扫描电镜在材料表面形貌观察及成分分析中的应用
表面分析和扫描电子显微镜

表面分析和扫描电子显微镜表面分析是材料科学领域中的一项重要技术,它通过对材料表面进行观察和分析,可以提供关于材料性质和结构的有价值的信息。
扫描电子显微镜(SEM)是表面分析中最常用的工具之一,其高分辨率和强大的显微成像功能使其成为研究表面形貌、微观结构以及材料成分的重要手段。
一、SEM的工作原理扫描电子显微镜(SEM)通过向样品表面发射高能电子束,并对从样品表面散射回来的电子进行收集和分析,实现对样品表面的成像观察。
SEM的电子枪会产生高能电子束,在样品表面扫描时,电子束与样品相互作用,产生的不同信号被接收器捕捉并转化为图像。
二、SEM的应用领域1. 材料科学:SEM可以观察和分析材料的表面形貌、纹理、晶粒结构等,从而了解材料的性能和变形机制,有助于改善材料的制备和应用。
2. 纳米科学:SEM适用于观察纳米材料的形貌、结构以及纳米尺寸的相关特征,是纳米材料研究的重要工具。
3. 生物学:SEM可以用于观察生物细胞、组织和微生物等的形貌和结构,有助于研究生物学过程和疾病发生机制。
4. 环境科学:SEM可以分析不同环境条件下的大气颗粒物、水质样品等,帮助研究环境污染和生态系统变化。
三、SEM的优势和局限性1. 优势:a. 高分辨率:SEM的分辨率能够达到纳米级别,能够显示出材料的微观结构和纳米级特征。
b. 大视野:SEM的观察范围相对较大,可以覆盖较大的样品表面区域。
c. 扩展功能:SEM可以结合其他技术,如能谱分析、电子衍射等,进一步了解材料的化学成分和晶体结构。
2. 局限性:a. 不能观察非导电样品:由于SEM需要样品具有导电性,不具备导电性的样品需要进行表面涂层处理。
b. 无法观察材料内部结构:SEM只能观察材料表面的形貌和结构,无法了解材料的内部构造。
c. 对样品要求较高:SEM需要样品表面平整、干燥,对样品制备过程要求较高。
四、SEM的操作步骤1. 样品准备:将待观察的样品进行固定、切割或研磨处理,制备成适合SEM观测的形状和尺寸。
扫描电镜在材料分析中的应用

扫描电镜在材料分析中的应用3.1 试样制备技术试样制备技术在电子显微术中占有重要的地位,它直接关系到电子显微图像的观察效果和对图像的正确解释。
如果制备不出适合电镜特定观察条件的试样,即使仪器性能再好也不会得到好的观察效果。
和透射电镜相比,扫描电镜试样制备比较简单。
在保持材料原始形状情况下,直接观察和研究试样表面形貌及其它物理效应(特征),是扫描电镜的一个突出优点。
扫描电镜的有关制样技术是以透射电镜、光学显微镜及电子探针X 射线显微分析制样技术为基础发展起来的,有些方面还兼具透射电镜制样技术,所用设备也基本相同。
但因扫描电镜有其本身的特点和观察条件,只简单地引用已有的制样方法是不够的。
扫描电镜的特点是:①观察试样为不同大小的固体(块状、薄膜、颗粒),并可在真空中直接进行观察。
②试样应具有良好的导电性能,不导电的试样,其表面一般需要蒸涂一层金属导电膜。
③试样表面一般起伏(凹凸)较大。
④观察方式不同,制样方法有明显区别。
⑤试样制备与加速电压、电子束流、扫描速度(方式)等观察条件的选择有密切关系。
上述项目中对试样导电性要求是最重要的条件。
在进行扫描电镜观察时,如试样表面不导电或导电性不好,将产生电荷积累和放电,使得入射电子束偏离正常路径,最终造成图像不清晰乃至无法观察和照相。
3.1.1 块状试样制备1.导电性材料导电性材料主要是指金属,一些矿物和半导体材料也具有一定的导电性。
这类材料的试样制备最为简单。
只要使试样大小不得超过仪器规定(如试样直径最大为φ25mm ,最厚不超过20mm 等),然后用双面胶带粘在载物盘,再用导电银浆连通试样与载物盘(以确保导电良好),等银浆干了(一般用台灯近距离照射10 分钟,如果银浆没干透的话,在蒸金抽真空时将会不断挥发出气体,使得抽真空过程变慢)之后就可放到扫描电镜中直接进行观察。
但在制备试样过程中,还应注意:①为减轻仪器污染和保持良好的真空,试样尺寸要尽可能小些。
②切取试样时,要避免因受热引起试样的塑性变形,或在观察面生成氧化层。
扫描电镜在材料表面形貌观察及成分分析中的应用

扫描电镜在材料表面形貌观察及成分分析中的应用一、实验目的1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途;2)了解能谱仪的基本结构、原理和用途;3)了解扫描电镜对样品的要求以及如何制备样品。
二、实验原理(一)扫描电镜的工作原理和结构1. 扫描电镜的工作原理扫描电镜是对样品表面形态进行测试的一种大型仪器。
当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。
在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。
如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。
扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。
?图1??入射电子束轰击样品产生的信息示意图从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。
由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。
这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。
这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。
入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。
扫描电镜工作原理科普

扫描电镜工作原理科普扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察材料表面形貌和获得微观结构图像的仪器。
与传统的光学显微镜相比,扫描电镜能够提供更高的分辨率和更大的放大倍数,因此在材料科学、生物学、纳米技术等领域被广泛应用。
下面将从工作原理、构成和应用角度对扫描电镜进行科普。
一、工作原理:扫描电镜的工作原理主要是利用电子的特性来实现高分辨率成像。
其基本原理可以概括为以下几个步骤:1.电子束的产生:扫描电镜中使用的是电子束而非光线,电子束通过热发射、场致发射等方式产生。
2.电子束的聚焦:电子束通过聚焦系统进行聚焦,使其能够更准确地照射到样品表面。
3.电子束的扫描:电子束通过扫描系统进行规律的扫描,以便覆盖样品表面的各个区域。
4.电子束与样品的相互作用:电子束照射到样品表面时,会与样品中的电子、原子发生相互作用,产生散射、透射、反射等现象。
5.信号的采集:根据与样品相互作用产生的信号,通过相应的探测器进行采集。
6.图像的生成:通过采集到的信号,经过信号处理和图像重构,最终生成样品的形貌图像。
二、构成:扫描电镜由以下几部分组成:1.电子枪:用于产生电子束的装置,通常采用热阴极或场致发射阴极。
2.聚焦系统:用于将电子束进行准确的聚焦,以便更好地照射到样品表面。
3.扫描系统:用于对样品表面进行规律的扫描,以便获取样品的整体形貌图像。
4.样品台:用于固定和导热样品,通常具有多种移动方式,以适应不同样品的观察需要。
5.检测器:用于采集样品与电子束相互作用所产生的信号,常用的检测器有二次电子检测器和反射电子检测器等。
6.显示和控制系统:用于显示图像、实时调节仪器参数以及采集和处理数据等。
三、应用:扫描电镜在科学研究、工业材料分析和教学实验等领域具有广泛的应用。
其主要应用如下:1.材料科学:扫描电镜可以用于研究材料的表面形貌、结构和成分,对于纳米材料、金属和非金属材料等的表面缺陷、晶体结构以及纳米结构等进行观察和分析。
扫描电镜的基本原理及应用

扫描电镜的基本原理及应用1. 简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用高能电子束进行样本表面成像的仪器。
与传统的透射电子显微镜不同,扫描电子显微镜通过扫描样本表面并测量反射电子的信号来生成图像,因此可以观察到样本表面的形貌、结构和组成。
2. 基本原理扫描电子显微镜的基本原理是利用电子的波粒二象性和电磁透镜的作用,将电子束聚焦到极小的尺寸并扫描样本表面。
主要包括以下几个步骤:2.1 电子源扫描电子显微镜的核心部件是电子枪,它通过发射电子来产生电子束。
电子源通常采用热阴极、场致发射或冷阴极等不同技术,以产生高能、高亮度的电子束。
2.2 电子聚焦电子束经过电子透镜的作用,可以实现对电子束的聚焦。
电子透镜通常由磁场或电场构成,可以调节电子束的聚焦度和放大倍数。
通过调节电子透镜的参数,可以得到所需的电子束直径和形状。
2.3 样本扫描电子束通过扫描线圈进行扫描,并在扫描过程中与样本表面发生相互作用。
扫描线圈可以控制电子束的位置和方向,将电子束在样本表面上进行扫描。
在扫描过程中,电子束与样本表面发生的相互作用产生不同的信号。
2.4 信号检测与处理样本表面与电子束相互作用时,会产生不同的信号。
扫描电子显微镜通常会检测并测量这些信号,用于生成图像。
常用的信号检测方式包括:反射电子检测、二次电子检测、原子力显微镜等。
3. 应用领域扫描电子显微镜在科学研究、工业生产和材料表征等领域有广泛的应用。
以下是扫描电子显微镜的一些常见应用:3.1 材料科学扫描电子显微镜可以观察材料的表面形貌和结构,对材料的微观结构进行分析。
在材料科学研究中,扫描电子显微镜常常用于研究材料的晶体结构、晶界、纳米颗粒和材料表面的纳米结构等。
3.2 生物学扫描电子显微镜在生物学研究中有广泛的应用。
它可以观察生物样本的细胞结构、细胞器和细胞表面的微观结构,对生物样本的形态和结构进行研究。
扫描电子显微镜也被用于病毒、细菌和其他微生物的观察和研究。
扫描电镜在材料中的应用

扫描电镜在材料中的应用扫描电镜(Scanning Electron Microscope,简称SEM)是一种广泛应用于材料科学领域的高分辨率显微镜。
它利用电子束与样品相互作用产生的信号来获取样品的形貌和成分信息,具有优越的分辨率和放大倍数,因此在材料研究中有着重要的应用。
在材料科学中,扫描电镜能够提供高分辨率的表面形貌观察。
与光学显微镜相比,扫描电镜具有更高的放大倍数和更好的分辨率,能够观察到更细微的表面细节。
对于材料的表面形貌分析,扫描电镜能够帮助科研人员更全面地了解材料的结构特征、表面纹理和形貌变化等。
例如,在金属材料研究中,通过扫描电镜观察到的晶粒大小、晶界分布和表面缺陷等信息,可以为材料的性能提供重要的参考。
扫描电镜在材料中的应用还包括成分分析。
通过能谱仪等附加设备的配合,扫描电镜可以获取样品的元素成分信息。
利用能谱仪的能量分析功能,可以准确地确定材料中各种元素的含量和分布情况。
这对于材料的组分分析、杂质检测和成分控制等方面都非常重要。
例如,在半导体材料研究中,扫描电镜能够提供有关材料中杂质元素的存在情况和分布特征,并为材料的纯度和质量评估提供可靠的依据。
扫描电镜还可以应用于材料的微观结构研究。
通过扫描电镜观察材料的断口面,可以获取材料的断裂形态和断口特征。
这对于研究材料的断裂机制、强度和韧性等性能具有重要意义。
例如,在材料的力学性能研究中,扫描电镜可以观察到材料的断裂面形貌,进而分析材料的断裂方式和断裂机制,为材料的强度和韧性提供深入理解。
扫描电镜还可以应用于材料的表面形貌工程。
通过在材料表面进行局部处理,如蚀刻、涂覆等,可以改变材料的表面形貌和结构,从而调控材料的性能。
通过扫描电镜观察处理后的材料表面,可以评估处理效果,并优化处理参数。
例如,在涂层材料研究中,扫描电镜可以观察到涂层的厚度、均匀性和结构特征,为涂层材料的性能优化提供依据。
扫描电镜在材料科学中有着广泛的应用。
它可以提供高分辨率的表面形貌观察、成分分析、微观结构研究和表面形貌工程等方面的信息,为材料的研究和应用提供了重要的支持。
扫描电镜在材料学中的应用

扫描电镜在材料学中的应用材料学是第二次工业革命重要的基础学科之一,它涉及到材料的制备、性能、结构和应用,而材料结构又是材料性能和应用的基础。
如何研究材料的结构成为材料学者关注的重点之一。
最近几十年,随着科学技术的发展,扫描电镜成为研究材料结构的有力工具之一。
一、扫描电镜原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种基于电子束和物质交互作用的高分辨率显微镜,可用于研究材料的表面形貌、元素组成及晶体结构等微观结构特征。
扫描电镜技术是用高能电子束照射样品,当电子束与样品的原子或分子相互作用时,会产生散射、透射、反射和吸收等过程,从而得到一系列的信号。
这些信号通过探测器收集和处理,可以反映样品的表面形貌、元素组成及其他微结构的像素信息。
二、扫描电镜在材料学中的应用扫描电镜在材料学的应用非常广泛。
以下将从以下几个方面介绍它在材料学中的应用。
1.材料的表面形貌观测扫描电镜可以清晰地观测材料表面的形貌特征,如晶体、孔洞、颗粒、尖峰、裂痕、纹理等,其分辨率可达到亚纳米量级。
例如,用SEM观测晶体的形貌,可以分辨出其晶体形态、晶面和晶缺陷等,有助于研究材料的生长机制和晶体的结构性质。
2.材料元素分布探测扫描电镜还可以探测材料各元素分布情况,Semi-Quantitative Analysis,如EDX(Energy Dispersive X-ray Spectroscopy)能够快速获取样品在不同位置的元素组成,并可以建立元素含量的分布图。
通过这种方法可以鉴定材料的成分,判断晶体缺陷的构型和原子位置,并分析材料的迁移和相互作用等物理过程。
3.材料的电学性质研究扫描电镜成像技术可以用于分析材料的导电性和电荷转移特性,如SEM-EBSD组合技术可以分辨材料中不同晶向的晶界和晶体缺陷,通过视频测量、晶体学计算和模拟,可以获得材料的电学特性。
这对于新型芯片材料、电池材料和光催化材料等的设计、制备和改进至关重要。
论述扫描电镜的原理及应用

论述扫描电镜的原理及应用一、扫描电镜的原理扫描电镜(Scanning Electron Microscope,简称SEM)是一种利用电子束与样本相互作用产生的信号来获取样本表面信息的仪器。
它能够提供高分辨率、高深度的表面和形貌信息,成为材料科学、生物科学等领域的重要工具。
扫描电镜的原理主要包括以下几个方面:1. 电子光源扫描电子显微镜是使用高能电子束进行成像的,因此需要一个电子光源。
一般采用热阴极或冷阴极发射电子的电子枪作为电子光源。
电子光源在电子束形成中起到了核心的作用。
2. 准直与聚焦准直与聚焦系统是扫描电镜中的重要组成部分。
它通常由准直系统、导向系统和聚焦系统组成。
准直系统用于控制电子束的方向和角度,导向系统用于控制电子束的位置,而聚焦系统则用于将电子束聚焦到一个细小的区域。
3. 样本与扫描盘样本与扫描盘是扫描电镜中的另外两个重要部分。
样本是待观察的对象,它需要被放置在扫描盘上以便与电子束相互作用。
样本的制备与处理对于扫描电镜成像的质量有着重要的影响。
4. 信号检测与处理扫描电子显微镜中,样本与电子束的相互作用会产生多种信号,如二次电子发射、后向散射电子等。
这些信号需要经过特定的检测器进行捕捉,并经过处理后形成最终的图像。
常用的检测器包括二次电子检测器、信号放大器等。
二、扫描电镜的应用扫描电镜具有很多应用领域,下面列举了几个主要的应用方向:1. 材料科学扫描电镜可以用于对材料表面形貌和结构的观察和分析。
通过扫描电镜的高分辨率成像,可以研究材料的晶体结构、相界面、缺陷等信息。
这对于材料的研发、改进和质量控制具有重要意义。
2. 生物科学生物科学中常常需要观察和研究生物细胞、组织和器官的形态和结构。
扫描电镜能够提供高分辨率、高深度的图像,可用于观察细胞表面的超微结构、细胞器的形态以及细胞间相互作用等情况。
扫描电镜在生物学研究中有着广泛的应用。
3. 纳米技术纳米技术是当今科技领域的一个热点,扫描电镜作为纳米尺度下表面形貌观测的有效手段,在纳米技术研究领域得到了广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扫描电镜在材料表面形貌观察及成分分析中的应用一、实验目的1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途;2)了解能谱仪的基本结构、原理和用途;3)了解扫描电镜对样品的要求以及如何制备样品。
二、实验原理(一)扫描电镜的工作原理和结构1. 扫描电镜的工作原理扫描电镜是对样品表面形态进行测试的一种大型仪器。
当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。
在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。
如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。
扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。
图1 入射电子束轰击样品产生的信息示意图从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。
由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。
这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。
这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。
入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。
故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。
应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A点,在显像管荧光屏上的电子束恰好在A’点即“物点”A与“像点” A’在时间上和空间上一一对应。
通常称“像点”A’为图像单元。
显然,一幅图像是由很多图像单元构成的。
扫描电镜除能检测二次电子图像以外,还能检测背散射电子、透射电子、特征x射线、阴极发光等信号图像。
其成像原理与二次电子像相同。
在进行扫描电镜观察前,要对样品作相应的处理。
扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。
三、能谱仪结构及工作原理特征X射线,X射线探测器X射线能量色散谱分析方法是电子显微技术最基本和一直使用的、具有成分分析功能的方法,通常称为X射线能谱分析法,简称EDS或EDX方法。
它是分析电子显微方法中最基本、最可靠、最重要的分析方法,所以一直被广泛使用。
1.特征X射线的产生特征X射线的产生是入射电子使内层电子激发而发生的现象。
即内壳层电子被轰击后跳到比费米能高的能级上,电子轨道内出现的空位被外壳层轨道的电子填入时,作为多余的能量放出的就是特征X 射线。
高能级的电子落入空位时,要遵从所谓的选择规则(selection rule),只允许满足轨道量子数l 的变化Δl=±1 的特定跃迁。
特征X 射线具有元素固有的能量,所以,将它们展开成能谱后,根据它的能量值就可以确定元素的种类,而且根据谱的强度分析就可以确定其含量。
另外,从空位在内壳层形成的激发状态变到基态的过程中,除产生X射线外,还放出俄歇电子。
一般来说,随着原子序数增加,X射线产生的几率(荧光产额)增大,但是,与它相伴的俄歇电子的产生几率却减小。
因此,在分析试样中的微量杂质元素时可以说,EDS 对重元素的分析特别有效。
2. X射线探测器的种类和原理对于试样产生的特征X 射线,有两种展成谱的方法:X 射线能量色散谱方法(EDS:energy dispersive X-ray spectroscopy)和X射线波长色散谱方法(WDS:wavelength dispersive X-ray spectroscopy)。
在分析电子显微镜中均采用探测率高的EDS。
从试样产生的X 射线通过测角台进入到探测器中。
图示为EDS 探测器系统的框图。
对于EDS 中使用的X 射线探测器,一般都是用高纯单晶硅中掺杂有微量锂的半导体固体探测器(SSD:solid state detector)。
SSD是一种固体电离室,当X 射线入射时,室中就产生与这个X 射线能量成比例的电荷。
这个电荷在场效应管(TEF:field effect transistor)中聚集,产生一个波峰值比例于电荷量的脉冲电压。
用多道脉冲高度分析器(multichannel pulse height analyzer)来测量它的波峰值和脉冲数。
这样,就可以得到横轴为X 射线能量,纵轴为X 射线光子数的谱图。
为了使硅中的锂稳定和降低FET的热噪声,平时和测量时都必须用液氮冷却EDS探测器。
保护探测器的探测窗口有两类,其特性和使用方法各不相同。
(1)铍窗口型(beryllium window type)用厚度为8~10μm 的铍薄膜制作窗口来保持探测器的真空,这种探测器使用起来比较容易,但是,由于铍薄膜对低能X射线的吸收,所以,不能分析比Na(Z=11)轻的元素。
(2)超薄窗口型(UTW type : ultra thin window type )保护膜是沉积了铝,厚度0.3~0.5μm 的有机膜,它吸收X 射线少,可以测量C(Z=6)以上的比较轻的元素。
但是,采用这种窗口时,探测器的真空保持不太好,所以,使用时要多加小心。
最近,对轻元素探测灵敏度很高的这种类型的探测器已被广泛使用。
此外,还有去掉探测器窗口的无窗口型(windowless type)探测器,它可以探测B(Z=5)以上的元素。
但是,为了避免背散射电子对探测器的损伤,通常将这种无窗口型的探测器用于扫描电子显微镜等低速电压的情况。
四、电子显微镜的作用4.1 材料的组织形貌观察材料剖面的特征、零件内部的结构及损伤的形貌,都可以借助扫描电镜来判断和分析。
反射式的光学显微镜直接观察大块试样很方便,但其分辨率、放大倍数和景深都比较低。
而扫描电子显微镜的样品制备简单,可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析;扫描电子显微图像因真实、清晰,并富有立体感,在金属断口和显微组织三维形[16~20]的观察研究方面获得了广泛地应用。
4.2 镀层表面形貌分析和深度检测金属材料零件在使用过程中不可避免地会遭受环境的侵蚀,容易发生腐蚀现象。
为保护母材,成品件,常常需要进行诸如磷化、达克罗等表面防腐处理。
有时为利于机械加工,在工序之间也进行镀膜处理。
由于镀膜的表面形貌和深度对使用性能具有重要影响,所以常常被作为研究的技术指标。
镀膜的深度很薄,由于光学显微镜放大倍数的局限性,使用金相方法检测镀膜的深度和镀层与母材的结合情况比较困难,而扫描电镜却可以很容易完成。
使用扫描电镜观察分析镀层表面形貌是方便、易行的最有效的方法,样品无需制备,只需直接放入样品室内即可放大观察。
4.3 微区化学成分分析在样品的处理过程中,有时需要提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。
为此,相继出现了扫描电子显微镜—电子探针多种分析功能的组合型仪器。
扫描电子显微镜如配有X 射线能谱(EDS)和X射线波谱成分分析等电子探针附件,可分析样品微区的化学成分等信息。
材料内部的夹杂物等,由于它们的体积细小,因此,无法采用常规的化学方法进行定位鉴定。
扫描电镜可以提供重要的线索和数据。
工程材料失效分析常用的电子探针的基本工作方式为:(1) 对样品表面选定微区作定点的全谱扫描定性;(2) 电子束沿样品表面选定的直线轨迹作所含元素浓度的线扫描分析;(3) 电子束在样品表面作面扫描,以特定元素的X射线讯号调制阴极射线管荧光屏亮度,给出该元素浓度分布的扫描图像。
一般而言,常用X射线能谱仪能检测到的成分含量下限为0.1%(质量分数)。
可以应用在判定合金中析出相或固溶体的组成、测定金属及合金中各种元素的偏析、研究电镀等工艺过程形成的异种金属的结合状态、研究摩擦和磨损过程中的金属转移现象以及失效件表面的析出物或腐蚀产物的鉴别等方面。
五、能谱仪的功能5.1 元素定性分析元素周期表中的任何一种元素都有各自的原子结构,与其他元素不同,正是这种结构的不同,使得每种元素有自己的特征能谱图,所以测定一条或几条电子线在图谱中的位置,很容易识别出样品显示的谱线属于哪种元素。
由于每种元素都有自己的特定的电子线,即使是相邻的元素也不可能出现误判,因此用这种方法进行定性分析是非常准确的。
通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素5.2 元素定量分折X射线光电子能谱定量分析的依据是光电子谱线的强度(光电子蜂的面积)反映了原于的含量或相对浓度。
由于在进行元素电子扫描时所测得的信号的强度是样品物质含量的函数,因此,根据所得电子线的强弱程度可以半定量或定量地得出所测元素的含量。
之所以有半定量的概念,是因为影响信号强弱的因素除了样品中元素的浓度外,还与电子的平均自由行程和样品材料对激发X射线的吸收系数有关。
在实际分析中,采用与标准样品相比较的方法来对元素进行定量分析,其分析精度达1%~2%。
5.3 固体表面分析固体表面是指最外层的1~10个原子层,其厚度大概是(0.1~1)nm。
人们早已认识到在固体表面存在有一个与团体内部的组成和性质不同的相。
表面研究包括分析表面的元素组成和化学组成,原子价态,表面能态分布。
测定表面原子的电子云分布和能级结构等。
5.4 化合物结构鉴定X射线光电子能谱法对于内壳层电子结合能化学位移的精确测量,能提供化学键和电荷分布方面的信息。
化学结构的变化和化合物氧化状态的变,可以引起电子线峰位的有规律的移动。
据此,可以分析有机物、无机物的结构和化学组成。
X射线能谱是最常用的分析工具。
在表面吸附、催化、金属的氧化和腐蚀、半导体、电极钝化、薄膜材料等方面都有应用。
六、对两个样品的扫描电镜图和能谱图和测试结果进行分析1、能谱图:钢中夹杂物的分析,将试样表面抛光,用被散射电子像观察,找到夹杂物,然后用EDS的定点分析法检测它的元素组分。