广东六校2020届高三第二次联考试题理科数学(含答案)

合集下载

广东省广州市2020届高三普通高中毕业班综合测试(二)理科数学试题(解析版)

广东省广州市2020届高三普通高中毕业班综合测试(二)理科数学试题(解析版)

2020年广东省广州市高考数学二模试卷(理科)一、选择题(共12小题).1.若集合A ={x |y =√2−x },B ={x |x 2﹣x ≤0},则A ∩B =( ) A .[0,1)B .[0,1]C .[0,2)D .[0,2]2.已知复数z =1+bi (b ∈R ),z 2+i是纯虚数,则b =( )A .﹣2B .−12C .12D .13.若a =log 332,b =ln 12,c =0.6﹣0.2,则a ,b ,c 的大小关系为( ) A .c >b >aB .c >a >bC .b >a >cD .a >c >b4.首项为﹣21的等差数列从第8项起开始为正数,则公差d 的取值范围是( ) A .d >3B .d <72C .3≤d <72D .3<d ≤725.《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A .a 2(1−p)rB .a 2(1+p)rC .a (1−p)rD .a(1+p)r6.在三棱柱ABC ﹣A 1B 1C 1中,E 是棱AB 的中点,动点F 是侧面ACC 1A 1(包括边界)上一点,若EF ∥平面BCC 1B 1,则动点F 的轨迹是( ) A .线段B .圆弧C.椭圆的一部分D.抛物线的一部分7.函数f(x)=﹣2x+1|x|的图象大致是()A.B.C.D.8.如图,在梯形ABCD中,AB∥CD,AB⊥AD,AB=2AD=2DC,E是BC的中点,F 是AE上一点,AF→=2FE→,则BF→=()A.12AB→−13AD→B.13AB→−12AD→C.−12AB→+13AD→D.−13AB→+12AD→9.已知命题p:(x2−1x)n的展开式中,仅有第7项的二项式系数最大,则展开式中的常数项为495;命题q:随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.7,则P (0<ξ<2)=0.3.现给出四个命题:①p∧q,②p∨q,③p∧(¬q),④(¬p)∨q,其中真命题的是()A.①③B.①④C.②③D.②④10.设数列{a n}的前n项和为S n,且a1=2,a n+a n+1=2n(n∈N*),则S2020=()A .22020−23B .22020+23C .22021−23D .22021+2311.过双曲线C :x 2a −y 2b =1(a >0,b >0)右焦点F 2作双曲线一条渐近线的垂线,垂足为P ,与双曲线交于点A ,若F 2P →=3F 2A →,则双曲线C 的渐近线方程为( ) A .y =±12xB .y =±xC .y =±2xD .y =±25x12.若关于x 的不等式e 2x ﹣alnx ≥12a 恒成立,则实数a 的取值范围是( ) A .[0,2e ]B .(﹣∞,2e ]C .[0,2e 2]D .(﹣∞,2e 2]二、填空题:本大题共4小题,每小题5分,共20分。

2020届广东省六校高三第二次(线上)联考数学(理)试题Word版含解析

2020届广东省六校高三第二次(线上)联考数学(理)试题Word版含解析

2020届广东省六校高三第二次(线上)联考数学(理)试题本试卷共4页,22小题,满分150分.考试用时120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|230}, {|21}x P x x x Q x =--<=>,则P Q =I ( )A. {|1}x x >-B. {|1}x x <-C. {|03}x x <<D. {|10}x x -<<2. “00m n >>且”是“0mn >”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D.不充分不必要条件3. 已知0.230.3log 0.3, log 0.2, 0.3a b c ===,则( )A. a b c <<B. a c b <<C. b c a <<D. c a b <<4. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部 分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )5. 函数33()cos ||x x f x x x -=+在[],ππ-的图像大致为A. B. C. D.6. 已知非零向量a,b 满足1,2==a b 且(2()-⊥+a b)a b ,则a 与b 的夹角为A. 6πB. 4πC. 3πD. 2π7. 已知函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=-,则 A.()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 B.()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 C.()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 D.()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 8. 记等差数列{}n a 的前n 项和为n S ,若已知391, 9a S =-=,则A. 310n a n =-B. 2n a n =-C. 21722n S n n =- D. 28n S n n =-9. 关于函数f (x )=tan|x |+|tan x |有下述四个结论:① f (x )是偶函数; ② f (x )在区间,02π⎛⎫- ⎪⎝⎭上单调递减;③ f (x )是周期函数; ④ f (x )图象关于⎪⎭⎫⎝⎛0,2π对称其中所有正确结论的编号是( )A. ①③B. ②③C.①②D. ③④10. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就, 实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

2020年广东高三二模理科数学试卷(详解)

2020年广东高三二模理科数学试卷(详解)

2020年广东高三二模理科数学试卷(详解)一、选择题(本大题共12小题,每小题5分,共60分)1.A. B.C.D.【答案】【解析】已知集合,,则( ).C ∵集合.集合,∴.故选.2.A.B.C.D.【答案】【解析】已知复数(为虚数单位,),若,则的取值范围为( ).A ,∴,又∵,则,∴ .故选.3.《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测A.尺B.尺C.尺D.尺【答案】【解析】算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,则立秋的晷长为( ).D不妨设夏至到寒露依次为,,,∴数列为为等差数列,由题可知,,∴,∵,则,∴,故立秋的晷长为尺.故选.4.A.B.C.D.【答案】【解析】在中,已知,,且边上的高为,则( ).B 在中,面积,∴,由余弦定理可知,,∴,由正弦定理,得.故选.5.A.B.C.D.一个底面半径为的圆锥,其内部有一个底面半径为的内接圆柱,若其内接圆柱的体积为,则该圆锥的体积为( ).【答案】【解析】D作出该几何体的轴截面图如图,,,设内接圆柱的高为,由,得,∵,∴,即,得,∴该圆锥的体积为.故选.6.A. B.C.D.【答案】【解析】已知函数是定义在上的奇函数,且在上单调递减,,则不等式的解集为( ).B根据题意,函数是定义在上的奇函数,且在上单调递减,则在上递减,又由,则,则函数的草图如图:若,则有,解可得,即不等式的解集为,故选.7.A.B.C.D.【答案】【解析】已知双曲线的右焦点为,过点分别作双曲线的两条渐近线的垂线,垂足分别为,.若,则该双曲线的离心率为( ).D 由得,又∵在四边形中,,且,则四边形为正方形,∴,即,∴双曲线渐近线方程为,∴,即,∴,∴离心率.故选.8.A.B.C. D.【答案】【解析】已知四边形中,,,,,在的延长线上,且,则( ).A ABDCE在中,由余弦定理可知,,∴,由可知,,∴,在中,由正弦定理可知,,得,∴.故选.9.A.B.C.D.【答案】【解析】的展开式中,的系数为( ).C把的展开式看成个因式的乘积形式,从中任意选个因式,这个因式取,再取个因式,这个因式都取,剩余个因式取,相乘即得含的项;故含项的系数为:.故选:.10.A.B.C.D.【答案】【解析】把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数的图象,关于的说法有:①函数的图象关于点对称;②函数的图象的一条对称轴是;③函数在上的最小值为;④函数在上单调递增.则以上说法正确的个数是( ).C 把函数的图象向右平移个单位长度,可得的函数图象,由横坐标缩短到原来的可得.①中,∵,,则不是的对称中心,故①错误;②中,当时,,故是的对称轴,故②正确;③中,当时,,,∴,则在内的最小值为,故③正确;④∵函数的周期,又因为正弦函数不会在一个周期内为单调增函数,故④错误;故选.11.A. B. C. D.如图,在矩形中,已知,是的中点,将沿直线翻折成,连接.若当三棱锥的体积取得最大值时,三棱锥外接球的体积为,则( ).【答案】【解析】B 在矩形中,已知,是的中点,所以:为等腰直角三角形;斜边上的高为:;要想三棱锥的体积最大;需高最大,则当面时体积最大,此时三棱锥的高等于:,取的中点,过作下底面的垂线,此时三棱锥的外接球球心在上,∵三棱锥外接球的体积为,所以球半径,如图:,①,②即:,③,④联立③④可得.故选.12.A. B.C.D.【答案】【解析】已知函数,若函数有唯一零点,则的取值范围为( ).D 因为.令,则,所以当时,,即在上单调递增,又,所以,,当,,所以在上为增函数,在上为减函数,又,所以当,,当,对恒成立,即当时,,且当且仅当,,故当时,有唯一的零点;排除,当时,,令,可得,有无数解,所以,不成立,排除,故选.二、填空题(本大题共4小题,每小题5分,共20分)13.【答案】【解析】若,满足约束条件,则的最大值是 .由不等式组可画出可行域如图,目标函数可化为,经平移可知直线过点时,在轴截距最大,由,得:,即,∴.故答案为:.14.【答案】【解析】已知,则 .∵,∴,即,∴.故答案为:.15.【答案】【解析】从正方体的个面的对角线中,任取条组成对,则所成角是的有 对.根据题意,如图,在正方体中,与平面中一条对角线成的直线有,,,,,,,,共条直线,则包含在内的符合题意的对角线有对;又由正方体个面,每个面有条对角线,共有条对角线,则共有对面对角线所成角为,而其中有一半是重复的;则从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有对,故答案为:.16.【答案】【解析】如图,直线过抛物线的焦点且交抛物线于,两点,直线与圆交于,两点,若,设直线的斜率为,则= .∵,同理可得,∴.设,联立可得,∴,.∴,即,解.三、解答题(本大题共5小题,每小题12分,共60分)17.(1)(2)(1)【答案】已知数列和满足,且,,设.求数列的通项公式.若是等比数列,且,求数列的前项和..(2)(1)(2)【解析】.由,得,∴,∵,∴,∴是以为公差的等差数列.又∵,∴.设的公比为,则,∴由()知,又,∴∴,①,②①②得:∴..18.为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取件产品进行质量检测,所有产品质量指标值均在以内,规定质量指标值大于的产品为优质品,质量指标值在的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.频率组距质量指标值质量指标值频数(1)(2)(3)(1)(2)(3)【答案】合计请分别估计新、旧设备所生产的产品的优质品率.优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有的把握认为“产品质量高与新设备有关”.非优质品优质品合计新设备产品 旧设备产品合计附:,其中.用频率代替概率,从新设备所生产的产品中随机抽取件产品,其中优质品数为件,求的分布列及数学期望.,.非优质品优质品合计新设备产品旧设备产品合计有的把握认为产品质量高与新设备有关.的分布列为.(1)(2)(3)【解析】估计新设备所生产的产品的优质品率为:,估计旧设备所生产的产品的优质品率为:.非优质品优质品合计新设备产品旧设备产品合计由列联表可得,,∴有的把握认为产品质量高与新设备有关.的所有可能取值为,,,.∵由知新设备所生产的优质品率为,∴,,,.∴的分布列为∴的数学期望为.19.(1)(2)(1)【答案】如图,四棱锥中,四边形是菱形,,.是上一点,且.设.证明:平面.若,,求二面角的余弦值.证明见解析.(2)(1)(2)【解析】.∵四边形是菱形,∴是的中点,,∵,,∴平面,∵平面,∴,∵,是的中点,∴,∵平面,平面,,∴平面.由知平面,.∴,,两两互相垂直,∴以为原点,以,,所在直线分别为,,轴建立空间直角坐标系如图所示,,设四边形的边长为,,∵四边形是菱形,,∴和都是等边三角形,∴,∴,,,,∴,,,∵,∴,∴,即,∴,,设平面的法向量为,则,令,得,,∴,设平面的法向量为,则,令,得,,∴,设二面角的平面角为,结合图象可知,,∴二面角的余弦值为.20.(1)(2)(1)(2)【答案】(1)【解析】已知椭圆:的焦点为,,是椭圆上一点.若椭圆的离心率为,且,的面积为.求椭圆的方程.已知是坐标原点,向量,过点的直线与椭圆交于,两点.若点满足,,求的最小值...依据题意得,所以,所以,(2)因为,故设,代入椭圆方程得,所以的面积为:,联立,解得,,所以椭圆的方程为:.由题意可知直线的斜率显然存在,故设直线的方程为:,联立,消去并整理得,所以,设,,所以,,因为,所以,当时,,当时,,,因为,所以,所以,所以,当且仅当时取等号,且满足,所以,综上.21.(1)(2)(1)(2)【答案】(1)(2)【解析】已知函数(),其中为自然对数的底数.若函数的极小值为,求的值.若,证明:当时,成立..证明见解析.函数的定义域为,,当时,对于恒成立,∴在上单调递减,∴在上无极值.当时,令,得.∴当时,,当时,.∴在上单调递减,在上单调递增.∴当时,,∴取得极小值,即.令(),则.∵,∴,∴在上单调递增.又∵,∴.∵,∴,∴,令(),∴.令(),∴,令,得,∴当时,;当时,,∴在上单调递减,在上单调递增.∴当时,取得极小值.又∵,,∴存在使得.∴在上单调递增,在上单调递减,在上单调递增.又∵,∴,∴当时,,即.令(),则对于恒成立.∴在上单调递增.∴,即当时,,∴当时,.∴当时,.∴当时,成立.四、选做题(本大题共2小题,选做1题,共10分)选修4-4:坐标系与参数方程22.(1)(2)(1)(2)【答案】(1)【解析】在直角坐标系中,曲线的方程为,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.求直线的直角坐标方程.已知是曲线上的一动点,过点作直线交直线于点,且直线与直线的夹角为,若的最大值为,求的值...由,(2)得,∴,∵,.∴直线的直角坐标方程为,即.依题意可知曲线的参数方程为:(为参数),设,则点到直线的距离为:,,∵,∴当时,,依题意得,∴的最大值为,即,∵,∴解得.选修4-5:不等式选讲23.(1)(2)(1)(2)【答案】(1)【解析】已知函数.解不等式:.若,,均为正数,且,证明:..证明见解析.,当时,,即,解得:;(2)当时,,满足题意;当时,,即,解得:.综上,不等式的解集为.由知,∴,∴,∴,∴,当且仅当时等号成立,∴.。

2020年广东省高考数学二模试卷(理科)(含答案解析)

2020年广东省高考数学二模试卷(理科)(含答案解析)

2020年广东省高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B.C. D.2.已知复数为虚数单位,,若,则的取值范围为A. B. C. D.3.周髀算经是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同晷是按照日影测定时刻的仪器,晷长即为所测影子的长度,夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,则立秋的晷长为A. 尺B. 尺C. 尺D. 尺4.在中,已知,,且AB边上的高为,则A. B. C. D.5.一个底面半径为2的圆锥,其内部有一个底面半径为1的内接圆柱,若其内接圆柱的体积为,则该圆锥的体积为A. B. C. D.6.已知函数是定义在R上的奇函数,且在上单调递减,,则不等式的解集为A. B.C. D.7.已知双曲线的右焦点为F,过点F分别作双曲线的两条渐近线的垂线,垂足分别为A,若,则该双曲线的离心率为A. B. 2 C. D.8.已知四边形ABCD中,,,,,E在CB的延长线上,且,则A. 1B. 2C.D.9.的展开式中,的系数为A. 120B. 480C. 240D. 32010.把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的纵坐标不变得到函数的图象,关于的说法有:函数的图象关于点对称;函数的图象的一条对称轴是;函数在上的最上的最小值为;函数上单调递增,则以上说法正确的个数是A. 4个B. 3个C. 2个D. 1个11.如图,在矩形ABCD中,已知,E是AB的中点,将沿直线DE翻折成,连接C.若当三棱锥的体积取得最大值时,三棱锥外接球的体积为,则A. 2B.C.D. 412.已知函数,若函数有唯一零点,则a的取值范围为A. B.C. D. ,二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件,则的最大值是______.14.已知,则______.15.从正方体的6个面的对角线中,任取2条组成1对,则所成角是的有______对.16.如图,直线l过抛物线的焦点F且交抛物线于A,B两点,直线l与圆交于C,D两点,若,设直线l的斜率为k,则______.三、解答题(本大题共7小题,共82.0分)17.已知数列和满足,且,,设.求数列的通项公式;若是等比数列,且,求数列的前n项和.18.为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取100件产品进行质量检测,所有产品质量指标值均在以内,规定质量指标值大于30的产品为优质品,质量指标值在的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.质量指标频数2820302515合计100请分别估计新、旧设备所生产的产品的优质品率.优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表单位:件,并判断是否有的把握认为“产品质量高与新设备有关”.非优质品优质品合计新设备产品旧设备产品合计附:其,中.用频率代替概率,从新设备所生产的产品中随机抽取3件产品,其中优质品数为X件,求X 的分布列及数学期望.19.如图,四棱锥中,四边形ABCD是菱形,,,E是BC上一点,且,设.证明:平面ABCD;若,,求二面角的余弦值.20.已知椭圆C:的焦点为,,P是椭圆C上一点.若椭圆C的离心率为,且,的面积为.求椭圆C的方程;已知O是坐标原点,向量过点的直线l与椭圆C交于M,N两点.若点满足,,求的最小值.21.已知函数,其中e为自然对数的底数.若函数的极小值为,求a的值;若,证明:当时,成立.22.在直角坐标系xOy中,曲线C的方程为,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.求直线l的直角坐标方程;已知P是曲线C上的一动点,过点P作直线交直线于点A,且直线与直线l的夹角为,若的最大值为6,求a的值.23.已知函数.解不等式:;若a,b,c均为正数,且,证明:.-------- 答案与解析 --------1.答案:C解析:解:集合,,故选:C.求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.答案:A解析:解:因为复数,所以,由于,即,则的取值范围为,故选:A.根据复数的基本运算法则进行化简,再求复数模的范围即可.本题主要考查复数的乘法运算及模长的计算,比较基础.3.答案:D解析:解:夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,,,即.解得,.立秋的晷长.故选:D.由夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,可得:,,即解出利用通项公式即可得出.本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.4.答案:B解析:解:如图,在中,,,且AB边上的高CD为,,,由余弦定理可得,由正弦定理,可得.故选:B.由已知可求AD,利用勾股定理可求AC,由余弦定理可得BC,进而根据正弦定理可得sin C的值.本题主要考查了勾股定理,余弦定理,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.5.答案:D解析:解:作出该几何体的轴截面图如图,,,设内接圆柱的高为h,由,得.∽,,即,得,该圆锥的体积为.故选:D.由题意画出图形,由圆柱的体积求得圆柱的高,再由相似三角形对应边成比例求得圆锥的高,则圆锥体积可求.本题主要考查了圆锥的内接圆柱的体积,考查数形结合的解题思想方法,是基础题.6.答案:B解析:解:根据题意,函数是定义在R上的奇函数,且在上单调递减,则在上递减,又由,则,则函数的草图如图:若,则有,解可得,即不等式的解集为;故选:B.根据题意,由函数的奇偶性与单调性分析可得函数的大致图象,据此分析可得关于x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,注意作出函数的简图,分析不等式的解集.7.答案:D解析:解:如图,由,得,即,,即.则.故选:D.由题意画出图形,可得渐近线的倾斜角,得到,则离心率可求.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查双曲线离心率的求法,是基础题.8.答案:A解析:解:在中,由余弦定理有,,,易知,又,,故,.故选:A.先由余弦定理求得,再根据题设条件求得,而展开,利用数量积公式化简求解即可.本题考查平面向量数量积的综合运用,涉及了余弦定理的运用,考查运算求解能力,属于中档题.9.答案:C解析:解:把的展开式看成6个因式的乘积形式,从中任意选1个因式,这个因式取x,再取3个因式,这3个因式都取y,剩余2个因式取2,相乘即得含的项;故含项的系数为:.故选:C.把的展开式看成6个因式的乘积形式,从中任意选1个因式,这个因式取x,再取3个因式,这3个因式都取y,剩余2个因式取2,相乘即得含的项,求出项的系数.本题考查了排列组合与二项式定理的应用问题,是综合性题目.10.答案:C解析:解:把函数的图象向右平移个单位长度,得,再把所得的函数图象上所有点的横坐标缩短到原来的纵坐标不变得到函数的图象,则,函数的图象不关于点对称,故错误;,函数的图象的一条对称轴是,故正确;当时,,则,即函数在上的最上的最小值为,故正确;当时,,可知函数在上不单调,故错误.正确命题的个数为2.故选:C.通过平移变换与伸缩变换求得函数的解析式.由判断错误;由求得最小值判断正确;由x的范围求得函数值域判断正确;由x的范围可知函数在上不单调判断错误.本题考查命题的真假判断与应用,考查型函数的图象与性质,是中档题.11.答案:B解析:解:在矩形ABCD中,已知,E是AB的中点,所以:为等腰直角三角形;斜边DE上的高为:;要想三棱锥的体积最大;需高最大,则当面BCDE时体积最大,此时三棱锥的高等于:;取DC的中点H,过H作下底面的垂线;此时三棱锥的外接球球心在OH上;三棱锥外接球的体积为;所以球半径;如图:;;即:;;联立可得;故选:B.要想体积最大,需高最大,当面BCDE时体积最大,根据对应球的体积即可求解结论.本题考查的知识要点:几何体的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力及空间想象能力的应用,属于中档题型.12.答案:D解析:解:因为.令,则,所以当时,,即在R上单调递增,又,所以,,当,,所以在上为增函数,在上为减函数,又,所以当,,当,对恒成立,即当时,,且当且仅当,,故当时,有唯一的零点;排除A,当时,,令,可得,有无数解,所以,不成立,排除BC,故选:D.求导,构造辅助函数,则,当时,可知在R上单调递增,,即可判断在上为增函数,在上为减函数,由,即可证明,当时,有唯一的零点;然后验证时,函数的零点的个数,判断选项即可.本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及含量,分类讨论思想的应用,是中档题.13.答案:6解析:解:由x,y满足约束条件,作出可行域如图,联立,解得,化目标函数为直线方程的斜截式:.由图可知,当直线过A时,直线在y轴上的截距最大,Z有最大值为;故答案为:6.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数的答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.14.答案:解析:解:,则.故答案为:由已知结合诱导公式及二倍角公式进行化简即可求解.本题主要考查了诱导公式及二倍角公式在三角化简求值中的应用,属于基础试题.15.答案:48解析:解:根据题意,如图,在正方体中,与平面中一条对角线成的直线有,,,,,,,,共8条直线,则包含在内的符合题意的对角线有8对;又由正方体6个面,每个面有2条对角线,共有12条对角线,则共有对面对角线所成角为,而其中有一半是重复的;则从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有48对.故答案为:48根据题意,由正方体几何结构分析可得:每一条对角线和另外的8条构成8对直线所成角为,进而可得共有对对角线所成角为,并且容易看出有一半是重复的,据此分析可得答案.本题考查排列、组合的应用,涉及正方体的几何结构,属于基础题.16.答案:解析:解:由题意圆的圆心为抛物线的焦点F,再由题意可得直线AB的斜率不为0,设直线AB的方程为:,,设,,联立直线与抛物线的方程:,整理可得,,所以,由抛物线的性质可得:弦长,由题意可得为的直径2,所以,而,所以可得:,因为,所以,代入直线AB中可得,即,将A点坐标代入抛物线的方程,整理可得,解得,因为,所以,故答案为:.由题意设直线AB的方程与抛物线联立求出两根之和,进而求出弦长的值,再由圆的方程可得圆心为抛物线的焦点可得为圆的直径,求出的值,再由题意可得的值,由题意可得A的横坐标,代入直线的方程,可得A的纵坐标,代入抛物线的方程中可得斜率的平方的值.本题考查抛物线的性质及求点的坐标,属于中档题.17.答案:解:依题意,由,可得,两边同时乘以,可得,即,,数列是以1为首项,2为公差的等差数列,,.由题意,设等比数列的公比为q,则,故,.由知,,且,则,所以:,,得:,,,所以.解析:直接利用递推关系式的应用求出数列的通项公式.利用乘公比错位相减法的应用求出结果.本题考查的知识要点:数列的通项公式的求法及应用,乘公比错位相减法的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.18.答案:解:估计新设备所生产的产品的优质品率为,估计旧设备所生产的产品的优质品率为.补充完整的列联表如下所示,非优质品优质品合计新设备产品 30 70 100旧设备产品 45 55 100合计 75 125 200,有的把握认为“产品质量高与新设备有关”.由知,新设备所生产的优质品率为,而X的所有可能取值为0,1,2,3,,,,.的分布列为:X 0 1 2 3P数学期望.解析:由频数分布表可知,将的频数相加,再除以100,即为新设备的优质品率;由频率分布直方图可知,将的频率组距相加,再乘以组距即为旧设备的优质品率;先填写列联表,再根据的公式计算其观测值,并与附表中的数据进行对比即可作出判断;由知,新设备所生产的优质品率为,而X的所有可能取值为0,1,2,3,然后根据二项分布求概率的方式逐一求出每个X的取值所对应的概率即可得分布列,进而求得数学期望.本题考查频率分布直方图、频数分布表、独立性检验、二项分布、离散型随机变量的分布列和数学期望等知识点,考查学生对数据的分析与处理能力,属于基础题.19.答案:证明:四边形ABCD是菱形,是AC的中点,,,,平面PAC,平面PAC,.,O是AC的中点,.平面ABCD,平面ABCD,,平面ABCD;解:由知,平面ABCD,.以O为坐标原点,分别以OA,OB,OP所在直线为x,y,z轴建立空间直角坐标系.设四边形ABCD的边长为4,.四边形ABCD是菱形,,与都是等边三角形..0,,0,,0,,,,,.,,即,得.,.设平面PAE的法向量为,由,取,得;设平面PEC的一个法向量为,由,取,得.设二面角的平面角为,则.二面角的余弦值为.解析:由已知可得,,由直线与平面垂直的判定可得平面PAC,得到再由进一步得到平面ABCD;由知,平面ABCD,以O为坐标原点,分别以OA,OB,OP所在直线为x,y,z轴建立空间直角坐标系.设四边形ABCD的边长为4,由列式求解a,可得所用点的坐标,再求出平面PAE与平面PEC的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.20.答案:解:依据题意得,所以,所以,因为,故设,代入椭圆方程得,所以的面积为:.联立,解得,,所以椭圆C的方程为:.由题意可知直线l的斜率显然存在,故设直线l的方程为:,联立,消去y并整理得,所以,设,,所以,,因为,所以,当时,,当时,,,因为,所以,所以,所以,当且仅当时取等号,且满足,所以,综上.解析:根据题意可得方程组联立,解得b,a,进而得出椭圆C的方程.设直线l的方程为:,设,,联立直线l与椭圆的方程,得关于x的一元二次方程,结合韦达定理得,,因为,得,当时,,当时,,,因为,所以,代入化简得化简,利用基本不等式可得出答案.本题考查椭圆的标准方程,直线与椭圆的相交问题,向量问题,属于中档题.21.答案:解:函数的定义域是R,,时,对恒成立,在R递减,函数无极值,时,令,解得:,令,解得:,在递减,在递增,时,取极小值,,即,令,则,,,在递增,,;,,,令,,令,,,令,解得:,令,解得:,故在递增,在递增,时,取极小值,又,,存在使得,在递增,在递减,在递增,,,时,,即,令,,则对于恒成立,在递增,,即当时,,时,,,故时,成立.解析:求出函数的导数,通过讨论a的范围,求出函数的单调区间,得到,令,根据函数的单调性求出a的值即可;令,求出,令,,求出,从而证明结论.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,不等式的证明,是一道综合题.22.答案:解:由,得,即.,,直线l的直角坐标方程为,即;依题意可知曲线C的参数方程为为参数.设,则点P到直线l的距离为:.,当时,.又过点P作直线交直线于点A,且直线与直线l的夹角为,,即.的最大值为,即.,解得.解析:把展开两角差的余弦,结合,可得直线l的直角坐标方程;依题意可知曲线C的参数方程为为参数设,写出点P到直线l的距离,利用三角函数求其最大值,可得的最大值,结合已知列式求解a.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了利用三角函数求最值,是中档题.23.答案:解:函数.当时,,解得,故.当时,,恒成立.当时,,解得,故,所以不等式的解集为.证明:由知:,所以:,所以,所以,所以当且仅当时,等号成立.故:.解析:直接利用分段函数的解析式和零点讨论法的应用求出结果.直接利用基本不等式的应用求出结果.本题考查的知识要点:分段函数的性质的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.。

广东省六校2020届高三第二次联考试题 数学(理)【含答案】

广东省六校2020届高三第二次联考试题 数学(理)【含答案】

广东省六校2020届高三第二次联考试题数学(理)本试卷共4页,22小题,满分150分.考试用时120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|230}, {|21}x P x x x Q x =--<=>,则P Q =( )A. {|1}x x >-B. {|1}x x <-C. {|03}x x <<D. {|10}x x -<<2. “00m n >>且”是“0mn >”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D.不充分不必要条件3. 已知0.230.3log 0.3, log 0.2, 0.3a b c ===,则( )A. a b c <<B. a c b <<C. b c a <<D. c a b <<4. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部 分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )5. 函数33()cos ||x x f x x x -=+在[],ππ-的图像大致为A. B. C. D.6. 已知非零向量a,b 满足1,2==a b 且(2()-⊥+a b)a b ,则a 与b 的夹角为A. 6πB. 4πC. 3πD. 2π7. 已知函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=-,则A.()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增B.()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 C.()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 D.()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 8. 记等差数列{}n a 的前n 项和为n S ,若已知391, 9a S =-=,则A. 310n a n =-B. 2n a n =-C. 21722n S n n =- D. 28n S n n =-9. 关于函数f (x )=tan|x |+|tan x |有下述四个结论:① f (x )是偶函数; ② f (x )在区间,02π⎛⎫- ⎪⎝⎭上单调递减;③ f (x )是周期函数; ④ f (x )图象关于⎪⎭⎫⎝⎛0,2π对称其中所有正确结论的编号是( )A. ①③B. ②③C.①②D. ③④10. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就, 实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

广东省2020届高三第二次六校联考理科数学-试题与答案

广东省2020届高三第二次六校联考理科数学-试题与答案

an Sn Sn1 2an 2an1 .
............................................................3 分
an

2an1
an an1

2
(n

2)
...............................................................4 分
14. (a b c)(a b c) ac , (a c)2 b2 ac a 2 c 2 b2 ac
cos B a 2 c 2 b2 ac 1 0 B B 120 ,则 tan B 3 .
易知 x 1 时, f '(x) 0, f (x) 单调递减; x 1 时, f '(x) 0, f (x) 单调递增.
2
2
f
( x)min

f
( 1) 2

1 e 1 2

2e 2 ,当
x (,0],
f
(x)
1 2
e
1,
0

所以 k 0 时, x0 0, kx0 2e2 0 f (x0 ) 不符合条件
7. 解 : f (x) 2 sin(x ) , 所 以 2 , 又 f (x) f (x) 知 f(x) 为 奇 函 数 ,
4 k f (x) 2 sin 2x ,选 D
4
10.答案:A 解答:
M1 (R r)2

M2 r2

f (x) a·b 2cos x cos x 3 cos x 2sin x ............................................1 分

2024届高三六校第二次联考联考数学试卷及答案

2024届高三六校第二次联考联考数学试卷及答案

东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第二次六校联考试题数学命题人:广州二中一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合},02|{},1log |{22≤--=<∈=x x x B x Z x A 则=B A ()A.},{10B.}{1 C.}{1,0,1- D.}2101{,,,-2.已知21)sin(=+πα,则=+)2cos(πα()A.21B.21-C.23 D.23-3.“1>x 且1>y ”是“1>xy 且2>+y x ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图,B A 、两点在河的同侧,且B A 、两点均不可到达.现需测B A 、两点间的距离,测量者在河对岸选定两点D C 、,测得km CD 23=,同时在D C 、两点分别测得CDB ADB ∠=∠︒=30,,45,60︒=∠︒=∠ACB ACD 则B A 、两点间的距离为()A.23B.43C.36 D.466.已知函数)2cos(sin )6cos(4)(x x x x f ωπωω-++=,其中0>ω.若函数)(x f 在5,66ππ⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为()A.310 B.21 C.23 D.2多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知ABC ∆中角B A ,的对边分别为,,b a 则可作为“b a >”的充要条件的是()A.B A sin sin >B.B A cos cos <C.BA tan tan >D.BA 2sin 2sin >11.已知函数()lg 2f x x kx =--,给出下列四个结论中正确结论为()A.若0k =,则()f x 有两个零点B.0k ∃<,使得()f x 有一个零点C.0k ∃<,使得()f x 有三个零点D.0k ∃>,使得()f x 有三个零点13.已知)(x f 定义域为]1,1[-,值域为]1,0[,且0)()(=--x f x f ,写出一个满足条件的)(x f 的解析式是14.已知函数)22,0,0)(sin()(πϕπωϕω<<->>+=A x A x f 的部分图象如图所示,则函数)(x f 的解析式为______四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题10分)已知ABC ∆中角C B A ,,的对边分别为,,,c b a 满足.cos 3cos cos C C abB a c =+(1)求C sin 的值;(2)若23,2=+=c b a ,求ABC ∆的面积.18.(本小题12分)如图为一块边长为2km 的等边三角形地块ABC ,现对这块地进行改造,计划从BC 的中点D 出发引出两条成60︒角的线段DE 和DF (60,EDF ∠=︒F E ,分别在边AC AB ,上),与AB 和AC 围成四边形区域AEDF ,在该区域内种上花草进行绿化改造,设BDE α∠=.(1)当︒=60α时,求花草绿化区域AEDF 的面积;(2)求花草绿化区域AEDF 的面积()S α的取值范围.已知函数()2ln xf x ea x =-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时()22lnf x a a a≥+.21.(本小题12分)已知函数()ln(1)xf x e x =+(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设)(')(x f x g =,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()().f s t f s f t +>+22.(本小题12分)已知函数()axf x xe =.(1)求()f x 在[]0,2上的最大值;(2)已知()f x 在1x =处的切线与x 轴平行,若存在12,x x R ∈,12x x <,使得()()12f x f x =,证明:21x x ee >.东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第二次六校联考试题标准答案及评分标准一、单项选择题二、多项选择题123456789101112B A A D D ACCABBCDABDACD三、填空题:(每小题5分,共20分)13.]1,1[|,|)(-∈=x x x f 或者]1,1[,2cos)(-∈=x xx f π或者21)(x x f -=或者...14.)62sin(2)(π+=x x f 15.2,1416.()2,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭四、解答题17.【解析】(1)解法一:c cos B+bcosC =3a cos C .由正弦定理CcB b A a sin sin sin ==得sin C cos B +sin B cos C =3sin A cos C ,....2分所以sin(B +C )=3sin A cos C ,..........3分由于A +B +C =π,所以sin(B +C )=sin(π-A )=sin A ,则sin A =3sin A cos C .因为0<A <π,所以sin A ≠0,cos C =13...........4分因为0<C <π,所以sin C =1-cos 2C =223...........5分解法二:因为c cos B+bcosC =3a cos C .所以由余弦定理得c ×a 2+c 2-b 22ac =(3a -b )×a 2+b 2-c 22ab,化简得a 2+b 2-c 2=23ab ,所以cos C =a 2+b 2-c 22ab =23ab 2ab =13.因为0<C <π,所以sin C =1-cos 2C =223.(2)由余弦定理c 2=a 2+b 2-2ab cos C ,.......7分及23,2=+=c b a ,cos C =13,得a 2+b 2-23ab =18,即(a -b )2+43ab =18.所以ab =12.......8分所以△ABC 的面积S =12ab sin C =12×12×223=4 2........10分18.【解析】(1)当60α= 时,//DE AC ,//DF AB∴四边形AEDF 为平行四边形,则BDE ∆和CDF ∆均为边长为1km 的等边三角形又)2122sin 602ABC S km ∆=⨯⨯⨯= ,)2111sin 602BDE CDF S S km∆∆==⨯⨯⨯=∴)22km =................3分(2)方法一:由题意知:3090α<< ,BD=CD=1()())1sin 602ABC BDE CDF S S S S BE CF BE CF α∆∆∆∴=--=+=+ ......4分在BDE ∆中,120BED α∠=- ,由正弦定理得:()sin sin 120BE αα=-............5分在CDF ∆中,120CDF α∠=︒-,CFD α∠=由正弦定理得:()sin 120sin CF αα-=.............6分()()sin 120s sin sin sin 120BE CF αααα-∴+=+=- ....................7分令21tan 23sin sin 21cos 23sin )120sin(+=+=-︒=ααααααt 3090α<< ⎪⎭⎫⎝⎛∈∴+∞∈∴2,21),33(tan t α.................10分)(1t f t t CF BE =+=+()上单调递增.,在上单调递减;在21)(1,21)(11)('2t f t f t t f ⎪⎭⎫⎝⎛∴-= 25,2[)(∈∴t f 即52,2BE CF ⎡⎫+∈⎪⎢⎣⎭()Sα∴)4BE CF +∈⎝⎦即花草地块面积()S α的取值范围为⎝⎦..................12分方法二:由已知得++,++,BED B EDF FDC απαπ∠∠=∠∠=又,3B EDF π∠=∠=所以BED FDC ∴∠=∠,在BED ∆和CDF ∆中有:60,B C BED FDC ︒∠=∠=∠=∠,BED CDF ∴∆∆ ,得CFBDDC BE =又D 是BC 的中点,11DC BD BE FC ∴==∴⋅=,且当E 在点A 时,12CF =,所以122CF <<,所以111211)222S BE CF BE CF =⨯⨯-⨯=+,设CF x =,1BE x=,且122x <<,令1y x x =+,则()()2222+11111x x x y x x x '--=-==,112x ∴<<时,10,y y x x '<=+在112⎛⎫ ⎪⎝⎭,单调递减,12x <<时,10,y y x x '>=+在(1,2)上单调递增,1x ∴=时,1y x x =+有最小值2,当12x =或2x =时,152y x x =+=,所以面积S的取值范围是82⎛ ⎝⎦.19.【解析】(1)()3()cos()sin()sin sin cos cos sin 2f x x A x x A x A x π=+⋅-=-..........2分2sin cos sin cos sin x x A A x=-()sin 21cos 211sin cos cos cos 22222x x A A A x A -=⨯-⨯=-+-,...........4分故()max111cos 224f x A =-+=,故1cos 2A =.因为()0,A π∈,故3A π=...............5分(2)1111()cos cos 2cos 22323234f x x x πππ⎛⎫⎛⎫=-+-=-- ⎪ ⎪⎝⎭⎝⎭,故1()2(())cos 243g x f x x π⎛⎫=+=- ⎪⎝⎭,令()s g x =,,33x ππ⎡⎤∈-⎢⎥⎣⎦,则()g x 的图象如图所示:可得[]1,1s ∈-,............6分方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解又[]1,1s ∈-,下面考虑2410s ms -+=在[]1,1-上的解的情况.若2160m ∆=-=,则4m =-或4m =(舍)当4m =-时,方程的解为12s =-,此时1cos 232x π⎛⎫-=- ⎪⎝⎭仅有一解,故方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有一个解,舍...........8分若2160m ∆=->,则4m <-或4m >,此时2410s ms -+=在R 有两个不同的实数根)(,2121s s s s <,当4m <-时,则120,0s s <<,要使得方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解,则1210,10s s -≤<-≤<.令()241h s s ms =-+,则()()41010800m h m h <-⎧⎪-≥⎪⎪⎨-<<⎪⎪>⎪⎩,解得54m -≤<-............12分综上,m 的取值范围为:[)5,4--.20.【解析】(1)()f x 的定义域为()0,,+∞()22(0)xaf x e x x'=->.....1分当a ≤0时,()()0f x f x ''>,没有零点;......2分.当0a >时,因为2xe 单调递增,ax-单调递增,所以()f x '在()0,+∞单调递增,...3分当b 满足0<b<4a 且b<14时,即若41,1<≥b a 时,04242)41(')('<-≤-=<e a e f b f;若414,10<<<<a b a 时,04242)4(')('2<-<-=<e e a f b f a;则()0f b '<...5分另法:0→x 时),0( ,022>-∞→-→a xa e x所以-∞→→)(',0x f x 且)('x f 在)0(∞+,上是连续的,所以必存在b 使得()0f b '<,又()0f a '>即有0)(')('<b f a f ,故当0a >时()f x '存在唯一零点.……6分(2)当0a >时由(1),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0...........7分故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x ......8分由于=)('0x f 02020x ae x -=,............9分所以()0002221212a f x ax a n a a n x a a=++≥+......11分故当0a >时,()221f x a a na≥+.……12分21.【解析】(1)因为)1ln()(x e x f x+=,所以0)0(=f ,即切点坐标为)0,0(,..1分又]11)1[ln()(xx e x f x+++=',∴切线斜率1)0(='=f k ∴切线方程为x y =.....3分(2)令11)1[ln()()(xx e x f x g x+++='=则)1(112)1[ln()(2x x x e x g x+-+++='.......................4分令2)1(112)1ln()(x x x x h +-+++=,则0)1(1)1(2)1(211)(3232>++=+++-+='x x x x x x h ,∴)(x h 在),0[+∞上单调递增,.........6分∴01)0()(>=≥h x h ∴0)(>'x g 在),0[+∞上恒成立∴)(x g 在),0[+∞上单调递增..7分(3)解:待证不等式等价于)0()()()(f t f s f t s f ->-+,令)0,()()()(>-+=t x x f t x f x m ,只需证)0()(m x m >..........8分∵)1ln()1ln()()()(x e t x ex f t x f x m x tx +-++=-+=+)()(1)1ln(1)1ln()(x g t x g xe x e t x e t x e x m x x t x tx -+=+-+-+++++='++.........10分由(2)知11)1[ln()()(xx e x f x g x+++='=在),0[+∞上单调递增,∴)()(x g t x g >+...........11分∴0)(>'x m ∴)(x m 在),0(+∞上单调递增,又因为0,>t x ∴)0()(m x m >,所以命题得证.....12分22.【解析】(1)()()()1ax ax f x xe ax e ''==+,.............1分当0a ≥时,则10ax +≥对任意[]0,2x ∈恒成立,即()0f x '≥恒成立.所以()f x 在[]0,2x ∈单调递增.则()f x 的最大值为()()2max 22a f x f e ==;.........2分当0a <时,令10ax +=,即1x a=-当()10,2a -∈,即12a <-时,当10,x a ⎡⎫∈-⎪⎢⎣⎭时()0f x ¢>,()f x 在10,a ⎡⎫-⎪⎢⎣⎭上单调递增.当1,2x a ⎛⎤∈- ⎥⎝⎦时()0f x '<,()f x 在1,2a ⎛⎤- ⎥⎝⎦上单调递减,()max11f x f a ea ⎛⎫=-=-⎪⎝∴ ⎭.3分当[)12,a -∈+∞即102a -≤<时,10ax +≥对任意[]0,2x ∈恒成立,即()0f x '≥恒成立,所以()f x 在[]0,2x ∈单调递增.则()f x 的最大值为()()2max 22a f x f e ==;........4分综上所述:当12a ≥-时()()2max 22a f x f e ==;当12a <-时()max11f a ea f x ⎛⎫=-=- ⎪⎝⎭...5分(2)因为()f x 在1x =处的切线与x 轴平行,所以()()110a f a e '=+=,则1a =-,即()()1x f x x e -'=-.当1x <时,()0f x ¢>,则()f x 在(),1∞-上单调递增当1x >时,()0f x '<,则()f x 在()1,+∞上单调递减.又因为0x <时有()0f x <;0x >时有()0f x >,根据图象可知,若()()12f x f x =,则有1201x x <<<;......7分要证21x x e e >,只需证211ln x x >-;...............8分又因为101x <<,所以11ln 1x ->;因为()f x 在()1,+∞上单调递减,从而只需证明()()()1211ln f x f x f x =<-,只需证()()()1111ln 1ln 11111ln 1ln 1ln x x x x x x e e x e eex ---<--==.只需证()1111ln 1,01x e x x -+<<<.......................10分设()()()1ln ,0,1th t e t t -=+∈,则()11tte h t t--'=.由()f x 的单调性可知,()()11f t f e≤=.则1t te e -≤,即110t te --≥.所以()0h t '>,即()h t 在()0,1t ∈上单调递增.所以()()11h t h <=.从而不等式21x x e e >得证............12分。

2020年广东省二模理科数学试题及答案

2020年广东省二模理科数学试题及答案


估计旧设备所生产的产品的优质品率为 补充完整的 列联表如下所示,
非优质品
新设备产品
30
旧设备产品
45
合计
75
优质品 70 55 125

合计 100 100 200

有 的把握认为“产品质量高与新设备有关”. 由 知,新设备所生产的优质品率为 ,而 X 的所有可能取值为 0,1,2,3,




的分布列为:
本题考查排列、组合的应用,涉及正方体的几何结构,属于基础题.
16.答案:
第 6 页,共 13 页
解析:解:由题意圆
的圆心为抛物线的焦点 F,
再由题意可得直线 AB 的斜率不为 0,设直线 AB 的方程为:




,联立直线与抛物线的方程:

整理可得

,所以

由抛物线的性质可得:弦长

由题意可得 为
正确命题的个数为 2. 故选:C.
通过平移变换与伸缩变换求得函数 的解析式.由
判断 错误;由
求得最
小值判断 正确;由 x 的范围求得函数值域判断 调判断 错误. 本题考查命题的真假判断与应用,考查
11.答案:B
正确;由 x 的范围可知函数 在 上不单 型函数的图象与性质,是中档题.
解析:解:在矩形 ABCD 中,已知



由 知,
,且



所以:


得:


所以
, .
解析: 直接利用递推关系式的应用求出数列的通项公式. 利用乘公比错位相减法的应用求出结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届广东六校高三第二次联考试题理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}, {|21}x P x x x Q x =--<=>,则P Q =I ( ) A. {|1}x x >-B. {|1}x x <-C. {|03}x x <<D.{|10}x x -<<【答案】C 【解析】 【分析】化简集合,P Q ,即可得结果.【详解】2{|230}{|13}, {|21}{|0}x P x x x x x Q x x x =--<=-<<=>=>,P Q ∴=I {|03}x x <<。

故选:C【点睛】本题考查集合间的运算,准确化简是解题的关键,属于基础题. 2.“00m n >>且”是“0mn >”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 不充分不必要条件【答案】A 【解析】 【分析】 根据充分、必要条件的判断方法,即可得正确答案. 【详解】若00m n >>且,则0mn >成立;若0mn >,则,m n 同号,所以00m n >>且不成立, “00m n >>且”是“0mn >”成立的的充分不必要条件.故选:A【点睛】本题考查充分、必要条件的判断,考查不等式的性质,属于基础题.3.已知0.230.3log 0.3, log 0.2, 0.3a b c ===,则( ) A. a b c <<B. a c b <<C. b c a <<D.c a b <<【答案】B 【解析】 【分析】根据对数函数的函数值的正负、单调性,以及指数函数的单调性,即可得出正确答案. 【详解】30.30.3log 0.30,log 0.2log 0.31a b =<=>=,0.200<0.30.31c =<=,a c b ∴<<.故选:B【点睛】本题考查利用指、对数函数的单调性,比较数的大小,属于基础题.4.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.【答案】A 【解析】【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形, 且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题. 5.函数33()cos ||x x f x x x -=+在[],ππ-的图像大致为( )A. B. C. D.【答案】A 【解析】 【分析】先证明()f x 的奇偶性,判断图像的对称性,对[]0,x π∈时()f x 的函数值正负,以及和1的大小,即可得到正确答案.【详解】33()(),()cos ||x xf x f x f x x x -+-==-∴+是奇函数, 图像关于原点对称;故D 不正确; 33(3)(3)()cos x x x x x f x x x --+=+, 3),()0x f x ∈>,故B 不正确,而312(1)1cos11cos11f -==>++,故C 不正确.故选:A【点睛】本题考查函数的奇偶性,属于基础题.6.已知非零向量,a b r r 满足1,2a b ==r r (2()a b a b -⊥+)r r r r ,则a r 与b r的夹角为( )A.6π B.4π C.3π D.2π 【答案】D【解析】 【分析】(2()a b a b -⊥+)r r r r 求出0a b ⋅=r r,即可求出结论.【详解】22(2(),(2()=20a b a b a b a b a a b b -⊥+∴-⋅++⋅-=))r r r r r r r r r r r r Q0a b ∴⋅=r r, a ∴r 与b r 的夹角为2π.故选:D【点睛】本题考查向量的数量积运算,以及向量垂直的判定,属于基础题.7.已知函数()sin()cos()0,||2f x x x ωϕωϕωϕπ⎛⎫=+++>< ⎪⎝⎭的最小正周期为π, 且()()f x f x -=-,则( )A. ()f x 在0,2π⎛⎫⎪⎝⎭单调递增B. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 C. ()f x 在0,2π⎛⎫⎪⎝⎭单调递减D. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 【答案】D 【解析】 【分析】化简()f x ,再根据已知条件求出,ωϕ,逐项验证各选项. 【详解】()2)4f x x πωϕ=++,所以2ω=,又()()f x f x -=-知()f x 为奇函数, ,||,()22424k f x x πππϕπϕϕ∴+=<∴=-∴=, 0,,2(0,)2x x ππ⎛⎫∈∈ ⎪⎝⎭,()f x 没有单调性,选项A ,C 不正确,33,,2(,)2244x x ππππ⎛⎫∈∈ ⎪⎝⎭,()f x 单调递减,选项B 不正确. 故选:D【点睛】本题考查三角函数的化简,三角函数的性质,涉及三角函数的单调性、奇偶性、周期性,属于中档题.8.记等差数列{}n a 的前n 项和为n S ,若已知391, 9a S =-=,则( ) A. 310n a n =-B. 2n a n =-C. 21722n S n n =-D.28n S n n =-【答案】C 【解析】 【分析】由99=S ,求出5a ,然后求出公差,最后求得, n n a S . 【详解】设{}n a 的公差为d ,199559()99,12a a S a a +===∴=, 5322,1,4n a a d d a n ∴-==∴==-,∴13a =-,(7)2n n n S -==21722n n -. 故选:C【点睛】本题考查等差数列量之间的运算,涉及等差数列的通项、前n 项和、性质,属于中档题.9.关于函数f (x )=tan|x |+|tan x |有下述四个结论: ① f (x )是偶函数; ② f (x )在区间,02π⎛⎫- ⎪⎝⎭上单调递减;③ f (x )是周期函数; ④ f (x )图象关于,02π⎛⎫⎪⎝⎭对称 其中所有正确结论的编号是( ) A. ①③ B. ②③ C. ①② D. ③④【答案】C 【解析】 【分析】①用奇偶性定义证明为正确;②化简去绝对值,可证为正确;③ ④作出图像,可判断为不正确.【详解】()tan|||tan()|tan|||tan|()f x x x x x f x-=-+-=+=()f x∴为偶函数,①为正确;,0,()2tan2x f x xπ⎛⎫∈-=-⎪⎝⎭单调递减,②为正确;作出函数()tan|||tan|f x x x=+在,22xππ⎛⎫∈-⎪⎝⎭的图像如下图:可判断③ ④不正确.故选:C【点睛】本题考查有关三角函数的性质,考查了正切函数的图象及应用,属于中档题.10.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L点的轨道运行.2L点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,2L点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:121223()()M M MR rR r r R+=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r的近似值为21MRM212MRM2313M R M 2313M R M 【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++, 解得3213M M α=所以321.3M r R R M α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.11.已知三棱锥P ABC -的四个顶点在球O 的球面上,点,D E 分别是,PB BC 的中点,3,2,22,13,17PA PD DE PE AD AE ======O 的表面积为( )A. 24πB. 25πC. 41πD. 50π【答案】C 【解析】 【分析】根据已知条件可得,,PA PB PC ,两两互相垂直,三棱锥P ABC -的四个顶点所在球O 为以,,PA PB PC 为棱的长方体外接球,球O 的直径径为长方体对角线长,即可求出球O 的表面积.【详解】3,2,22,13,17PA PD DE PE AD AE ======222222222,,PA PD AD PD DE PE PA PE AE +=+=+= ,,PA PD PD DE PA PE ∴⊥⊥⊥,PA ⊥平面,PBC PC Ì平面,PBC PA PC ∴⊥,点,D E 分别是,PB BC 的中点,//,DE PC PB PC ∴⊥,,,,PA PB PB PC PC PA ∴⊥⊥⊥设球O 半径为R22223,4,(2)34441PA PB PC R ====++=, 2441S R ππ∴==球面故选:C【点睛】本题考查三棱锥的外接球的表面积,等价转化是解题的关键,属于中档题. 12.己知函数()xf x e ex a =-+与()1ln g x x x=+的图像上存在关于x 轴对称的点,则实数a 的取值范围为( )A. [),e -+∞B. [)1,-+∞C. (],1-∞-D.(],e -∞-【答案】C 【解析】 【分析】由已知,得到方程1(ln )xe ex a x x-+=-+在(0,)+∞上有解,构造函数,求出它的值域,得到a 的取值范围.【详解】若函数()e ex x f x a =-+与()1ln g x x x=+的图象上存在关于x 轴对称的点, 则方程1(ln )xe ex a x x-+=-+在(0,)+∞上有解,即1ln xa ex e x x =---在(0,)+∞上有解, 令1()ln xh x ex e x x =---,则22111'()x xx h x e e e e x x x-=--+=-+,所以当01x <<时,'()0h x >,当1x >时,'()0h x <, 所以函数()h x (0,1)上单调递增,在(1,)+∞上单调递减,所以()h x 在1x =处取得最大值011e e ---=-, 所以()h x 的值域为(,1]-∞-, 所以a 的取值范围是(,1]-∞-, 故选C.【点睛】该题考查的是有关根据两个函数图象上存在过于x 轴对称的点求参数的取值范围的问题,在解题的过程中,注意关于x 轴对称的两点的坐标的关系式横坐标相等,纵坐标互为相反数,之后构造新函数,求函数的值域的问题,属于中档题目. 二、填空题:本题共4小题,每小题5分,共20分.13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅u u u r u u u r的值为 . 【答案】1 【解析】 试题分析:.考点:1、向量的数量积运算;2、向量加法.14.已知ABC △的内角A B C ,,的对边分别为a ,b ,c ,若()()a b c a b c ac ++-+=,则tan B =________. 【答案】3-【解析】 【分析】由已知等式结合余弦定理,求出B 角,进而求出tan B 的值. 【详解】()()a b c a b c ac ++-+=,22222(),a c b ac a c b ac ∴+-=+-=-2221cos ,2220120a c b ac B ac ac B B π+--∴===-<<∴=︒Q ,则tan 3B =-故答案为: 3-【点睛】本题考查余弦定理的应用,属于基础题. 15.数列{}n a 满足*111()(,1)2n n n n a a a a n N n +--=-∈>,1811,128a a ==,则2a =______.【答案】12【解析】 【分析】由已知得21,a ≠设1n n n b a a +=-,则{}n b 是公比为12的等比数列,求出其通项,再用累加法求出1b ,即可得结果.【详解】设1n n n b a a +=-,若21a =则1n a =与81128a =矛盾, 211,0,{}n a b b ∴≠∴≠是公比为12的等比数列,11,2n n bb -∴= 178187762111121112812b a a a a a a a a ⎛⎫- ⎪⎝⎭∴-=-+-++-==--L ,12121122b a a a ∴=-=-∴=.故答案为:12【点睛】本题考查等比数列的通项,以及累加法求通项,合理引进辅助数列是解题的关键,属于中档题.16.已知不等式222x xe kx e ≥-恒成立,则k 的取值范围是______.【答案】20,3e ⎡⎤⎣⎦【解析】 【分析】设22y kx e =-,2()xf x xe =,不等式222x xe kx e ≥-恒成立,转化为函数2()xf x xe =的图像不在直线22y kx e =-的下方,求出2()xf x xe =的单调区间以及极值、最值,作出函数2()x f x xe =的图像,用数形结合方法,即可求出k 的取值范围;或分离出参数k ,构造新函数,转化为k 与新函数的最值的大小关系.【详解】直线l :22y kx e =-是斜率为k 且过点2(0,2)e -的直线,22(),'()(12)x x f x xe f x e x ==+21x <-时,'()0,()f x f x <单调递减;12x >-时,'()0,()f x f x >单调递增.12min 11()()222f x f e e -=-=->-,当11(,0],(),02x f x e -⎡⎤∈-∞∈-⎢⎥⎣⎦所以k 0<时,20000, 20()x kx e f x ∃<->>不符合条件 所以0k =时,22 22()kx e e f x -=-<符合条件0k >时,若0,x ≤,则22()22f x e kx e >->-所以只需再考虑0x >的情况:法一:如图示设00k k =>时直线l 与()y f x =相切,则当且仅当00k k ≤≤时符合条件.设直线l 与()y f x =相切于点()02000,,0xx x e x >,则00222000000(12), 2x x k e x x e y k x e =+==-,0002222220000 (12)2x x x x e e x x e e x e ∴=+-⇔=,所以22001,30,3x k e k e ⎡⎤∴==∴∈⎣⎦注2222()(0), '()(22)0, x x g x x e x g x e x x =>=+> ()g x ∴∞在(0,+)递增,且2(1)g e =.法二:0x >时:2222222322(),'()2(),4'()40 (0),xxx e e f x e f x e g x x xeg x e x x=+=-==+>> '()f x 在()0,∞+上单调递增,又'(1)0f =01,'()0;1,'()0;x f x x f x ∴<<<>>2min ()(1)3.f x f e ∴==0x ∴>时, 22223xe e k k e x+≥⇒≤ 203k e ∴≤≤【点睛】本题考查导数的应用,考查函数的单调区间、极值最值,考查等价转换、数形结合、分类讨论等数学思想,是一道综合题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量(2cos ,3), (cos , 2sin ), x x x x x ==∈a b R ,设函数()f x =⋅a b . (1) 求()f x 的最小正周期. (2) 求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【答案】(1)π;(2)最大值和最小值分别为3, 0. 【解析】 【分析】(1)求出()f x 化简,即可得出结论;(2)根据整体思想,结合sin y x =图像特征,即可求出答案. 【详解】(1) (2cos ,3), (cos , 2sin ), a x x b x x x ==∈R r rQ , ()f x a b =r r ·2cos cos 3cos 2sin x x x x =⋅⋅32cos 21x x =++3122cos 212x x ⎫=++⎪⎪⎝⎭. 2sin(2)16x π=++.所以22T ππ==, 所以()f x 最小正周期为π. (2) 当[0,]2x π∈ 时,7(2)[,]666x πππα+∈=,1sin(2)sin [,1]62x πα∴+=∈-.()2sin(2)12sin 1[0,3]6f x x πα=++=+∈所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为3, 0. 【点睛】本题考查向量的数量积,三角函数的化简以及三角函数的性质,整体思想是解题的关键,属于中档题.18.已知数列{}n a 的前n 项和为n S ,且2 2 (*)n n S a n N =-∈ . (1) 求数列{}n a 的通项公式;(2) 记()21log n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:121111nT T T +++<L . 【答案】(1)2nn a =;(2)详见解析.【解析】 【分析】(1)由n S 与n a 的关系,可求出{}n a 的通项公式;(2)求出()21log n n n b a a +=的通项,接着求出{}n b 的前n 项和n T ,用裂项相消法求出12111nT T T +++L ,不等式即可得证. 【详解】(1) 由2 2 (*)n n S a n N =-∈得 112 2 (2), n n S a n --=-≥当1n =时,11112 2 2a S a a ==-∴= 当2n ≥时,11 22 n n n n n a S S a a --=-=-. 112 2 (2)nn n n a a a n a --∴=∴=≥ ∴数列{}n a 是首项12a =且公比2q =的等比数列.112n n n a a q -∴==.(2)()()1212log log 2221n n n n n b a a n ++==⋅=+,12n n b b -∴-=. ∴数列{}n b 是等差数列,11()(2)2n n T n b b n n ∴=+=+11111(2)22n T n n n n ⎛⎫∴==- ⎪++⎝⎭ 12111111111111111111232242352112211111 1 (*)2212n T T T n n n n n N n n ∴+++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=+--<∈ ⎪++⎝⎭L L 【点睛】本题考查已知前n 项和n S 求通项,考查等比数列的通项、等差数列的通项以及前n 项和,考查用裂项相消法求数列的和,是一道综合题.19.如图,菱形ABCD 的对角线AC 与BD 交于点O ,5, 8AB AC ==,点, E F 分别在, AD CD 上,53AE CF ==,EF 交BD 于点H . 将DEF ∆沿EF 折到△D EF '的位置,5D O '=.(1)证明:D H '⊥平面ABCD ; (2)求二面角A BD O '--的余弦值. 【答案】(1)详见解析;(2)38989. 【解析】 【分析】(1)根据折叠前后关系可证'EF D H ⊥,再用勾股定理证'D H OH ⊥,即可证得结论; (2)建立空间坐标系,求出平面'ABD 的法向量,找出平面'BOD 的法向量,即可求出结果. 【详解】(I )由已知得AC BD ⊥,AD CD =, 又由AE CF =得AE CFAD CD=,故//AC EF . 因此EF HD ⊥,从而'EF D H ⊥ 由5AB =,8, 4AC AO ==, 得223DO BO AB AO ==-=.由//EF AC 得13OH AE DO AD ==. 所以1OH =,'2D H DH ==.于是22222'215'D H OH D O +=+==,故'D H OH ⊥. 又'D H EF ⊥,而OH EF H =I , 所以'D H ⊥平面ABCD .(II )如图,以H 为坐标原点,HF u u u r的方向为x 轴的正方向, 建立空间直角坐标系H xyz -,则()0,0,0H ,()4,1,0A --,()0,4,0B -,()4,1,0C -,()'0,0,2D ,(4,3,0)BA =-u u u r,()'0,4,2BD =u u u u r . 设()111,,m x y z =u r是平面'ABD 的法向量, 则0'0m BA m BD ⎧⋅=⎨⋅=⎩u u u v v u u u u v v ,即1111430420x y y z -+=⎧⎨+=⎩,所以可以取()3,4,8m =-u r因菱形ABCD 中有BO OC ⊥,又由(1)知',D H OC ⊥'OC BD O ∴⊥平面所以()4,0,0n OC ==r u u u r是平面'BOD 的法向量,设二面角'A BD O --为θ,由于θ为锐角,于是cos θ=389cos ,||||894m n m n m n ⋅<>===⨯u r ru r r u r r .因此二面角'A BD O --389. 【点睛】本题考查线面垂直的证明,考查用空间向量法求空间角,考查推理、计算能力,是中档题.20.ABC ∆的内角A ,B ,C 所对边分别为a ,b ,c .已知sin sin()2A Ca b B C +=+. (1) 求B ;(2) 若ABC ∆为锐角三角形,且2c =,求ABC ∆面积的取值范围。

相关文档
最新文档