与斜面有关的平抛运动讲诉
斜面上的平抛运动模型

斜面上的
在学习平抛运动之后经常遇见以物体从斜面上某点以不同的初速 度抛出,最终还落在斜面上为情景的试题,由于这类试题给出的已知 量比较少,解答时疑问较多,下面将对这类问题进行总结分析。
方法策略: 这类试题是平抛运动中的典型试题,一般考查以下规律的求解或判断: (1)物体的竖直位移与水平位移之比是同一个常数,这个常数等于 斜面倾角的正切值; (2)物体落在斜面上,位移方向相同,都是沿斜面方向; (3)物体的运动时间与初速度成正比; (4)物体落在斜面上时的速度方向都平行; (5)当物体的速度方向与斜面平行时,物体离斜面的距离最大并求 解最大距离。
斜面类平抛运动知识点总结

斜面类平抛运动知识点总结一、斜面类平抛运动的基本概念1. 斜面类平抛运动的定义斜面类平抛运动是指物体在一个倾斜角度的斜面上进行平抛运动的过程。
在该运动过程中,物体的平抛轨迹既包括水平方向运动,又包括斜面上的运动。
2. 基本参数在斜面类平抛运动中,一般会涉及到以下几个基本参数:- 初速度(v0):物体在斜面上的初速度,包括水平方向速度、竖直方向速度和斜面方向速度。
- 初角度(θ):物体的初速度与斜面法线的夹角。
- 初位置(x0,y0):物体的初始位置坐标。
- 加速度(a):物体在斜面上的加速度,包括水平方向加速度和斜面方向加速度。
- 时间(t):物体在斜面类平抛运动中的运动时间。
3. 运动规律斜面类平抛运动遵循以下几个基本的运动规律:- 牛顿运动定律:物体在斜面上的平抛运动符合牛顿运动定律,即物体在斜面上会受到斜面法线方向的支持力和重力的作用。
- 运动方程:斜面类平抛运动可以用运动方程来描述,包括物体在水平方向和斜面方向上的位移、速度和加速度的关系。
- 动能和重力势能转化:斜面类平抛运动过程中,物体的动能和重力势能会相互转化,这是斜面类平抛运动的一个重要特点。
二、斜面类平抛运动的相关公式在斜面类平抛运动中,涉及到一些基本公式和物理规律,下面列举几个重要的公式:1. 物体在斜面上的加速度斜面类平抛运动中,物体在斜面上的加速度可以用以下公式来计算:a = g*sin(θ)其中,a为物体在斜面上的加速度,g为重力加速度,θ为斜面的倾角。
2. 物体在水平方向上的运动距离斜面类平抛运动中,物体在水平方向上的运动距离可以用以下公式来计算:x = v0*cos(θ)*t其中,x为物体在水平方向上的位移,v0为物体的初速度,θ为斜面的倾角,t为运动时间。
3. 物体在竖直方向上的运动距离斜面类平抛运动中,物体在竖直方向上的运动距离可以用以下公式来计算:y = v0*sin(θ)*t - 0.5*g*t^2其中,y为物体在竖直方向上的位移,v0为物体的初速度,θ为斜面的倾角,t为运动时间,g为重力加速度。
模型10 斜面上的平抛运动

模型10 斜面上的平抛运动平抛运动与斜面模型组合是一种常见的题型,也是高考考查的热点题型,具体有以下两种情况。
模型解题方法方法应用分解速度,构建速度矢量三角形水平方向:v x=v0竖直方向:v y=gt合速度:v=方向:tan θ=分解位移,构建位移矢量三角形水平方向:x=v0t竖直方向:y=gt2合位移:s=方向:tan θ=【典例1】如图所示,倾角为θ的斜面上有A、B、C三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D点,今测得AB∶BC∶CD=5∶3∶1,由此可判断()A.A、B、C处三个小球运动时间之比为1∶2∶3B.A、B、C处三个小球的运动轨迹可能在空中相交C.A、B、C处三个小球的初速度大小之比为1∶2∶3D.A、B、C处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶1【答案】D【解析】选D。
A、B、C处三个小球下降的高度之比为9∶4∶1,根据平抛运动的时间t=知,A、B、C处三个小球运动时间之比为3∶2∶1,故A项错误;因最后三个小球落到同一点,抛出点不同,轨迹不同,故三个小球的运动不可能在空中相交,故B项错误;三个小球的水平位移之比为9∶4∶1,根据x=v0t知,初速度之比为3∶2∶1,故C项错误;对于任意一球,因为平抛运动某时刻速度方向与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍,三个小球落在斜面上,位移与水平方向夹角相等,即位移与水平方向夹角正切值相等,则三个小球在D点速度与水平方向上的夹角的正切值相等,也就是三个小球在D点的速度与水平方向的夹角相等,故D项正确。
【变式训练1】第十六届中国崇礼国际滑雪节在张家口市崇礼区的长城岭滑雪场隆重举行.如图1所示,跳台滑雪运动员经过一段加速滑行后从A点水平飞出,落到斜坡上的B点.A、B两点间的竖直高度h=45 m,斜坡与水平面的夹角α=37°,不计空气阻力(取sin37°=0.6,cos37°=0.8,g取10 m/s2).求:(1)运动员水平飞出时初速度v0的大小;(2)设运动员从A点以不同的水平速度v0飞出,落到斜坡上时速度大小为v,请通过计算确定v与v0的关系式,并在图2中画出v-v0的关系图象.【答案】(1)20 m/s (2)v =132 v 0 图见解析 【解析】(1)运动员离开A 点后做平抛运动,竖直方向上,h =12gt 2 根据几何关系可知,水平位移x =h tan α=60 m 水平方向上,v 0=x t=20 m/s. (2)竖直方向上的位移y =12gt 2 水平方向上位移x =v 0t根据平抛运动规律可知tan α=y x =gt 2v 0竖直分速度v y =gt根据平行四边形定则可知,合速度v =v 20+v 2y联立解得v =132v 0,作图如下.【典例2】如图所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端P 处;今在P 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的中点处。
平抛运动 一轮复习讲义

平抛物体的运动要点提示:一、平抛运动特点分析:受力特点:只受重力mg ;初速度特点:水平方向初速度0V运动规律:1、水平方向:匀速直线运动;2、竖直方向:自由落体运动;注意以下物理量:瞬时速度、水平分速度、竖直分速度、水平位移、竖直位移、合位移、水平速度与竖直推论 1 速度偏向角的函数值规律:平抛运动任意时刻的速度偏向角的三种函数值分别为:vv y =ϕs in vv v v x 0cos ==ϕ 2/tan x y v v x y ==ϕ 推论2 速度偏向角与位移偏向角的关系:平抛运动速度偏向角的正切函数ϕtan ,等于位移偏向角θ的正切的2倍,即θϕtan 2tan =推论3 速度方向反向延长线规律:平抛运动任意时刻的瞬时速度方向的三、平抛运动扩展:类似平抛运动:带电粒子垂直射入匀强电场,作类似平抛运动。
斜抛运动:初速度方向与水平方向有一定夹角,注意此部分内容也要引起重视,具体分析有例题。
例1、(基本问题分析)如图所示,由A 点以水平速度V 0抛出小球,落在倾角为θ的斜面上的B 点时,速度方向与斜面垂直,不计空气阻力,则此时速度大小V B = 飞行时间t=例2、如图所示,小球自A 点以某一初速做平抛运动,飞行一段时间后垂直打在斜面上的B 点,已知A 、B 两点水平距离为8米,θ=300,求A 、B 间的高度差。
例3、(2012上海)如图,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速为v 0的平抛运动,恰落在b 点。
若小球初速变为v ,其落点位于c ,则( ) A v 0<v <2v 0 (B )v =2v 0 (C )2v 0<v <3v 0 (D )v >3v 0例4、(平抛性质与斜面的结合,较难)在倾角为θ的斜面上以初速度v 0水平抛出一物体,经多长时间物AABAB体离斜面最远?离斜面的最大距离是多少?例5、物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tg α随时间t 变化的图像是图1中的:( )例6.安徽省两地10届高三第一次联考水平抛出的小球,t 秒末的速度方向与水平方向的夹角为θ1,t +t 0秒末速度方向与水平方向的夹角为θ2,忽略空气阻力,则小球初速度的大小为( D ) A .gt 0(cos θ1-cos θ2) B .210cos cos θθ-gtC .gt 0(tan θ1-tan θ2)D .120tan tan θθ-gt例7、两同高度斜面,倾角分别为α、β小球1、2分别由斜面顶端以相同水平速度V 0抛出(如图),假设两球能落在斜面上,求两球的飞行时间之比。
专题02 平抛运动的描述——解析版

专题2 平抛运动的描述(教师版)一、目标要求二、知识点解析1.平抛运动的定义将物体以一定的速度抛出,如果物体只受重力的作用,这时的运动叫做抛体运动;做抛体运动的物体只受到重力作用,既加速度g不变,因此抛体运动一定是是匀变速运动.抛体运动开始时的速度叫做初速度.如果初速度是沿水平方向的,这个运动叫做平抛运动.平抛运动是匀变速曲线运动.平抛运动的特征:①具有水平方向的初速度②只受重力作用2.平抛运动的基本规律(1)水平方向:匀速直线运动.(2)竖直方向:自由落体运动,加速度为g.3.平抛运动的运动规律v的方向相同;竖直方向为y轴,正方向向下;物以抛出点为原点取水平方向为x轴,正方向与初速度(,),下面将就质点任意时刻的速度、位移进行讨论.体在任意时刻t位置坐标为P x yy(1)速度公式:水平方向和竖直方向速度:0x y v v v gt =⎧⎪⎨=⎪⎩因此物体的实际速度为:0y x v v gtv v tan α⎧===⎪⎪⎨⎪==⎪⎩(2)位移公式水平方向和竖直方向位移:0212x v t y gt =⎧⎪⎨=⎪⎩因此实际位移为:02S y gt x v tan θ⎧⎪==⎪⎨⎪==⎪⎩注意:显然,位移和速度的夹角关系为:12tan tan θα=,即v 的反向延长线交于OA 的中点O ’.这一结论在运算中经常用到.(3)轨迹公式 由0x v t =和212y gt =可得2202g y x v =,所以平抛运动的轨迹是一条抛物线. 4.平抛运动的几个重要结论(1)运动时间:t =(2)落地的水平位移:x x v t v ==,即水平方向的位移只与初速度0v 和下落高度h 有关.(3)落地时速度:v =0v 和下落高度h 有关平抛运动 (4)两个重要推论:表示速度矢量v 与水平方向的夹角,故 表示位移矢量与水平方向的夹角,故 ①平抛运动中,某一时刻速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍. ②根据示意图,我们可知,平抛运动中,某一时刻速度的反向延长线与x 轴的交点为水平位移的中点. 5.求解平抛运动飞行时间的四种方法(1)已知物体在空中运动的高度,根据212h gt =,得到t = (2)已知水平射程x 和初速度0v ,也可以求出物体在空中运动的时间0x t v =(3)已知物体在空中某时刻的速度方向与竖直方向的夹角θ与初速度0v 的大小,根据0v gttan θ=可以求得时间.(4)已知平抛运动的位移方向与初速度方向的夹角α及初速度0v 的大小,根据200122gtgt v t v tan α==可求出时间.6.类平抛运动有时物体的运动与平抛运动很相似,也是在某个方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动.对这种运动像平抛又不是平抛,通常称为平抛运动,处理方法与平抛运动一样,只是a 不同而已.如图所示倾角为θ.一物块沿上方顶点P 水平射入,而从右下方顶点Q 离开.xα0tan y xv gt v v α==θ21tan tan 222x x y gt gt x v t v θα====7.斜面上的平抛运动解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,若已知斜面倾角,则相当于间接告诉合速度或者合位移的方 向.这个类问题主要就是将平抛运动规律与几何知识综合起来.①当物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角.一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解.例如:两个相对的斜面,倾角分别为037和053,在顶点把两个小球以相同初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,是求解A 、B 两个小球落到斜面上的时间之比是多少.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,== b :由于物体的位移与水平方向的夹角即为斜面的倾角可知:tan y x θ=,()201tan 2gt v t θ=,0tan v t g θ2=,所以:tan 379tan 5316A B t t ︒==︒ ②当物体的起点在斜面外,落点在斜面上 解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,是垂直打到斜面上,所以水平方向的速度和竖直方向的速度有以下关系:0tan yv v θ=根据这个公式再加上水平方向和竖直方向的位移关系就可以方便的求解.例如:在倾角为37°的斜面底端的正上方H 处平抛一个小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,==,由图可知, 2012tan 37H gt v t-︒=. b :由速度关系得:0tan 37v gt ︒=,解之得:0v = 8.斜抛运动的基本概念(1)定义:斜向上或斜向下抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做斜抛运动. (2)斜抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g .(3)斜抛运动的分解:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下 抛运动的合运动. (4)斜抛运动的方程如图所示,斜上抛物体初速度为v ,与水平方向夹角为θ,则速度:x yv v v v gt cos sin θθ=⎧⎪⎨=-⎪⎩位移:212x v t y v t gt cos sin θθ=⎧⎪⎨=-⎪⎩轨迹方程:可得:xt v cos θ=,代入y 可得2222gx y x v tan cos θθ=-可以看出:y =0时 (1)x =0是抛出点位置.(2)22v x gsin θ=是水平方向的最大射程.(3)飞行时间:2v t gsin θ=三、考查方向题型1:平抛运动的基本规律典例一:(多选)关于平抛运动,下列说法中正确的是( ) A .落地时间仅由抛出点高度决定B .抛出点高度一定时,落地时间与初速度大小有关C .初速度一定的情况下,水平飞出的距离与抛出点高度无关D .抛出点高度一定时,水平飞出距离与初速度大小成正比 【答案】AD【解析】AB .平抛运动在竖直方向上做自由落体运动,由 h =212gt 得 t则知平抛运动的时间由抛出点高度决定,与初速度无关,故A 正确,B 错误;CD .平抛运动的水平距离 x =v 0t=v 抛出点高度一定时,水平飞出距离与初速度的大小成正比,故C 错误,D 正确.题型2:平抛运动的计算典例二:(2020江苏·多选)如图所示,小球A 、B 分别从2l 和l 的高度水平抛出后落地,上述过程中A 、B 的水平位移分别为l 和2l 。
第2讲平抛运动的规律及应用讲义整理版

第2讲平抛运动的规律及应用板块一主干梳理夯实基础【知识点1】抛体运动n1.平抛运动(1)定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下(不考虑空气阻力)的运动。
(2)性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线。
(3)条件①v0工0,且沿水平方向。
②只受重力作用。
2.斜抛运动(1)定义:将物体以初速度 v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动。
(2)性质:斜抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线。
【知识点2] 抛体运动的基本规律1.平抛运动(1)研究方法:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
(2)基本规律(如图所示)①速度关系②位移关系③轨迹方程:y= ^x2。
2.类平抛运动的分析所谓类平抛运动,就是受力特点和运动特点类似于平抛运动,即受到一个恒定的外力且外力与初速度方向垂直,物体做曲线运动。
(1)受力特点:物体所受合力为恒力,且与初速度的方向垂直。
(2)运动特点:沿初速度 v o方向做匀速直线运动,沿合力方向做初速度为零的匀加速直线运动。
板块二考点细研悟法培优考点1平抛运动的基本规律[深化理解][考点解读】1.关于平抛运动必须掌握的四个物理量2.(1)做平抛运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图甲中A点和B点所示。
其推导过程为tan 0=也=吐=y。
v X v o t x2(2)平抛的水平射程与初速度有关吗?提示:有,时间相同的情况下,初速度越大水平射程越大。
尝试解答选BD 。
根据平抛运动的规律 h = 2gt 2,得t = 2h,因此平抛运动的时间只由高度决定,因为 的飞行时间相同,大于 a 的飞行时间,因此 A 错误,B 正确;又因为X a >X b ,而t a < b 的大,C 错误;做平抛运动的物体在水平方向上做匀速直线运动, b 的水平位移大于即b 的水平初速度比c 的大,D 正确。
物理建模系列(六) 四类常见平抛运动模型

物理建模系列(六) 四类常见平抛运动模型模型一 水平地面上空h 处的平抛运动 由h =12gt 2知t =2hg,即t 由高度h 决定.甲模型二 半圆内的平抛运动(如图甲) 由半径和几何关系制约时间t : h =12gt 2 R ±R 2-h 2=v 0t 联立两方程可求t .模型三 斜面上的平抛运动乙1.顺着斜面平抛(如图乙) 方法:分解位移 x =v 0t y =12gt 2 tan θ=yx 可求得t =2v 0tan θg丙2.对着斜面平抛(如图丙) 方法:分解速度 v x =v 0 v y =gt tan θ=v y v 0=gt v 0可求得t =v 0tan θg模型四 对着竖直墙壁的平抛运动(如图丁)丁水平初速度v 0不同时,虽然落点不同,但水平位移相同. t =d v 0例1 如图,从半径为R =1 m 的半圆AB 上的A 点水平抛出一个可视为质点的小球,经t =0.4 s 小球落到半圆上.已知当地的重力加速度g =10 m/s 2,则小球的初速度v 0可能为( )A .1 m/sB .2 m/s C.3 m/sD .4 m/s【解析】 由于小球经0.4 s 落到半圆上,下落的高度h =12gt 2=0.8 m ,位置可能有两处,如图所示.第一种可能:小球落在半圆左侧,v 0t =R -R 2-h 2=0.4 m ,v 0=1 m/s 第二种可能:小球落在半圆右侧,v 0t =R +R 2-h 2,v 0=4 m/s ,选项A 、D 正确. 【答案】 AD例2 如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd .从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点【解析】 如图所示,过b 点做水平线be ,由题意知小球第一次落在b 点,第二次速度变为原来的2倍后,轨迹为Oc ′,c ′在c 的正下方be 线上,故轨迹与斜面的交点应在bc 之间.据运动规律作图越直观,对解决问题越有利.【答案】 A[高考真题]1. (2015·课标卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g6h D.L 14g h <v <12(4L 21+L 22)g6h【解析】 发射机无论向哪个方向水平发射,乒乓球都做平抛运动. 当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有124L 21+L 22=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.【答案】 D2.(2016·上海卷,23)如图,圆弧形凹槽固定在水平地面上,其中ABC 是位于竖直平面内以O 为圆心的一段圆弧,OA 与竖直方向的夹角为α.一小球以速度v 0从桌面边缘P 水平抛出,恰好从A 点沿圆弧的切线方向进入凹槽.小球从P 到A 的运动时间为 ________ ;直线P A 与竖直方向的夹角β= ________ .【解析】 据题意,小球从P 点抛出后做平抛运动,小球运动到A 点时将速度分解,有tan α=v y v x =gt v 0,则小球运动到A 点的时间为:t =v 0tan αg ;从P 点到A 点的位移关系有:tan β=v 0t 12gt 2=2v 0gt =2tan α=2cot α,所以P A 与竖直方向的夹角为:β=arctan(2cot α).【答案】v 0tan αgarctan(2cot α) 3.(2014·江苏卷,6)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A 球水平抛出,同时B 球被松开,自由下落.关于该实验,下列说法中正确的有( )A .两球的质量应相等B .两球应同时落地C .应改变装置的高度,多次实验D .实验也能说明A 球在水平方向上做匀速直线运动【解析】 小锤打击弹性金属片后,A 球做平抛运动,B 球做自由落体运动.A 球在竖直方向上的运动情况与B 球相同,做自由落体运动,因此两球同时落地.实验时,需A 、B 两球从同一高度开始运动,对质量没有要求,但两球的初始高度及击打力度应该有变化,实验时要进行3~5次得出结论.本实验不能说明A 球在水平方向上的运动性质,故选项B 、C 正确,选项A 、D 错误.【答案】 BC[名校模拟]4.(2018·山东师大附中高三模拟)如图所示,A 、B 两质点从同一点O 分别以相同的水平速度v 0沿x 轴正方向抛出,A 在竖直平面内运动,落地点为P 1;B 沿光滑斜面运动,落地点为P 2,P 1和P 2在同一水平面上,不计阻力,则下列说法正确的是( )A .A 、B 的运动时间相同 B .A 、B 沿x 轴方向的位移相同C .A 、B 运动过程中的加速度大小相同D .A 、B 落地时速度大小相同【解析】 设O 点与水平面的高度差为h ,由h =12gt 21,h sin θ=12g sin θ·t 22可得:t 1=2hg,t 2=2hg sin 2θ,故t 1<t 2,A 错误;由x 1=v 0t 1,x 2=v 0t 2,可知,x 1<x 2,B 错误;由a 1=g ,a 2=g sin θ可知,C 错误;A 落地的速度大小为v A =v 20+(gt 1)2=v 20+2gh ,B 落地的速度大小v B =v 20+(a 2·t 2)2=v 20+2gh ,所以v A =v B ,故D 正确. 【答案】 D5.(2018·山东烟台高三上学期期中)如图所示,斜面倾角为θ,从斜面上的P 点以v 0的速度水平抛出一个小球,不计空气阻力,当地的重力加速度为g ,若小球落到斜面上,则此过程中( )A .小球飞行时间为2v 0tan θgB .小球的水平位移为2v 20tan θgC .小球下落的高度为2v 20sin θgD .小球刚要落到斜面上时的速度方向可能与斜面垂直【解析】 由x =v 0t ,y =12gt 2,tan θ=y x 三式得t =2v 0tan θg ,水平位移x =2v 20tan θg,小球下落高度y =12gt 2=2v 20tan 2θg.小球落在斜面上,速度方向斜向右下方,不可能与斜面垂直.A 、B 正确.【答案】 AB6.(2018·山东淄博一中高三上学期期中)如图所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为45°的斜面上的C 点,小球B 恰好垂直打到斜面上,则A 、B 到达C 点的速度之比为( )A .2∶1B .1∶1 C.2∶ 5D .5∶2 2【解析】 对于A 球:x =v 1t ,y =12gt 2,x =y ,t =2v 1g ,v A =v 21+v 2y =5v 1;对于B 球:v 2=v y =g ·t =2v 1,v B =22v 1,所以v 1∶v 2=5∶2 2.【答案】 D课时作业(十一) [基础小题练]1.(2018·山东临沂高三上学期期中)在一次投球游戏中,某同学调整好力度,将球水平抛向放在地面的小桶中,结果球飞到小桶的右方(如图所示),不计空气阻力,则下次再投时,他可能作出的调整为( )A .减小初速度,抛出点高度不变B .增大初速度,抛出点高度不变C .初速度大小不变,提高抛出点高度D .初速度大小不变,降低抛出点高度 【解析】 由x =v 0t ,y =12gt 2,得x =v 02yg,球飞到小桶右方,说明水平位移偏大,可使高度不变,减小v 0,或v 0不变,降低高度,A 、D 正确.【答案】 AD2.从同一水平直线上的两位置分别沿同方向抛出两小球A 和B ,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( )A .两球的初速度一样大B .B 球初速度比A 大C .同时抛出两球D .先抛出A 球【解析】 小球在竖直方向上做自由落体运动,由h =12gt 2,两小球从同一高度抛出在空中某处相遇,则两小球下落时间相同,故说明两小球从同一时刻抛出,C 正确,D 错误;由x =v 0t ,A 球的水平位移大,说明A 的初速度大,A 、B 错误.【答案】 C3.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4 m ,一小球以水平速度v 飞出,g 取10 m/s 2,欲打在第四台阶上,则v 的取值范围是( )A. 6 m/s<v ≤2 2 m/s B .2 2 m/s<v ≤3.5 m/s C. 2 m/s<v < 6 m/s D .2 2 m/s<v < 6 m/s【解析】 根据平抛运动规律有:x =v t ,y =12gt 2,若打在第3台阶与第4台阶边沿,则根据几何关系有:v t =12gt 2,得v =12gt ,如果落到第四台阶上,有:3×0.4<12gt 2≤4×0.4,代入v =12gt ,得 6 m/s<v ≤2 2 m/s ,A 正确.【答案】 A4.一带有乒乓球发射机的乒乓球台水平台面的长是宽的2倍,中间球网高h ,发射机安装于台面左侧边缘的中点,发射点的高度可调,发射机能以不同速率向右侧不同方向水平发射乒乓球,不计空气阻力,当发射点距台面高度为3h 且发射机正对右侧台面的外边角以速度v 1发射时,乒乓球恰好击中边角,如图所示;当发射点距台面高度调为H 且发射机正对右侧台面以速度v 2发射时,乒乓球恰好能过球网且击中右侧台面边缘,则( )A.H h =43,v 1v 2=176 B .H h =21,v 1v 2=176C.H h =43,v 1v 2=23D .H h =21,v 1v 2=23【解析】 设乒乓球台宽为L ,乒乓球的运动是平抛运动,当以速度v 1发射时,由平抛规律知3h =12gt 21,(2L )2+⎝⎛⎭⎫L 22=v 1t 1,联立解得v 1=L217g6 h;同理,当以速度v 2发射时,H =12gt 22,2L =v 2t 2,H -h =12gt 23,L =v 2t 3,联立解得H =43 h ,v 2=L 3g 2h ,所以H h =43,v 1v 2=176,A 正确. 【答案】 A5.(2018·山东师大附中高三上学期二模)如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点.O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为60°,重力加速度为g ,则小球抛出时的初速度为( )A. 3gR2 B . 33gR2 C.3gR2D .3gR3【解析】 画出小球在B 点速度的分解矢量图.由图可知,tan 60°=v 0gt ,R (1+cos 60°)=v 0t ,联立解得:v 0=33gR2,选项B 正确. 【答案】 B6.如图所示,在距地面高为H =45 m 处,有一小球A 以初速度v 0=10 m/s 水平抛出,与此同时,在A 的正下方有一物块B 也以相同的初速度同方向滑出,B 与水平地面间的动摩擦因数为μ=0.4,A 、B 均可视为质点,空气阻力不计(取g =10 m/s 2).下列说法正确的是( )A .小球A 落地时间为3 sB .物块B 运动时间为3 sC .物块B 运动12.5 m 后停止D .A 球落地时,A 、B 相距17.5 m 【解析】 根据H =12gt 2得,t =2H g= 2×4510s =3 s ,故A 正确;物块B 匀减速直线运动的加速度大小a =μg =0.4×10 m/s 2=4 m/s 2,则B 速度减为零的时间t 0=v 0a =104 s=2.5 s ,滑行的距离x =v 02t 0=102×2.5 m =12.5 m ,故B 错误,C 正确;A 落地时,A 的水平位移x A =v 0t =10×3 m =30 m ,B 的位移x B =x =12.5 m ,则A 、B 相距Δx =(30-12.5)m =17.5 m ,故D 正确.【答案】 ACD[创新导向练]7.休闲运动——通过“扔飞镖”考查平抛运动知识飞镖运动于十五世纪兴起于英格兰,二十世纪初,成为人们日常休闲的必备活动.一般打飞镖的靶上共标有10环,第10环的半径最小.现有一靶的第10环的半径为1 cm ,第9环的半径为2 cm ……以此类推,若靶的半径为10 cm ,在进行飞镖训练时,当人离靶的距离为5 m ,将飞镖对准第10环中心以水平速度v 投出,g =10 m/s 2.则下列说法中正确的是( )A .当v ≥50 m/s 时,飞镖将射中第8环线以内B .当v =50 m/s 时,飞镖将射中第6环线C .若要击中第10环的线内,飞镖的速度v 至少为50 2 m/sD .若要击中靶子,飞镖的速度v 至少为25 2 m/s【解析】 根据平抛运动规律可得,飞镖在空中飞行有:x =v t ,h =12gt 2,将第8环半径为3 cm 、第6环半径为5 cm 、第10环半径为1 cm 、靶的半径为10 cm 代入两式可知正确选项为B 、D.【答案】 BD8.科技前沿——轰炸机上的投弹学问我国自主研制的“歼十五”轰炸机完成在航母上的起降.如图,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A .已知A 点高度为h ,山坡倾角为θ,由此不能算出( )A .轰炸机的飞行速度B .炸弹的飞行时间C .轰炸机的飞行高度D .炸弹投出时的动能【解析】 由图可得炸弹的水平位移为x =htan θ.设轰炸机的飞行高度为H ,炸弹的飞行时间为t ,初速度为v 0.炸弹垂直击中山坡上的目标A ,则根据速度的分解有tan θ=v 0v y =v 0gt ,又H -h x =12gt2v 0t =gt 2v 0,联立以上三式得H =h +h 2tan 2θ,可知能求出轰炸机的飞行高度H ,炸弹的飞行时间t =2(H -h )g ,轰炸机的飞行速度等于炸弹平抛运动的初速度,为v 0=xt,故A 、B 、C 均能算出;由于炸弹的质量未知,则无法求出炸弹投出时的动能,故D 不能算出.【答案】 D9.体育运动——乒乓球赛中的平抛运动知识在某次乒乓球比赛中,乒乓球先后两次落台后恰好在等高处水平越过球网,过网时的速度方向均垂直于球网,把两次落台的乒乓球看成完全相同的两个球,球1和球2,如图所示.不计乒乓球的旋转和空气阻力,乒乓球自起跳到最高点的过程中,下列说法正确的是( )A .起跳时,球1的重力功率等于球2的重力功率B .球1的速度变化率小于球2的速度变化率C .球1的飞行时间大于球2的飞行时间D .过网时球1的速度大于球2的速度【解析】 乒乓球起跳后到最高点的过程,其逆过程可看成平抛运动.重力的瞬时功率等于重力乘以竖直方向的速度,两球起跳后能到达的最大高度相同,由v 2=2gh 得,起跳时竖直方向分速度大小相等,所以两球起跳时重力功率大小相等,A 正确;速度变化率即加速度,两球在空中的加速度都等于重力加速度,所以两球的速度变化率相同,B 错误;由h =12gt 2可得两球飞行时间相同,C 错误;由x =v t 可知,球1的水平位移较大,运动时间相同,则球1的水平速度较大,D 正确.【答案】 AD10.体育运动——足球运动中的平抛运动规律(2015·浙江卷,17)如图所示为足球球门,球门宽为L .一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点).球员顶球点的高度为h .足球做平抛运动(足球可看成质点,忽略空气阻力),则( )A .足球位移的大小x = L 24+s 2B .足球初速度的大小v 0= g 2h (L 24+s 2) C .足球末速度的大小v =g 2h (L 24+s 2)+4gh D .足球初速度的方向与球门线夹角的正切值tan θ=L2s【解析】 足球位移大小为x =(L2)2+s 2+h 2=L 24+s 2+h 2,A 错误;根据平抛运动规律有:h =12gt 2,L 24+s 2=v 0t ,解得v 0=g 2h (L 24+s 2),B 正确;根据动能定理mgh =12m v 2-12m v 20可得v =v 20+2gh =g 2h (L 24+s 2)+2gh ,C 错误;足球初速度方向与球门线夹角正切值tan θ=s L 2=2sL ,D 错误.【答案】 B[综合提升练]11.(2016·浙江卷,23)在真空环境内探测微粒在重力场中能量的简化装置如图所示,P是个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h 的探测屏AB 竖直放置,离P 点的水平距离为L ,上端A 与P 点的高度差也为h .(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系. 【解析】 (1)打在中点的微粒32h =12gt 2①t =3h g② (2)打在B 点的微粒v 1=L t 1,2h =12gt 21③v 1=Lg 4h④ 同理,打在A 点的微粒初速度v 2=L g 2h⑤ 微粒初速度范围Lg4h≤v ≤L g 2h⑥ (3)由能量关系12m v 22+mgh =12m v 21+2mgh ⑦代入④、⑤式L =22h ⑧ 【答案】 (1)3hg(2)L g4h≤v ≤L g 2h(3)L =22h12.如图所示,倾角为37°的斜面长l =1.9 m ,在斜面底端正上方的O 点将一小球以v 0=3 m/s 的速度水平抛出,与此同时静止释放顶端的滑块,经过一段时间后小球恰好能够以垂直斜面的方向击中滑块.(小球和滑块均可视为质点,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8),求:(1)抛出点O 离斜面底端的高度; (2)滑块与斜面间的动摩擦因数μ.【解析】 (1)设小球击中滑块时的竖直速度为v y ,由几何关系得v 0v y =tan 37°设小球下落的时间为t ,竖直位移为y ,水平位移为x ,由运动学规律得 v y =gt ,y =12gt 2,x =v 0t设抛出点到斜面最低点的距离为h ,由几何关系得 h =y +x tan 37° 由以上各式得h =1.7 m.(2)在时间t 内,滑块的位移为x ′,由几何关系得 x ′=l -xcos 37°, 设滑块的加速度为a ,由运动学公式得x ′=12at 2,对滑块由牛顿第二定律得 mg sin 37°-μmg cos 37°=ma , 由以上各式得μ=0.125. 【答案】 (1)1.7 m (2)0.125。
8与斜面结合的平抛问题

与斜面结合的平抛运动问题考点规律分析与斜面结合的平抛运动常见的两类情况(1)顺着斜面抛:如图甲所示,物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角。
结论有:①到达斜面的速度方向与斜面夹角恒定;②到达斜面的水平位移和竖直位移的关系:tanθ=yx=12gt2v0t=gt2v0;③运动时间t=2v0tanθg。
(2)对着斜面抛:如图乙所示,做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角。
结论有:①速度方向与斜面垂直;②水平分速度与竖直分速度的关系:tanθ=v0v y=v0gt;③运动时间t=v0g tanθ。
例题讲解女子跳台滑雪如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆,这项运动非常惊险。
设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡上的B点,斜坡倾角θ取37°,斜坡可以看成一斜面。
(取g=10 m/s2,sin37°=0.6,cos37°=0.8)求:(1)运动员在空中飞行的时间t ; (2)A 、B 间的距离s 。
[规范解答] (1)运动员由A 点到B 点做平抛运动,水平方向的位移x =v 0t ,竖直方向的位移y =12gt 2,又yx =tan37°,联立以上三式得t =2v 0tan37°g =3 s 。
(2)由题意知sin37°=y s =12gt 2s , 得A 、B 间的距离s =gt 22sin37°=75 m 。
[完美答案] (1)3 s (2)75 m物体从斜面平抛后又落到斜面上,则其位移大小为抛出点与落点之间的距离,位移的偏角为斜面的倾角α,且tan α=\f(y,x )。
当速度平行于斜面时,物体离斜面最远。
举一反三作业1.如图所示,以9.8 m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g 取9.8 m/s 2,不计空气阻力)( )A.23s B.223sC. 3 s D.2 s答案C解析如图所示,把末速度分解成水平方向的分速度v0和竖直方向的分速度v y,则有tan30°=v0vy ,又v y=gt,解两式得t=v yg=3v0g= 3 s,故C正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与斜面有关的平抛运动1.如图,从斜面上的点以速度υ0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,己知AB=75m , a=37°,不计空气阻力,下列说法正确的是A.物体的位移大小为75mB.物体飞行的时间为6sC.物体的初速度v 0大小为20m/sD.物体在B 点的速度大小为30m/s 【答案】AC 【解析】试题分析:由图可知,物体的位移大小为75m ,选项A 正确;物体飞行的时间为s s g s t 3106.0752sin 2=⨯⨯==α,选项B 错误;物体的初速度v 0大小为s m ts v /2037cos 0==o,选项C 正确;物体在B 点的速度大小为s m s m gt v v /1310/)310(20)(22220=⨯+=+=,选项D 错误;故选AC.考点:平抛运动的规律.2.如图所示,斜面与水平面夹角,在斜面上空A 点水平抛出两个小球a 、b ,初速度分别为v a 、v b ,a 球落在斜面上的N 点,而AN 恰好垂直于斜面,而b 球恰好垂直打到斜面上M 点,则( )A .a 、b 两球水平位移之比2v a :v bB .a 、b 两球水平位移之比2v a 2 :v b 2C .a 、b 两球下落的高度之比4v a 2 :v b 2D .a 、b 两球下落的高度之比2v a 2 :v b 2【答案】BC 【解析】试题分析:a 球落在N 点,位移与斜面垂直,则位移与水平方向的夹角为90°-θ,设此时的速度方向与水平方向的夹角为α,则tanα=2tan (90°-θ),b 球速度方向与斜面垂直,速度与水平方向的夹角为90°-θ,可知:2yb ya bav v v v ,解得:2yaaybbv v v v ,根据22yv hg,则a、b两球下落的高度之比224:a bv v.故C正确,D错误.根据yvtg知,a、b两球的运动时间之比为v a:2v b,根据x=v0t,则水平位移之比为:x a:x b=v a2:2v b2.故B正确,A 错误.故选:BC.考点:平抛运动的规律.3.如图所示,从倾角为θ的足够长的斜面顶端水平抛出一个小球,小球落在斜面上某处.关于小球落在斜面上时的速度方向与斜面的夹角α,下列说法正确的是A.夹角α满足tanα=2tan(B.夹角α与初速度大小无关C.夹角α随着初速度增大而增大D.夹角α一定小于90【答案】BD【解析】试题分析:因为小球落到了斜面上,所以小球的位移与水平方向的夹角与斜面的倾角相同,故有:200122gty gttanx v t vθ===,设速度与水平方向的夹角为β,则002yv gttan tanv vβθ===,可知2tan tanβθ=,由于θ不变,则β也不变.则小球落在斜面上时的速度与斜面的夹角:αβθ=-,保持不变.与初速度无关.因为平抛运动速度与水平方向的夹角不可能等于90度,则小球落在斜面上时的速度与斜面的夹角不可能等于90度,故BD正确。
考点:考查了平抛运动规律的应用4.如图所示,小球以v o正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t为(重力加速度为g)()A.02tan v g θ B.02tan v g θ C.0tan v g θD.0tan v θ【答案】A【解析】试题分析:过抛出点作斜面的垂线,如图所示:当质点落在斜面上的B 点时,位移最小,设运动的时间为t ,则 水平方向:x=v 0t 竖直方向:y=根据几何关系有,则=tanθ,解得t=,选项A 正确。
考点:此题考查了平抛运动5.如图所示,将一物体从倾角为θ的固定斜面顶端以初速度v 0沿水平方向抛出,物体与斜面接触时速度与斜面之间的夹角为α1,若只将物体抛出的初速度变成1/2v 0,其他条件不变,物体与斜面接触时速度与斜面之间的夹角为α2,则下列关于α2与α1的关系正确的是( )A .α2=12α1B .α2=α1C .tanα2=12tanα1D .tanα2=2tanα1 【答案】B 【解析】 试题分析:tg 221θtan =y x tv g t 2021θtan 20g v设物体与斜面接触时距斜面顶点距离为l,由平抛运动的规律有cosl v tθ=,21sin2l gtθ=则得:,由上图知:100tan()yv gtv vαθ+==,可得所以与抛出速度v无关,即有α2=α1,故ACD错误、B正确。
考点:本题考查了平抛运动的规律6.如图所示,斜面AC与水平方向的夹角为α,在A点正上方与C等高处水平抛出一小球,其速度垂直斜面落到D点,则CD与DA的比为( )A.1tan aB.12tan aC.21tan aD.212tan a【答案】D【解析】试题分析:设小球水平方向的速度为v0,将D点的速度进行分解,水平方向的速度等于平抛运动的初速度,通过角度关系求解得竖直方向的末速度为v2=,设该过程用时为t,则DA间水平距离为x= v0t,故DA=ααcoscostvx=;CD间竖直距离为h=22tv,故CD=αsinh=αsin22tv,得DACD=,故选项D正确。
考点:平抛运动规律7.如图所示,把两个小球a、b分别从斜坡顶端以水平速度v0和2v0依次抛出,两小球都落到斜面后不再弹起,不计空气阻力,则两小球在空中飞行时间之比是( )A.1∶1 B.1∶2C.1∶3 D.1∶4【答案】B【解析】tan2gtvθ=1tan()2tanαθθ+=1ααtanvα2tan21v y试题分析:设斜面倾角为,将平抛运动分解到水平方向和竖直方向,第一次,可得;第二次可得,,因此两小球在空中飞行时间之比,因此B正确,A、C、D错误。
考点:平抛运动8.如图所示,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A。
已知A点高度为h,山坡倾角为θ,由此不能算出()A.轰炸机的飞行速度 B.炸弹的飞行时间C.轰炸机的飞行高度 D.炸弹投出时的动能【答案】D【解析】试题分析:由图可得炸弹的水平位移为tanhxθ;设轰炸机的飞行高度为H,炸弹的飞行时间为t,初速度为v0.据题:炸弹垂直击中山坡上的目标A,则根据速度的分解有:00tanyv vv gtθ又200122gtH h gtx v t v,联立以上三式得:22tanhH hθ,可知可以求出轰炸机的飞行高度H.炸弹的飞行时间2()H htg,也可以求出t.轰炸机的飞行速度等于炸弹平抛运动的初速度,为xvt,可知也可以求出,故A、B、C均能算出;由于炸弹的质量未知,则无法求出炸弹投出时的动能,故D不能算出。
考点:平抛运动的规律.θ210112tangtv tθ=12tanvtgθ=220112tan2gtv tθ=024tanvtgθ=12:1:2t t=9.如图所示的两个斜面,倾角分别为37°和53°,在顶点两个小球A 、B 以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A 、B 两个小球平抛运动时间之比为( )A.1:1B.4:3C.16:9D.9:16【答案】D 【解析】试题分析:对于a 球,对于b 球,t 2001253253?BB B gt v tan y tan t x v t g︒︒=⇒==所以tan379tan5316A B t t ︒︒==,故D 正确。
考点:考查了平抛运动规律的应用10.如图所示,在斜面上的O 点先后以02v 和03v 的速度水平抛出A 、B 两小球,则从抛出至第一次着地,两小球的水平位移大小之比可能为( )A .2 :3B .4 :5C .4 :9D .3 :5 【解析】ACD 【解析】试题分析:A 、当A 、B 两个小球都能落到水平面上时,由于两者的下落高度相同,运动的时间相同,则水平位移之比为初速度之比,为2:3,所以A 正确;C 、当A 、B 都落在斜面的时候,它们的竖直位移和水平位移的比值即为斜面夹角的正切值,即2012tan gt v tθ,整理可得,时间02tan v t gθ,两次平抛的初速度分别为2υ0和3υ0,2001237237AA A gt v tan y tan t x v t g ︒︒==⇒=所以运动的时间之比为0120222233tantanvtt vθθ,两小球的水平位移大小之比为x A:x B=2v0t A:3v0t B=4:9,所以C正确;BD、当只有A落在斜面上的时候,A、B水平位移之比在4:9和2:3之间,所以D正确,B 错误.考点:平抛运动的规律.11.如图所示,从倾角为θ的斜面上的某点先后将同一小球以不同初速度水平抛出,小球均落到斜面上,当抛出的速度为v1时,小球到达斜面的速度方向与斜面的夹角为α1,当抛出的速度为v2时,小球到达斜面的速度方向与斜面的夹角为α2,则()A.当v1>v2时,α1>α2 B.当α1<α2,v1>v2时C.无论v1、v2大小如何,均有α1=α2 D.2θ=α1+θ【答案】C【解析】试题分析:如图所示,由平抛运动的规律知,解得:,由图知,所以与抛出速度无关,故,故C正确。
考点:考查了平抛运动12.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.则此时小球水平速度与竖直速度之比、小球水平方向通过的距离与在竖直方向下落的距离之比分别为()212Lcos v t Lsin gtθθ=,=02v tantgθ=002yv gttan tanv vαθθ+==()=αv12αα=A.水平速度与竖直速度之比为tanθB.水平速度与竖直速度之比为1tan θ C.水平位移与竖直位移之比为2tanθ D.水平位移与竖直位移之比为12tan θ【答案】AC 【解析】试题分析:小球撞在斜面上,速度方向与斜面垂直,则速度方向与竖直方向的夹角为θ,则水平速度与竖直速度之比为θ=x y v v tan :,故A 正确,B 错误.水平位移与竖直位移之比 1222θ===x y x y x y v t v t v v tan :::,故C 正确,D 错误。
考点:考查了平抛运动13.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足( )A .tanφ=sinθB .tanφ=cosθC .tanφ=tanθD .tanφ=2tanθ14.如图所示,以s /m 8.9的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在θ为30的斜面上,可知物体完成这段飞行的时间是( )A.s 33B. s 332 C. s 3 D. s 2【答案】C 【解析】试题分析:小球撞在斜面上的速度与斜面垂直,将该速度分解,如图.,则,所以C 正确。