大一微积分练习题及答案
高等数学微积分期末试卷及答案

选择题(6×2)
1.设f (x) 2cosx , g(x) ( 1)sin x 在区间(0, )内( )。
2
2
Af (x)是增函数,g(x)是减函数
Bf (x)是减函数,g(x)是增函数
C二者都是增函数
D二者都是减函数
2、x 0时,e2x cos x与sin x相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小
2
五、应用题 1、 2、 描绘下列函数的图形
y x2 1 x
解:1.Dy=(-,0) (0,+)
1 2.y'=2x- x2
2x3 1 x2
令y ' 0得x 3 1 2
y
''
2
2 x3
令y '' 0,得x 1
3.
4.补充点 (2, 7).( 1 , 7).(1, 2).(2, 9)
2 22
且f (x1) f (x2 ) 0 至少 (x2, x2),stf ( ) 0 而f '( ) 3 2 1 1与假设相矛盾 方程x3 x 1 0有且只有一个正实根
2、 证明arcsin x arccos x (1 x 1) 2
证明:设f (x) arcsin x arccos x
f '(x) 0令A f(' 0),B f '(1),C f (1) f (0),则必有A>B>C( )
1~5 FFFFT
三、计算题
1
1 用洛必达法则求极限 lim x2e x2 x0
1
1
解:原式=
lim
x0
e x2 1
lim
大一微积分练习题(附答案)

《微积分(1)》练习题一.单项选择题1.设存在,则下列等式成立的有( )()0x f 'A . B .()()()0000limx f x x f x x f x '=∆-∆-→∆()()()0000lim x f xx f x x f x '-=∆-∆-→∆C .D .()()()00002limx f h x f h x f h '=-+→()()()0000212limx f h x f h x f h '=-+→2.下列极限不存在的有( )A .B .201sin lim xx x →12lim2+-+∞→x xx x C .D .xx e 1lim →()xx xx +-∞→632213lim3.设的一个原函数是,则( ))(x f x e 2-=)(x f A .B .C .D . x e 22--x e 2-x e 24-xxe 22--4.函数在上的间断点为( )间断点。
⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f [)+∞,01=x A .跳跃间断点;B .无穷间断点;C .可去间断点;D .振荡间断点5. 设函数在上有定义,在内可导,则下列结论成立的有( )()x f []b a ,()b a ,A .当时,至少存在一点,使;()()0<b f a f ()b a ,∈ξ()0=ξf B .对任何,有;()b a ,∈ξ()()[]0lim =-→ξξf x f x C .当时,至少存在一点,使;()()b f a f =()b a ,∈ξ()0='ξf D .至少存在一点,使;()b a ,∈ξ()()()()a b f a f b f -'=-ξ6. 已知的导数在处连续,若,则下列结论成立的有( )()x f a x =()1lim-=-'→ax x f ax A .是的极小值点; B .是的极大值点;a x =()x f a x =()x fC .是曲线的拐点;()()a f a ,()x f y =D .不是的极值点,也不是曲线的拐点; a x =()x f ()()a f a ,()x f y =二.填空:1.设,可微,则 ⎪⎭⎫⎝⎛=x f y 1arcsinf ()='x y 2.若,则32325-+-=x x x y ()=6y 3.过原点作曲线的切线,则切线方程为()1,0x e y 2=4.曲线的水平渐近线方程为 ()2142-+=x x y 铅垂渐近线方程为5.设,则x x f +='1)(ln ()='x f ()=x f 三.计算题:(1)(2)321lim 221-+-→x x x x 32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)(4) 求xx x x 3sin )1ln(lim 20+→()[]221ln x y -=dy(5) 求053=-+x y exy=x dxdy 四.试确定,,使函数在处连续且可导。
大一微积分期末试卷及答案

大一微积分期末试卷及答案Final revision by standardization team on December 10, 2020.微积分期末试卷选择题(6×2)1~6 DDBDBD一、 填空题 1 In 1x + ; 2 322y x x =-; 3 2log ,(0,1),1x y R x=-; 4(0,0) 5解:原式=11(1)()1m limlim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、 判断题1、无穷多个无穷小的和是无穷小( )2、若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、 计算题1用洛必达法则求极限2120lim x x x e → 解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若34()(10),''(0)f x x f =+求解: 3 24lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求四、 证明题。
1、证明方程310x x +-=有且仅有一正实根。
证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 五、 应用题1、描绘下列函数的图形 3.4.补充点7179(2,).(,).(1,2).(2,)2222--- 50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。
大一微积分期末试卷及答案

微积分期末试卷选择题(6X2)1•设f(x) 2cosx,g(x) (1严在区间(0,—)内()。
2 2A f (x)是增函数,g (x)是减函数Bf (x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x 0时,e2x cosx与sinx相比是()A高阶无穷小E低阶无穷小C等价无穷小D同阶但不等价无价小13、x = 0 是函数y = (1 -sinx)紺勺()A连续点E可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 nA X n ( 1)nB X n si n -n n 21 1C X n-(a 1)D X n cosa n5、若f "(x)在X0处取得最大值,则必有()A f /(X。
)o Bf /(X。
)oCf /(X。
)0且f''( X o)<O Df''(X o)不存在或f'(X o) 0、4)6、曲线y xe x( )A仅有水平渐近线E仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD一、填空题1、d ) = -^― dxx +12、求过点(2,0 )的一条直线,使它与曲线y= -相切。
这条直线方程为:x2x3、函数y=二一的反函数及其定义域与值域分别是:2x+14、y=匹的拐点为:2 ,5、若lim X2a2,则a,b的值分别为:1 x+ 2x-3x1 In x 1 ;2 y x3 2x 2x;3 y也厂,©1)^ 4©0)lim (x 1)(x m) 5 解:原式=x 1 (x 1)(x 3) m 7 b limU 」2 x 1 x 3 4 7,a 6 1、 2、 、判断题 无穷多个无穷小的和是无穷小 lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、若f(X)在X o 处取得极值,则必有 f(x)在X 0处连续不可导( )5、 (x) 在 0,1 f '(x) 0令 A f'(0) f'(1),C f(1) f (0),则必有 A>B>C()1~5 FFFFT 二、计算题 1用洛必达法则求极限 x im 01e x2解:原式=lim x 0 1 x lime x2( 2x x 0J 2x 31 lim e xx 02 若 f (x)(x 3 10)4,求f ''(0) 解: 4( x 3 24x f'(x) f ''(x) f ''(x) 0 3 2 2 , 3 10) 3x 12x (x.3 3 2 3(x 10) 12x 3 (x 10) 3x 10)33 . 3 34 , 3 224x (x 10)108x (x 10)4I o 2 3 求极限 lim(cos x)xx 04 ,2I ncosx解:原式=lim e xx 05 tan3xdx2=sec x tan xdx tan xdx6 求xarctanxdxQ lim p Incosxx 0x2原式e2I>解:In y5ln3x11 Jx 1cosxI>yy1 5 3 11y 2 x 212(x 1)12(x 2)1cosx(sin x)tanxlim lim xx x 0 x x 0 x2224Incosxlim / e x 0解:原式=tan2xtanxdx2(sec x 1)tanxdx=tan xd tan x=tan xd tan xsin x , dxcosx1 . dcosxcosx= -ta n2x In cosx c解:原式=1 arcta nxd(x 2)1(x 2 arcta nx2 22arcta nx四、证明题。
大一上学期微积分练习题带答案

(A)连续;(B)可导;(C)可微;(D)连续、不可导.
20.若在 内 ,在 内, 且 ,则在 内有()
(A) 且 ;(B) 且 ;
(C) 且 ;(D) 且 .答案C
21.若周期为4的函数 在 内可导且 ,则曲线
在点 处的切线斜率是()
(A) ;(B)0;(C) ;(D) .答案(D)
11.当 时,若 ,则 之值一定为( ).
(A) ;( B ) 为任意常数;
( C ) 为任意常数;( D ) 为任意常数.答案:(B)
12.当 时,若 ,则 之值一定为().
(A) ;( B ) 为任意常数;
( C ) 为任意常数;( D ) 为任意常数.答案 (C)
13.设 在 上定义,在点 连续, ,则 是函数
(A) (B) (C) (D) 答案B
5.设函数 , ,则 ()
(A) 0;(B) 1;(C) ;(D) 2.答案A
6.设 是偶函数, 是奇函数,则 是().
(A)奇函数 (B) 偶函数 (C)非奇非偶函数(D)不能确定答案B
7.若 ,则 ( ).
(A) ;(B) ;(C) ;(D) .答案(A).
32.设 ,下列命题中正确的是().
(A) 是极大值, 是极小值;(B) 是极小值, 是极大值;
(C) 是极大值, 也是极大值;(D) 是极小值, 也是极小值.答案:(B)
33.下列结论不正确的是()
(A) ;(B) ;(C) ;(D) .答案:(C)
34.设 二阶可导, ,则 ().
(A) ;(B) ;(C) ;(D) .答(D).
答案: 在 上增,在 上减.
21.设某厂每月生产产品的总成本 是产量 的函数且 (元),若每单位
微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
大一微积分试题及答案详解
大一微积分试题及答案详解一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A解析:函数f(x) = x^2的导数为f'(x) = 2x,当x > 0时,f'(x) > 0,说明函数在x > 0的区间内是增函数;当x < 0时,f'(x) < 0,说明函数在x < 0的区间内是减函数。
由于整个定义域内没有区间使得函数单调递减,所以函数在整个定义域上是增函数。
2. 下列函数中,满足f(-x) = -f(x)的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = sin(x)答案:A解析:选项A中的函数f(x) = x^3是奇函数,因为对于所有x,都有f(-x) = (-x)^3 = -x^3 = -f(x)。
选项B是偶函数,选项C和D不满足奇函数的性质。
3-10. (类似上述格式,继续编写选择题及答案详解)二、填空题(每题4分,共20分)1. 极限lim (x→0) [sin(x)/x] 的值是 _______。
答案:1解析:根据极限的性质,我们知道sin(x)/x在x趋近于0时的极限是1,这是著名的极限lim (x→0) [sin(x)/x] = 1。
2. 函数f(x) = 2x^3 - 6x^2 + 9x + 1在x = 2处的导数是 _______。
答案:23解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 12x + 9,然后将x = 2代入得到f'(2) = 6(2)^2 - 12(2) + 9 = 24 - 24 + 9 = 9。
3-5. (类似上述格式,继续编写填空题及答案详解)三、解答题(共50分)1. (15分)求曲线y = x^3 - 3x + 2在点(1, 0)处的切线方程。
大一微积分练习题及答案
《微积分(1)》练习题一.单项选择题1.设()0x f '存在,则下列等式成立的有( ) A. ()()()0000limx f x x f x x f x '=∆-∆-→∆ B.()()()0000lim x f xx f x x f x '-=∆-∆-→∆C.()()()00002limx f h x f h x f h '=-+→ D.()()()0000212lim x f h x f h x f h '=-+→2.下列极限不存在的有( )A.201sin lim xx x → B.12lim 2+-+∞→x x x xC. xx e1lim → D.()xx xx +-∞→632213lim3.设)(x f 的一个原函数就是x e 2-,则=)(x f ( )A.x e 22--B.x e 2-C.x e 24-D. x xe 22--4.函数⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。
A.跳跃间断点;B.无穷间断点;C.可去间断点;D.振荡间断点5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξf x f x ;C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ; D.至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim-=-'→ax x f ax ,则下列结论成立的有( )A.a x =就是()x f 的极小值点;B.a x =就是()x f 的极大值点;C.()()a f a ,就是曲线()x f y =的拐点;D.a x =不就是()x f 的极值点,()()a f a ,也不就是曲线()x f y =的拐点; 二.填空: 1.设⎪⎭⎫⎝⎛=x f y 1arcsin,f 可微,则()='x y 2.若32325-+-=x x x y ,则()=6y3.过原点()1,0作曲线x e y 2=的切线,则切线方程为4.曲线()2142-+=xx y 的水平渐近线方程为 铅垂渐近线方程为 5.设x x f +='1)(ln ,则()='x f ()=x f三.计算题:(1)321lim 221-+-→x x x x (2)32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)xx x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy (5)053=-+x y exy求=x dxdy四.试确定a ,b ,使函数()()⎩⎨⎧<-≥+++=0,10,2sin 1x e x a x b x f ax在0=x 处连续且可导。
大一微积分期末试卷及答案
微积分期末试卷选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD一、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In 1x + ; 2 322y x x =-; 3 2log ,(0,1),1xy R x=-; 4(0,0) 5解:原式=11(1)()1mlimlim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x )在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFF FT三、计算题1用洛必达法则求极限212lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x--→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 324lim(cos )xx x →求极限4I cos 224I cos lim 022000002lim 1(sin )4costan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xxe →→→→→→→-=---=====-∴=解:原式=原式4 (3y x =-求 511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎢⎥---⎦解:53tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx xxd x dxx xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =四、证明题。
大一微积分练习题及答案
《微积分(1)》练习题一.单项选择题1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000limx f x x f x x f x '=∆-∆-→∆ B .()()()0000lim x f xx f x x f x '-=∆-∆-→∆C .()()()00002limx f h x f h x f h '=-+→ D .()()()0000212lim x f h x f h x f h '=-+→2.下列极限不存在的有( )A .201sin lim xx x → B .12lim 2+-+∞→x x x xC . xx e1lim → D .()xx xx +-∞→632213lim3.设)(x f 的一个原函数是x e 2-,则=)(x f ( )A .x e 22--B .x e 2-C .x e 24-D . x xe 22--4.函数⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。
A .跳跃间断点;B .无穷间断点;C .可去间断点;D .振荡间断点5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξf x f x ;C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ;D .至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim-=-'→ax x f ax ,则下列结论成立的有( )A .a x =是()x f 的极小值点;B .a x =是()x f 的极大值点;C .()()a f a ,是曲线()x f y =的拐点;D .a x =不是()x f 的极值点,()()a f a ,也不是曲线()x f y =的拐点; 二.填空: 1.设⎪⎭⎫⎝⎛=x f y 1arcsin,f 可微,则()='x y 2.若32325-+-=x x x y ,则()=6y3.过原点()1,0作曲线x e y 2=的切线,则切线方程为4.曲线()2142-+=x x y 的水平渐近线方程为 铅垂渐近线方程为 5.设x x f +='1)(ln ,则()='x f ()=x f三.计算题:(1)321lim 221-+-→x x x x (2)32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)xx x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy(5)053=-+x y exy求=x dxdy四.试确定a ,b ,使函数()()⎩⎨⎧<-≥+++=0,10,2sin 1x e x a x b x f ax在0=x 处连续且可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•单项选择题《微积分(1)》练习题
1•设f X o存在,则下列等式成立的有
A. li X m0 f X0 X f X0 f X0 X f X0 r
f X0 B. lim f
x
x
°
C」h叫f x0 2h f x0
X o D.
lim 山
h 0
2h f x0 h 2
f x。
2•下列极限不存在的有()
A. lim xsin -
42
x 0 x2
B.
lim
X
2 小
x 2x
x 1
1
C. lim e'
x 0
D.
lim
X
2 3
3x 1
3•设f(X)的一个原函数就是2x,则f (x)
2 x
A. 2e
B.e 2X2x
C. 4e
D. 2xe 2x
4•函数f (X) 2 x,
1,
1 X
,
0, 上的间断点1为()间断
点。
A.跳跃间断点;
C.可去间断点;B.无穷间断点;
D.振荡间断点
5.设函数f a,
b 上有定义,
在
a,
b
内可导,则下列结论成立的有()
A.当fa 0时,至少存在一点a,b ,使
f
0;
B •对任何a,b,有lim f
x
X
0;
C.当fa f b时,至少存在一点a,b ,使
f
0;
D.至少存在一点a,b ,使f
b
6.已知f X的导数在X a处连续若lim x a x
a
1,则下列结论成立的有()A. x a就是f x的极小值点; B. X a就是f X的极大值点;
C. a, f a就是曲线y f x的拐点;
二.填空:
《微积分》练习题参考答案
七•单项选择题
1.( B )
2.( C )
3.( A )
4.( C )
5.( B )
6.( B )
八•填空:(每小题3分,共15分)
, 1 r ■ 1
1.
f arcs in x|』x 2
1 x
2. y 6
D. x a 不就是f x
的极值点,a, f a 也不就是曲线y f x 的拐点;
1.设 y
f arcs in x
,f 可微,则y
2若 y 3x 5 2x 2
3,则 y 6
3.过原点0,1作曲线y e 2x 的切线,则切线方程为
4 x 1
4.曲线y ―l 2的水平渐近线方程为 2 x
铅垂渐近线方程为 5.设 f (ln x) 1 x 则 f
三.计算题:
1 2x 3 x
⑵ lim x
2
m
ln(1 x 2) xsin 3x
2
⑷ y In 1 2x 求 dy
xy 3
_
_
(5)e y 5x 0
求dy
四. 试确定a ,b,使函数f
bl sin
x
2, 五. 试证明不等式:当x 1时, 六.
且大于零,求证F x 在a,
1, x
xe
a ,其中f x 在a,
内单调递增。
0处连续且可导。
上连续,f x 在a, 内存在
3. y 2x 1
4. y 2 , x 0
5. f x 1 e x , f x x e x c 三,计算题:(1) lim f x 2 1 x 2
2x 3 (2) lim
x l
x m
1
x 2 1 x 2
2x x
x 2
lim
x
x m 2x 2x 2
lim(1 x 2
)
x
li m
x
e
2x m
H x
ln(1 x 2
) xsin 3x 2
⑷ y In 1 2x 求 dy
ln(1 x 2
) xsin
3x dy 2 In 1 2x
1 1 2x
2 dx
m
o
H X 3X
4 In 1 2x ,
dx
1 2x
x e
5)
w dx
y
xy
x e
xy
ye
九. T —
xy
ye 5
3y 2 xe xy
试确定 a ,b,使函数f
b1 sin
x
ax
e
2,
(8分)
解:f 0 0
lim b 1 sinx 0
1,
0处连续且可
导。
f 0 0 lim
x 0 ax e 1
0 ,
函数f x 在x
0处连续
a b 2 0, (1)
b1 sin x a 2
f 0 lim
x 0 x
ax
e 1 a b 2
f 0 lim
x 0 x
函数f X在x 0处可导f 0
由(1)(2)知a b 1
十•试证明不等式:当x 1时,e
证:(法一)设ft e t 1, x
b a 2 h
e ax 1
li a
x 0 x
f 0,故a b ⑵
x
e
:1
xe
x
e
(8分)
2
则由拉格朗日中值定理有
整理
得:
e x
1
e x- xe x e
2
法二:设f x x
e ex
f x e x e 0
f x e x ex f 1 0,即
e x ex
1
设f x e x- xe x e
2
fxxa fx fa
(x a)2
fxxa f
(x a)2
e x 1 e x e e x 1 1,x
1
x x
f x e e
x xe 討 1 x0 x 1 故f X x 1 e - x xe e在x 1时,为减函数,
£x 1 x
f x e e
2
x
xe f 1 0,即x
e 1 xe
2
x
e
1
综上,e x e x
一
xe x e
十一.设F x f x f a x a ,其中 f x 在a, 上连
续,
f x在a, 内存
(5分)
故f x e x ex在x 1时,为增函数,
在且大于零,求证F x在a, 内单调递增。
f x
x a 故F x在a, 0 x 内单调递增。