是( )A .115°B .l05°C .100°D .95°18.某住宅小区六月份1日至5日母天用水量变化情况如图4所示.那么这5天平均母天的用水量是( )A .30吨B .31吨C .32吨D .33吨19) A .6 B .12 C.D.20.二次函教225y x x =+-有( )A .最大值5-B .最小值5-C .最大值6-D .最小值6-A .B .C .D .二、填空题(共10小题,每小题4分,满分40分)21、根据泉州市委、市政府实施“五大战役”的工作部署,全市社会事业民生战役计划投资 3 653 000 000元,将3 653 000 000用科学记数法表示为________________22、已知函数y=-3(x-2)2+4,当x=_______时,函数取得最大值为_________23、如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=_____ ,sinA=____24、如图,如果边长为1的正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP 重合,那么点B的对应点是点_____,点E在整个旋转过程中,所经过的路径长为_____________(结果保留π).第23题图第24题图三、解答题(共9小题,满分89分)25、计算:26、先化简,再求值:(x+1)2+x(1-x),其中x=-2.27、如图,已知点E ,C 在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F .求证:△ABC ≌△DEF .28、四张小卡片上分别写有数字1、2、3、4.它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字2的概率;(2)随机地从盒子里抽取一张.不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,并求抽到的数字之和为5的概率.29、如图,在方格纸中建立直角坐标系,已知一次函数y 1=-x+b 的图象与反比例函数的图象相交于点A (5,1)和A 1. (1)求这两个函数的关系式;(2)由反比例函数的图象特征可知:点A 和A 1关于直线y=x 对称.请你根据图象,填写点A 1的坐标及y 1<y 2时x 的取值范围.30、如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点.(1)当点A的坐标为(,p)时,①填空:p=___ ,m= ___,∠AOE= ___.②如图2,连接QT、QE,QE交MN于点F,当r=2时,试说明:以T、M、E、N为顶点的四边形是等腰梯形;(2)在图1中,连接EQ并延长交⊙Q于点D,试探索:对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值会变化吗?若不变,求出a的值;若变化.请说明理由.参考答案1A 2B 3C 4A 5D 6D 7B 8、A;提示:正确的是④9、C;提示:根据展开图10、B;提示:三角形11、B;提示:根据方差比较12、D;提示:没有变化13、D;提示:根据图形的割补关系,注意到小正方形的面积为1 14、B;提示:1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月份持平答案:15、B;提示:在每小部分水上涨成直线,当它们的比例系数k是不同的16、A;提示:根据中位数的概念,又37出现4次,次数最多 17、 B 18、 C 19、 B 20、D21、3.653×10922、 2 , 4 23、 5, 24、 G,25、解:原式=3+1- +6×=4-4+3=3 =3.26、解:原式=x2+2x+1+x-x2=3x+1,当x=-2时,原式=3×(-2)+1=-6+1=-5.27、证明:∵AB∥DE ∴∠B=∠DEF∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.28、解:(1)P(抽到数字2)= ;(2)画树状图:共有12种等可能的结果,其中抽到的数字之和为5占4种,∴P(抽到的数字之和为5)= = .29、解:(1)∵点A(5,1)是一次函数y1=-x+b图象与反比例函数y2= 图象的交点,∴-5+b=1,=1,解得b=6,k=5,∴y1=-x+6,y2= ;(2)由函数图象可知A1(1,5),当0<x<1或x>5时,y1<y2.30 解:(1)四边形DEFB 是平行四边形.证明:∵D 、E 分别是OB 、OA 的中点,∴DE ∥AB ,同理,EF ∥OB ,∴四边形DEFB 是平行四边形; (2)如图,连接BE ,S △AOB = ×8×b=4b ,∵E 、F 分别为OA 、AB 的中点, ∴S △AEF = S △AEB = S △AOB =b , 同理S △EOD =b ,∴S=S △AOB -S △AEF -S △ODE =4b-b-b=2b , 即S=2b (b >0);(3)以E 为圆心,OA 长为直径的圆记为⊙E ,①当直线x=b 与⊙E 相切或相交时,若点B 是切点或交点,则∠ABO=90°,由(1)知,四边形DEFB 是矩形,此时0<b ≤4,可得△AOB ∽△OBC ,∴=,即OB 2=OA •BC=8t ,在Rt △OBC 中,OB 2=BC 2+OC 2=t 2+b 2,∴t 2+b 2=8t , ∴t 2-8t+b 2=0,解得t=4±,②当直线x=b 与⊙E 相离时,∠ABO ≠90°, ∴四边形DEFB 不是矩形,综上所述:当0<b ≤4时,四边形DEFB 是矩形,这时,t=4±,当b >4时,四边形DEFB 不是矩形;解:(1)∵点A 的坐标为( ,p ),点A 在直线l 上,∴p=1,即点A 坐标为(,1);而点A在直线y=mx上,∴1= m,解得m= ;在Rt△OBA中,OB=1,AB= ,∴OA= ,∴∠AOB=30°,∴∠AOE=60°.故答案为1,,60°;(2)连接TM,ME,EN,ON,如图,∵OE和OP是⊙Q的切线,∴QE⊥x轴,QT⊥OT,即∠QTA=90°,而l∥x轴,∴QE⊥MN,∴MF=NF,又∵当r=2,EF=1,∴QF=2-1=1,∴四边形QNEM为平行四边形,即QN∥ME,∴NQ=NE,即△QEN为等边三角形,∴∠NQE=60°,∠QNF=30°,在四边形OEQT中,∠QTO=∠QEO=90°,∠TOE=60°,∴∠TQE=360°-90°-90°-60°=120°,∴∠TQE+∠NQE=120°+60°=180°,∴T、Q、N三点共线,即TN为直径,∴∠TMN=90°,∴TN∥ME,∴∠MTN=60°=∠TNE,∴以T、M、E、N为顶点的四边形是等腰梯形;(3)对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值不会变化.理由如下:连DM,ME,如图,∵DM为直径,∴∠DME=90°,而DM垂直平分MN,∴Rt△MFD∽Rt△EFM,∴MF2=EF•FD,设D(h,k),(h>0,k=2r),则过M、D、N三点的抛物线的解析式为:y=a(x-h)2+k,又∵M、N的纵坐标都为1,当y=1,a(x-h)2+k=1,解得x1=h- , x2=h+ ,∴MN=2 ,∴MF= MN= ,∴()2=1•(k-1),∵k>1,∴=k-1,∴a=-1.数学试卷第11 页(共11 页)。

2014泰安市中考数学模拟试题6

2014泰安市中考数学模拟试题6

2014泰安市中考数学模拟试题6一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的答案写在下面的答题栏中)一、选择题。

1. 7的相反数是( ) A.17B.7C.17-D.7-2. 改革开放以来,我国国内生产总值由1978年的3645亿元增长到2008年的300670亿元。

将300670用科学记数法表示应为( ) A.60.3006710⨯B.53.006710⨯C.43.006710⨯D.430.06710⨯3. 若一个正多边形的一个外角是40°,则这个正多边形的边数是。

( )A.10B.9C.8D.64. 某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( ) A.0B.141C.241D.15. 某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65这组数据的众数和中位数分别是( )A 59,63B 59,61C 59,59D 57,616. 把3222x x y xy -+分解因式,结果正确的是( )A.()()x x y x y +-B.()222x x xy y -+ C.()2x x y + D.()2x x y -7. 如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )8、如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为9.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD=BDAB 的长为…………A .2B .3C .4D .5103a =-,则a 与3的大小关系是( )A . 3a < 8.3a ≤ C . 3a > D .3a ≥ 11.下列命题中,真命题是( )A .对角线相等的四边形是矩形B 。

中考数学模拟题试卷

中考数学模拟题试卷

2014年山东省泰安市中考数学模拟试卷一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对的3分,选错,不选或选出的答案超过一个) 1· 下列计算中,正确的是( )A .2a 2·3b 3=6a 5B .(-2a )2=-4a 2C .(a 5)2=a 7D .x -2=1x 2 2·在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )3·在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25 ;如果再往盒中放进3颗黑色棋子,取得白色棋子的概率是14 ,则原来盒中有白色棋子( ) A .1颗 B .2颗 C .3颗 D .4颗4·如图,在平面直角坐标系中,把△ABC 沿y 轴对折后得到△A 1B 1C 1,再将△A 1B 1C 1向下平移4个单位长度得到△A 2B 2C 2,则△AB 1C 2的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形5·如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )。

:6·函数y =x 的取值范围是( )A 6x ≤B 6x ≥ C. 6x ≤- D. 6x ≥-7· 如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )AB C DA..4 C..8·如图,利用四边形的不稳定性改变矩形ABCD的形状得到□A1BCD1,若□A1BCD1的面积是矩形ABCD面积一半,则∠A1BC=()A.15º B.30º C.45º D.60º9.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是()10·.用12个大小相同的小正方体搭成的几何体如图所示,标有正确小正方体个数的俯视图是()11.已知直线y kx b=+经过点(k,3)和(1,k),则k的值为( )A...12.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为( )A. 12B.34D.4513·二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( )14.不等式组1111x x +≥-⎧⎪⎨<的解集在数轴上表示正确的是15·(如图所示,已知△ABC 和△DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O,AE 与CD交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论要:①AE=BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC ,其中正确结论的个数( )A .1个B .2个C .3个D .4个16·现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( ).3种 B .4种 C .5种 D .6种,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活动.下列是我市某中学七A .15B .30C .50D .20 18·已知函数y =1x 的图象如图所示,当x ≥-1时,y 的取值范围是( )A . y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥0102- A D B C19·如图,⊙O 的直径AB =10cm ,弦CD ⊥AB 于P .若OP ∶OB =3∶5,则CD =( )A .6cmB .4cmC .8cmD .91cm20·如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是 A.2 B.3 C.4 D.5二、(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分) 21.函数y =x -1 x +2中,自变量x 的取值范围是_______________.22·抛物线y =x 2-4x +m2 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是_______________.23·代数式3x 2-4x -5的值为7,则x 2- 43 x -5的值为_______________.24.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为________。

2014年泰安市数学中考知识分布及分值比例分析

2014年泰安市数学中考知识分布及分值比例分析

2014年泰安市数学中考知识分布及分值比例分析1、本题考查了有理数比较大小2、这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,3、本题考查了几何体的三种视图4、本题考查用科学记数法表示较小的数5、本题考查了平行线的性质,三角形的内角和定理的应用,6、本题考查了轴对称图形的知识7、此题考查了二元一次方程组的解8、本题考查了三角形中位线定理和直角三角形斜边上的中线9、此题考查了中位数和平均数,10、别利用相似三角形的判定和全等三角形的判定定理进行判断11、本题考查的是用列表法或画树状图法求概率12、本题考查了翻折变换的性质,解直角三角形13、此题考查了一元二次方程的应用,14、本题考查动点问题的函数图象,有一定难度15、本题考查的是一元一次不等式组的解,16、本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质17、本题考查了二次函数图象,一次函数图象,反比例函数图象18、此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质19、此题主要考查了扇形面积求法20、本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.21、此题考查了分式的混合运算,22、此题考查了用样本估计总体和频数、频率、总数之间的关系23、本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和圆周角定理24、此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键压轴题:25本题考查分式方程的应用26、此题主要考查了待定系数法求一次函数解析式以及坐标的平移、反比例等知识27、此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,28、此题主要考查了相似三角形的判定与性质以及菱形的判定等知识,29、本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用二次函数的性质可以解决实际问题中求最大值或最小值问题按模块归类:一、实数、整式:所占分值9分1、有理数比较大小2、同底数幂相除底数不变指数相减以及完全平方式和平方差的形式4、科学记数法二、分式:所占分值3分21、分式的混合运算三、方程:所占分值14分7、二元一次方程组的解13、一元二次方程的应用25、分式方程的应用(8分)四、函数:所占分值28分14、动点问题的函数图象17、二次函数图象,一次函数图象,反比例函数图象20、二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,26、求一次函数解析式以及坐标的平移、反比例等知识(8分)29、求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用(11分)五、几何基本知识(角、平行线、三角形的基本知识):所占分值6分5、平行线的性质,三角形的内角和定理8、三角形中位线定理和直角三角形斜边上的中线六、三角形全等:所占分值14分10、相似三角形的判定和全等三角形的判定16、旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质18、涉及三角形全等(3分未记入本模块,记到圆里了)27、等腰直角三角形的判定与性质、三角形全等(10分)七、三角形相似:所占分值8分10、相似三角形的判定和全等三角形的判定28、相似三角形的判定与性质以及菱形的判定等知识(11分-6分)八、四边形:(分值未单独记入,含在其他题里了)28、证明菱形约占6分29、压轴题中有考查菱形约占3分九、统计与概率:所占分值9分11、列表法或画树状图法求概率9、中位数和平均数22、用样本估计总体和频数、频率、总数之间的关系十、视图:所占分值3分3、几何体的三种视图十一、不等式:所占分值3分15、一元一次不等式组的解十二、平移、旋转、对称:所占分值9分6、轴对称图形12、翻折变换16、旋转:(分值未计入本模块)24、点的坐标以及图形变化类26、涉及到三角形平移(未把分值记入本模块)提醒:关注图形变换十三、三角函数:(本模块未独立计分,涉及分数12分,无独立题,无大题,只是作为解决其他题的工具)12、翻折变换的性质:用三角比求边14、有涉及:用三角比求边23、有涉及:求正弦比,考定义,前期求边困难28有涉及:利用比求30°角十五:圆所占分值9分18、切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质19、扇形面积求法23、垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和圆周角定理由以上分析,根据分值比例可以把知识模块划分出几个等级:A级:1、函数:所占分值28分2、三角形全等:所占分值14分3、方程:所占分值14分B级:1、四边形:所占分值9分2、相似:所占分值8分3、三角比:所占分值12分4、圆:所占分值9分C级:1、统计概率:所占分值9分2、平移、旋转、翻折(不独立考,融到其它知识里考查)3、几何基本知识(角、平行线、三角形的基本知识):所占分值6分D级:1、不等式:所占分值3分2、数与式:12分,虽然分多,都是白送的,复习时不必耗时太多2013、2014年泰安市数学中考试题知识模块分布情况2013年分值2014年分值A级知识模块1、函数:所占分值27分2、四边形:所占分值14分3、方程:所占分值11分521、函数:所占分值28分2、三角形全等:所占分值14分3、方程:所占分值14分56B级知识模块1、圆:所占分值9分2、三角形相似:所占分值11分3、三角形全等:涉及一个填空,一个大题28题(11分)311、四边形:所占分值9分2、相似:所占分值8分3、三角函数:所占分值12分4、圆:所占分值9分38C级知识模块1、几何基本知识:所占分值6分2、平移、旋转、翻折:所占分值6分3、统计概率:所占分值6分4、三角函数:所占分值6分241、统计概率:所占分值9分2、平移、旋转、翻折(没独立考,融到其它知识里考查3、几何基本知识(角、平行线、三角形的基本知识):所占分值6分18D级知识模块1、视图:所占分值3分2、不等式:所占分值3分3、分式:所占分值3分4、数与式:18分,以基础为主。

2014泰安市中考数学模拟题

2014泰安市中考数学模拟题

2014中考数学模拟题一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分) 1.在3-、0、2-、2四个数中,最小的数是( ) A.3- B.0 C.2- D.2 2.函数12y x =+的自变量x 的取值范围是( ) A.2x >- B.2x <-C.2x ≠-D.2x ≥-3.通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( )A.53.110-⨯ B.63.110-⨯ C.73.110-⨯D.83.110-⨯4.如图,在□ABCD 中,已知AD =8㎝,AB =6㎝,DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A.2cmB.4cmC.6cmD.8cm5.一个长方体的左视图.俯视图及相关数据如图所示,则其主视图的面积是( )A.6B.8C.12D.246.某商场试销一种新款衬衫,一周内销售情况如下表所示:型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A.平均数B.众数C.中位数D.方差AB CD(第4题图)E7.如图,给出下列四组条件: ①AB=DE,BC=EF,AC=DF ; ②AB=DE,BC=EF,∠B=∠E ; ③∠B=∠E, ∠C=∠F,BC=EF ; ④AB=DE,AC=DF, ∠B=∠E 。

其中,能使ABC DEF △≌△的条件共有( )A.1组B.2组C.3组D.4组8.若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( )A.k <2B.k ≥2C.k <1D.1≤k <29.有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A.9001500300x x =+ B.9001500300x x =-C.9001500300x x =+ D.9001500300x x=- 10.如图,“回”字形的道路宽为1米,整个“回”字形的长为8米, 宽为7米,—个人从入口点A 沿着道路中央走到终点B , 他共走了( )A.55米B.55.5米C.56米D.56.5米 11.抛物线1(2)(6)2y x x =+-的对称轴是 (A)2x =- (B)6x = (C)2x =(D)4x =12.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21) (D )(-22,-22)13.在平面直角坐标系中,⊙A 、⊙B 的圆心坐标分别是A(3,0), B(0,4),若这两圆的半径分别是3,4,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离A C BDFE (第7题)A BCO14.若y =ax 2+bx+C ,则由以下表格中信息可知y 与x 之间的函数表达式是A y=x 2-4x+3B y=x 2-3x+4C y=x 2-3x+3D y=x 2-4x+815.在一个不透明的袋子中装有1个白球,l 个黄球,2个红球,这4个球大小形状质地等完全相同,从袋中摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是A .1/2B .1/3C .1/6D .1/816.如图,等边 △ABC 的内切圆O 切BC 边于点D ,己知等边三角形 的边长为l 2cm ,则图中阴影部分的面积为A .πcm 2B .33πcm 2 C .2πm 2 D .3cm 2 17.如图,动点O 从边长为6的等边△ABC 的顶点A 出发,沿着A→C→B→A 的路线匀速运动一周,速度为1个单位长度每秒.以O 为圆心、3为半径的圆在运动过程中与△ABC 的边第三次相切时是点O 出发后第 秒.A .2B .4C .8D .1018.若点A 的坐标为(6,3)O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到 O A ′,则点A ′的坐标是 (A )(3,-6) (B )(-3,6) (C )(-3,-6)(D )(3,6)19.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x —7 —6 —5 —4 —3 —2 y —27 —13 —3 3 5 3 则当1=x 时,y 的值为(A )5 (B )—3 (C )—13 (D )—27 20.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A . 233cmB .433cm C .5cm D .2cm二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)21.计算()5082-÷的结果是________。

2014年山东省泰安市中考数学试题及参考答案(word解析版)

2014年山东省泰安市中考数学试题及参考答案(word解析版)

2014年山东省泰安市中考数学试题及参考答案与解析一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.在12,0,﹣1,12-这四个数中,最小的数是( ) A .12 B .0 C .12- D .﹣12.下列运算,正确的是( )A .4a ﹣2a=2B .a 6÷a 3=a 2C .(﹣a 3b )2=a 6b 2D .(a ﹣b )2=a 2﹣b 2 3.下列几何体,主视图和俯视图都为矩形的是( )A .B .C .D .4.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7B . 2.5×10﹣6C . 25×10﹣7D . 0.25×10﹣55.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( )A .∠1+∠6>180°B .∠2+∠5<180°C .∠3+∠4<180°D .∠3+∠7>180° 6.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( ) A .1B . 2C . 3D . 47.方程5x+2y=﹣9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( )A .x+2y=1B . 3x+2y=﹣8C . 5x+4y=﹣3D . 3x ﹣4y=﹣88.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F .若AB=6,则BF 的长为( )A .6B . 7C . 8D . 109.以下是某校九年级10名同学参加学校演讲比赛的统计表:则这组数据的中位数和平均数分别为( ) A .90,90B . 90,89C . 85,89D . 85,9010.在△ABC 和△A 1B 1C 1中,下列四个命题:(1)若AB=A 1B 1,AC=A 1C 1,∠A=∠A 1,则△ABC ≌△A 1B 1C 1; (2)若AB=A 1B 1,AC=A 1C 1,∠B=∠B 1,则△ABC ≌△A 1B 1C 1; (3)若∠A=∠A 1,∠C=∠C 1,则△ABC ∽△A 1B 1C 1;(4)若AC :A 1C 1=CB :C 1B 1,∠C=∠C 1,则△ABC ∽△A 1B 1C 1. 其中真命题的个数为( ) A .4个B . 3个C . 2个D . 1个11.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( ) A .38B .12C .58D .3412.如图①是一个直角三角形纸片,∠A=30°,BC=4cm ,将其折叠,使点C 落在斜边上的点C′处,折痕为BD ,如图②,再将②沿DE 折叠,使点A 落在DC′的延长线上的点A′处,如图③,则折痕DE 的长为( )A .83cm B . C . D .3cm13.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C . (x+4)(3﹣0.5x )=15D .(x+1)(4﹣0.5x )=1514.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A B C.D15.若不等式组1911123x ax x+⎧⎪++⎨+-⎪⎩<≥有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣3616.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°17.已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数m nyx+=的图象可能是()A.B.C.D.18.如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙上一点,连接PD .已知PC=PD=BC .下列结论:(1)PD 与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO=AB ;(4)∠PDB=120°. 其中正确的个数为( )A .4个B . 3个C . 2个D . 1个19.如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A .212cm π⎛⎫-⎪⎝⎭ B .212cm π⎛⎫+ ⎪⎝⎭C .1cm 2D .22cm π20.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如下表:下列结论: (1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小. (3)3是方程ax 2+(b ﹣1)x+c=0的一个根; (4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0. 其中正确的个数为( ) A .4个B . 3个C . 2个D . 1个二、填空题(本大题共4小题,满分12分。

山东省泰安市2014年中考数学复习真题演练:四边形试题精选

山东省泰安市2014年中考数学复习真题演练:四边形试题精选

山东省泰安市2014年中考数学复习(真题演练)四边形试题精选1、(2011•泰安)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.2、(2012•泰安)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.3、(2013•泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.4、(2013济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP ⊥NQ.MP与NQ是否相等?并说明理由.5、(2013潍坊)(本题满分11分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE’F’D’,旋转角为α.(1)当点D’恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD’=E’D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD’与△CBD’能否全等?若能,直接写出旋转角α的值;若不能,说明理由.6、(2013潍坊)如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别于BC、AD相交于点E、F.(1)求证四边形BEDF为矩形.(2)若BD2=B C·BC试判断直线CD与⊙O的位置关系,并说明理由.7、(2013莱芜)在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.8、(2013青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F 分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明)9、(2013临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论10、(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.11、(2012•青岛)已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.12、(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.13、(2012•枣庄)已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.14、(2012•潍坊)如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.15、(2012•淄博)在矩形ABCD中,BC=4,BG与对角线AC垂直且分别交AC,AD及射线CD于点E,F,G,AB=x.(1)当点G与点D重合时,求x的值;(2)当点F为AD中点时,求x的值及∠ECF的正弦值.16、(2012•临沂)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.17、(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.18、(2012•威海)(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.19、(2011•滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.20、(2012•日照)如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)CG=BH;(2)FC2=BF•GF;(3)=.参考答案1、证明:(1)∵点E是BC的中点,BC=2AD,∴EC=BE=BC=AD,又∵AD∥BC,∴四边形AECD为平行四边形,∴AE∥DC,∴△AOE∽△COF;(2)连接DE,∵AD∥BE,AD=BE,∴四边形ABED是平行四边形,又∠ABE=90°,∴四边形ABED是矩形,∴GE=GA=GB=GD=BD=AE,∴E、F分别是BC、CD的中点,∴EF、GE是△CBD的两条中位线,∴EF=BD=GD,GE=CD=DF,又GE=GD,∴EF=GD=GE=DF,∴四边形EFDG是菱形.2、(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.∵AE⊥EF,∠AEB+∠FEC=90°.∴∠AEB+∠BEA=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABH∽△ECM.证明:∵BG⊥AC,∴∠ABG+∠BAG=90°,∴∠ABH=∠ECM,由(1)知,∠BAH=∠CEM,∴△ABH∽△ECM;(3)解:作MR⊥BC,垂足为R,∵AB=BE=EC=2,∴AB:BC=MR:RC=,∠AEB=45°,∴∠MER=45°,CR=2MR,∴MR=ER=RC=,∴EM==.3、(1)证明:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵∠AFB=∠AFE,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,又∵∠BAC=∠DAC,∴∠CAD=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当EB⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,在△BCF和△DCF中,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.4、略答(1)全等(2)转化为(1)5、(1) ∵DC//EF,∴∠DCD′=∠CD′E=∠CD′E=α.∴sinα=1'2CE CECD CD==,∴α=30°(2) ∵G为BC中点,∴GC=CE′=CE=1,∵∠D′CG=∠DCG+∠DCD′=90°+α, ∠DCE′=∠D′CE′+∠DCD′=90°+α, ∴∠D′CG=∠DCE′又∵CD′=CD, ∴△GCD′≌△E′CD, ∴GD′=E′D(3) 能.α=135°或α=315°6、略7、(1)证明:连结CE.证DE∥CB.(2)当AC=12AB或AB=2AC时,四边形DCBE是平行四边形.8、(1)(2)略(3)2:19、略10、证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.11、(1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF(ASA);(2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.12、(1)证明:∵四边形ABCD是平行四边形,∴BC=AD,∠B=∠D,AB=CD,∵E、F分别是AB、CD的中点,∴BE=DF=AE=CF,在△BEC和△DFA中,BE=DF,∠B=∠D,BC=AD,∴△BEC≌△DFA.(2)答:四边形AECF是矩形.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵AE=CF,∴四边形AECF是平行四边形,∵AC=BC,E是AB的中点,∴CE⊥AB,∴∠AEC=90°,∴平行四边形AECF是矩形.13、证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.14、(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行);又∵AM丄BC(已知),∴AM⊥AD;∵CN丄AD(已知),∴AM∥CN,∴AE∥CF;∴∠ADE=∠CBD,∵AD=BC(平行四边形的对边相等),在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等),∴四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形);(2)如图,连接AC交BF于点0,当四边形AECF为菱形时,则AC与EF互相垂直平分,∵BO=OD(平行四边形的对角线相互平分),∴AC与BD互相垂直平分,∴▱ABCD是菱形(对角线相互垂直平分的平行四边形是菱形),∴AB=BC(菱形的邻边相等);∵M是BC的中点,AM丄BC(已知),∴AB=AC(等腰三角形的性质),∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=tan∠CBF=,又∵AE=CF,AB=BC,∴AB:AE=.15、解:(1)当点G与点D重合时,点F也与点D重合,∵矩形ABCD中,AC⊥BG,∴四边形ABCD是正方形,∵BC=4,∴x=AB=BC=4;(2)∵点F为AD中点,且AD=BC=4,∴AF=AD=2,∵矩形ABCD中,AD∥BC,∴∠EAF=∠ECB,∠AFE=∠CBE,∴△AEF∽△CEB,∴====,∴CE=2AE,BE=2FE,∴AC=3AE,BF=3FE,∵矩形ABCD中,∠ABC=∠BAF=90°,∴在Rt△ABC和Rt△BAF中,AB=x,分别由勾股定理得:AC2=AB2+BC2,BF2=AF2+AB2,即(3AE)2=x2+42,(3FE)2=22+x2,两式相加,得9(AE2+FE2)=2x2+20,又∵AC⊥BG,∴在Rt△AEF中,根据勾股定理得:AE2+FE2=AF2=4,∴36=2x2+20,解得:x=2或x=﹣2(舍去),故x=2;∵F为AD的中点,由对称性得到BF=CF,∵AF∥BC,∴△AEF∽△CEB,∴==,∴sin∠ECF===.16、(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.(2)解:连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴=,即=,∴CG=,∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣=,∴当AF=时,四边形BCEF是菱形.17、(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,在△FED和△GEB中,,∴Rt△FED≌Rt△GEB,∴EF=EG;(2)解:成立.证明:如图,过点E作EH⊥BC于H,过点E作EP⊥CD于P,∵四边形ABCD为正方形,∴CE平分∠BCD,又∵EH⊥BC,EP⊥CD,∴EH=EP,∴四边形EHCP是正方形,∴∠HEP=90°,∵∠GEH+∠HEF=90°,∠PEF+∠HEF=90°,∴∠PEF=∠GEH,∴Rt△FEP≌Rt△GEH,∴EF=EG;(3)解:如图,过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,则∠MEN=90°,∴EM∥AB,EN∥AD.∴△CEN∽△CAD,△CEM∽△CAB,∴,,∴,即==,∵∠NEF+∠FEM=∠GEM+∠FEM=90°,∴∠GEM=∠FEN,∵∠GME=∠FNE=90°,∴△GME∽△FNE,∴,∴.18、证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠1=∠2,∵在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,由折叠的性质可得:AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,∵在△A1IE与△CGF中,,∴△A1IE≌△CGF(AAS),∴EI=FG.19、解:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.(19)(20)20、证明:(1)∵BF⊥AE,CG∥AE,∴CG⊥BF,∵在正方形ABCD中,∠ABH+∠CBG=90°,∠CBG+∠BCG=90°,∠BAH+∠ABH=90°,∴∠BAH=∠CBG,∠ABH=∠BCG,AB=BC,∴△ABH≌△BCG,∴CG=BH;(2)∵∠BFC=∠CFG,∠BCF=∠CGF=90°,∴△CFG∽△BFC,∴=,即FC2=BF•GF;(3)同(2)可知,BC2=BG•BF,∵AB=BC,∴AB2=BG•BF,∴==,即=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年山东泰安学生学业水平测试数学试题一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.在,0,﹣1,﹣这四个数中,最小的数是()A.B.0 C.﹣D.﹣12.下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b23.下列几何体,主视图和俯视图都为矩形的是()A. B. C. D.4.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B. 2.5×10﹣6C. 25×10﹣7D. 0.25×10﹣55.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°(5题图) (8题图)6.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.47.方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣88.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE 的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.109.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,9010.在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个11.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.12.如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm13.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=1514.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.15.若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣3616.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE 绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°(16题图)(17题图)17.已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C. D.18.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个(18题图)(19题图)19.如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2 D.cm220.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:21教育名师原创作品X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个二、填空题(本大题共4小题,满分12分。

只要求填写最后结果,每小题填对得3分)21.化简(1+)÷的结果为_________.22.七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):月均用水量x/m30<x≤5 5<x≤10 10<x≤15 15<x≤20 x>20频数/户12 20 3频率0.12 0.07若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有_________户.23.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为_________.24.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为_________.三、解答题(本大题共5小题,满分48分。

解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?26.(8分)如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.27.(10分)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.28.(11分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.29.(11分)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;【出处:21教育名师】(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.参考答案一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.D.2.C.3.D.4.B.5.D.6.C.7.D. 8.C.9.B.10.B.11.C.12.A.13.A.14.B.15.C.16.D.17.C.18.A.19.A.20.B.二、填空题(本大题共4小题,满分12分。

只要求填写最后结果,每小题填对得3分)21.x﹣1.22.560.23..24.10070.三、解答题(本大题共5小题,满分48分。

解答应写出必要的文字说明、证明过程或推演步骤)25.解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80% ﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.26.解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△A OB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(m+4﹣2,1)∴2m=m+2,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.27.(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.28.证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,又∵∠ADB=∠ACB=∠ABD,∴∠ADB=∠CBD=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.29.解:(1)由题设可知A(0,1),B(﹣3,),根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,故当N(﹣1,4)时,MN和NC互相垂直平分.。

相关文档
最新文档