高分子科学发展简史修订稿
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类重要的材料,具有广泛的应用领域。
本文将从高分子材料的起源开始,概述其发展历程,并探讨未来的发展趋势。
一、高分子材料的起源1.1 古代高分子材料的应用在古代,人们已经开始使用高分子材料。
例如,古埃及人使用胶质物质制作胶合剂,用于修补陶器和建筑物。
1.2 高分子材料的科学发现高分子材料的科学发现可以追溯到19世纪。
1833年,法国科学家布朗提出了“高聚物”这个概念,并成功合成了天然高分子材料,如橡胶和纤维素。
1.3 高分子材料的工业化应用随着科学技术的发展,高分子材料的工业化应用逐渐增多。
20世纪初,合成高分子材料的工业化生产取得了重大突破,如合成橡胶和塑料的工业化生产。
二、高分子材料的发展历程2.1 高分子材料的分类高分子材料可以分为塑料、橡胶和纤维三大类。
塑料主要用于制造各种制品,橡胶主要用于制造胶制品,纤维主要用于纺织和制造复合材料。
2.2 高分子材料的改性和功能化随着科学技术的不断进步,人们对高分子材料进行了改性和功能化处理,使其具备更多的优良性能,如增强材料的强度、改善材料的耐热性等。
2.3 高分子材料的应用领域扩展高分子材料的应用领域不断扩展,涵盖了汽车工业、电子工业、医疗器械、航空航天等多个领域。
高分子材料的应用推动了相关行业的发展。
三、高分子材料的未来发展趋势3.1 绿色环保的发展方向未来,高分子材料的发展将更加注重环保性能。
人们将致力于研发可降解的高分子材料,减少对环境的污染。
3.2 高性能材料的研究与应用随着科学技术的不断进步,人们对高分子材料的研究将更加深入,开发出更多的高性能材料,满足不同领域的需求。
3.3 多功能材料的发展未来,高分子材料将朝着多功能材料的方向发展。
人们将研发具有多种功能的高分子材料,以满足不同应用领域的需求。
四、结论高分子材料经历了漫长的发展历程,取得了巨大的成就。
未来,高分子材料将继续发展,并朝着绿色环保、高性能和多功能等方向不断进步。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域,如塑料、橡胶、纤维等。
本文将对高分子材料的发展历程以及未来发展趋势进行详细的探讨。
二、高分子材料的发展历程1. 早期发展阶段高分子材料的早期发展可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有一定的弹性和韧性,但存在着一些缺陷,如耐候性差、易老化等。
2. 合成高分子材料的突破20世纪初,合成高分子材料的研究取得了重大突破。
1907年,化学家蔡斯勒发现了合成橡胶的方法,这标志着合成高分子材料的时代的开始。
随后,聚合物的合成方法不断改进,如聚乙烯、聚丙烯等材料的合成,为高分子材料的广泛应用奠定了基础。
3. 高分子材料的工业化应用20世纪中叶,高分子材料开始在工业领域得到广泛应用。
塑料制品、橡胶制品、纤维制品等在日常生活中得到了广泛应用。
高分子材料的特点,如轻质、耐腐蚀、绝缘性能好等,使其成为替代传统材料的理想选择。
4. 高分子材料的改性与功能化近年来,高分子材料的改性与功能化成为研究的热点。
通过添加改性剂、填充剂等,可以改善高分子材料的性能,如增加强度、提高耐热性等。
同时,高分子材料的功能化也受到了广泛关注,如具有自愈合能力的材料、具有导电性能的材料等。
三、高分子材料的未来发展趋势1. 绿色环保随着环保意识的提高,高分子材料的绿色环保性将成为未来发展的重要趋势。
研究人员将致力于开发可降解高分子材料,以减少对环境的影响。
同时,通过改进合成方法和降低能源消耗,减少对环境的污染。
2. 高性能未来高分子材料的发展将注重提高其性能。
研究人员将致力于开发具有更高强度、更好耐热性、更低摩擦系数等性能的高分子材料,以满足不同领域的需求。
3. 智能化高分子材料的智能化将成为未来的发展方向。
研究人员将致力于开发具有自愈合能力、自感应能力、自适应能力等智能功能的高分子材料。
这些材料可以在受到外界刺激时实现自我修复或自我调节,具有广泛的应用前景。
高分子科学的近期发展趋势与若干前沿

然而,高分子科学的发展也面临着一些挑战。首先,高分子材料的可持续性 和环保性成为日益的问题。其次,高分子材料的性能和功能仍然存在许多亟待解 决的问题,如提高材料的机械强度、耐热性、稳定性等。最后,高分子材料的加 工和生产过程中也存在许多技术瓶颈需要突破。
3、未来发展趋势
未来,高分子科学的发展将更加注重跨学科的交叉融合,例如与生物学、医 学、物理学等领域的结合。同时,高分子科学将更加绿色、可持续和功能化高分 子材料的研究,为人类社会的可持续发展提供支持。
感谢观看
3、水资源技术进步研究:随着科技的不断发展,水资源技术也在不断进步。 当前,水资源技术进步研究的前沿领域包括水资源信息化技术、水资源高效利用 技术、水资源生态修复技术以及水资源智能化管理等方面。
水环境监测研究前沿
水环境监测是通过对水体中的各种要素进行监测和分析,了解水体的状况和 变化趋势,为环境保护提供科学依据。当前,水环境监测的前沿领域包括以下几 个方面:
1、水资源可持续性研究:随着全球人口的增长和经济社会的快速发展,水 资源的需求和压力也在不断增加。因此,研究如何实现水资源的可持续性利用, 包括优化水资源配置、提高水资源利用效率、加强水资源保护等方面,成为当前 水资源管理研究的重点。
2、水资源与经济发展关系研究:水资源是人类经济社会发展的重要基础资 源之一,与经济发展密切相关。当前,水资源与经济发展关系研究的前沿领域包 括水资源对经济发展的支撑作用、水资源与产业结构的互动关系以及水资源与经 济发展的协调共生等方面。
1、水质监测技术:水质监测是水环境监测的核心内容之一。当前,水质监 测技术的前沿领域包括生物监测技术、遥感监测技术、自动化监测技术和生物毒 性监测技术等。这些技术的应用,提高了水质监测的准确性和效率。
Chap1-高分子分子量与分子量分布

2000
重均分子量
Mw
iWi M
i
(10000 10004
10000
4 10004
1) 10000
(3)粘均分子量 用粘度法测定,用得普遍。
[] KMa
M
i Wi
M
i
1/
α:高分子稀溶液特性粘数分子量关系式[η]=K Mηα中的指数,一般在0.5~0.9之间。
2 n
0
N(M )(M
Mn )2dM
N (M )M 2dM
0
0
N
(M
)M
n
2dM
2
0 N (M )MnMdM
(M 2)n
(Mn)2
Mw
i ni Mi2 i ni Mi
i ni Mi2 / i ni Mi /
i ni (M 2 )n
高分子物理内容
高高 高聚 聚 聚聚聚 聚
分分 分合 合 合合合 合
子子 子物 物 物物物 物
的溶 多的 的 的的的 的
链液 组非 结 屈高其 分
结性 分晶 晶 服弹他 析
构质 体态 态 和性性 和
系
断和质 研
裂粘
究
弹
方
高分子结构
性
法
高分子性能
高分子结构与性能的联系
高分子的结构
高分子的性能
高分子的运动
Ci RTC Mi
Mi Ci
RTC ni RT C
niMi
Mn
蒸汽压渗透法
溶液
DT 溶剂
在一恒温密闭的容器内充有某种溶剂的饱和蒸气,这时如将一滴不 挥发溶质的溶液滴和溶剂滴悬在这个饱和蒸气中,由于溶液滴中溶质的蒸 气压较低,就会有溶剂分子从饱和蒸气相中跑出来,而凝聚到溶液滴上, 并放出凝聚热,使溶液滴的温度升高,纯溶剂滴的挥发速度与凝聚速度相 等,温度不发生变化。平衡时,溶液滴与溶剂滴的温差与溶液中溶质的摩 尔份数成正比。从而求出溶质分子量。
高分子科学的发展历程

1948年美国Paul Flory 建立了高分子长链结构的数 学理论,1974年荣获诺贝尔化学奖
主要贡献:
利用等活性假设及直接的统计方法,他计算了高分子 分子量分布,即最可几分布,并利用动力学实验证实 了等活性假设; 引入链转移概念,将聚合物统计理论用于非线性分子, 产生了凝胶理论; Flory-Huggins格子理论; 1948年作出了最重要的贡献,即提出“排除体积” 理论和θ温度概念; 他的著作“Principles of polymer chemistry” (1953)是高分子学科中的Bible。
Heeger、 MacDiarmid(美)、 白川英树(日) 2000 化学奖 导电高分子研究,聚乙炔掺杂后,电导率从 3.2x10-6Ω-1cm-1增加到38Ω-1cm-1,提高了1000万倍(接近铝、铜) 提出孤子概念
Alan J. Heeger
1936
Alan G. MacDiarmid
b. 1927
Hideki Shirakawa
b. 1936
白川英树(Shirakawa)从事聚乙炔聚合机理研究
韩国研修生出现幸运的失误,使白川得到膜状聚乙炔
偶然的机遇,麦克迪尔米德(MacDiarmid)首先注意 到白川的聚乙炔膜。
Hale Waihona Puke 三人在美国合作研究。 黑格(Heeger)为了说明聚乙炔的导电性,提出孤子的
高分子科学 发展历程
由碳纤维和铝合 金制成的赛车底 盘
1839年 美国人 Charles Goodyear 发现天然橡胶与硫磺 共热后明显地改变了 性能,使它从硬度较 低、遇热发粘软化、 遇冷发脆断裂的不实 用的性质,变为富有 弹性、可塑性的材料。
橡胶园
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、发展历程高分子材料是指由高分子化合物构成的材料,具有重量轻、强度高、耐磨损、耐腐蚀等优点,广泛应用于各个领域。
下面将介绍高分子材料的发展历程。
1. 早期阶段高分子材料的起源可以追溯到19世纪末20世纪初,当时的研究主要集中在天然高分子材料,如橡胶和纤维素。
这些材料具有良好的柔韧性和强度,但在加工和耐久性方面存在一些问题。
2. 合成高分子材料的发展20世纪初,合成高分子材料的研究开始兴起。
1907年,化学家Leo Hendrik Baekeland发现了第一个合成塑料——酚醛树脂,这被认为是合成高分子材料的里程碑。
随后,聚氯乙烯、聚丙烯、聚苯乙烯等合成塑料相继问世,推动了高分子材料的发展。
3. 高分子材料的应用扩展随着合成高分子材料的不断发展,高分子材料的应用范围也不断扩大。
在20世纪中叶,高分子材料开始广泛应用于电子、汽车、建筑、医疗等领域。
例如,聚碳酸酯被用于制造光学镜片,聚酰胺用于制造纤维和塑料等。
4. 高分子材料的功能化近年来,高分子材料的研究重点逐渐转向了功能化。
通过在高分子材料中引入特定的功能基团或添加剂,可以赋予材料特殊的性能,如导电性、磁性、光学性等。
这使得高分子材料在电子、光电子、生物医学等领域的应用得到了进一步拓展。
二、未来发展趋势高分子材料在各个领域的应用前景广阔,下面将介绍未来高分子材料的发展趋势。
1. 环保可持续发展随着环保意识的提高,未来高分子材料的发展将更加注重环境友好型和可持续发展。
研究人员将致力于开发可降解的高分子材料,以减少对环境的影响。
同时,通过改进材料的生产过程,降低能源消耗和废弃物产生,实现循环利用。
2. 高性能材料的研究未来,高分子材料的研究将更加注重材料的性能提升。
例如,开发高强度、高韧性的高分子材料,以满足航空航天、汽车等领域对材料强度和耐久性的要求。
同时,研究人员还将关注高分子材料的导电性、光学性等特殊性能,以满足电子、光电子等领域的需求。
高分子科学历史

高分子科学历史1. 高分子学说创立以前高分子的发展1.1 天然橡胶及其硫化工艺英国人把原产于巴西的橡胶树引种到了东南亚,使橡胶树得以推广。
当时的橡胶主要用于制造防雨布、防雨鞋等,但是无法克服夏天发粘、冬天变脆的问题,难于真正推广应用。
1839年美国人Goodyear受当时钢铁工业发展的启示,开始尝试用各种化学品对橡胶进行改性,但是始终不太成功,包括用硫磺。
后来一次偶然性的事故给他带来了成功,他在研究保存橡胶的方法时,不小心把橡胶和硫磺的混合物洒在了热火炉上,他把它刮起来、冷却后发现这东西再没有了粘性、而且还具有弹性、不再溶解,他沿着这条路线走下去,终于发明了橡胶的硫化技术。
但是他本人并没有获得好处,为了获得专利权他打了好几年的官司,身背20多万美元的债务,穷困交加,死于1860年。
他死后,官司胜诉,1898年美国建立了第一家汽车轮胎公司,为了纪念Goodyear该公司就以其名字作为商标,至今仍然是世界上最大的轮胎生产企业,中文一般翻译为“固特异”轮胎。
也正是由于他的贡献,所有橡胶的交联技术统称为“硫化”不管用不用硫磺。
1.2 赛璐珞和赛璐玢瑞士科学家舍拜恩是一个实验迷,他除了在实验室进行实验以外,*还把实验室搬到了自己的厨房。
一次实验时,他不小心将盛有浓硝酸和浓硫酸混酸的烧瓶打破,酸液流到了地上,他顺手拿起夫人的围裙擦掉了酸液,并用水冲洗后,开始在火炉上烘烤,结果围裙在没有很干的情况下突然着了火,这令舍拜恩非常震惊。
他开始设计实验让纤维素和硝酸/硫酸反应,发现是硝酸与纤维素发生了反应,而硫酸只是催化剂,因此他发明了硝酸纤维素。
它极易燃烧,剧烈燃烧可以发生爆炸,而且基本没有烟,逐渐代替了黑火药成为炸药,当时的欧洲很多国家建立了被称为火棉炸药的生产企业,但是硝酸纤维素太容易燃烧了,造成了很多爆炸事故,损失惨重,诺贝尔发明了TNT炸药后,它作为炸药方面的应用被遗弃。
当时美国的贵族们流行打台球,台球最初由象牙制造,价格昂贵,同时来源受到极大限制,有一家公司出资1万美元悬赏寻找制造台球的原料。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类以高分子化合物为基础制备的材料,具有广泛的应用领域和巨大的市场潜力。
本文将介绍高分子材料的发展历程,包括其起源、发展阶段和主要应用领域,并展望未来高分子材料的发展趋势。
二、高分子材料的起源高分子材料的起源可以追溯到20世纪初,当时人们开始研究和应用天然高分子材料,如橡胶和纤维素。
随着科学技术的进步,人们开始研究合成高分子材料,首次成功合成高分子材料的里程碑是由赛门·诺瓦克于1907年合成的硅橡胶。
三、高分子材料的发展阶段1. 早期阶段(1907年-1945年):在这个阶段,人们主要关注天然高分子材料的研究和应用,如橡胶、纤维素和天然胶等。
同时,也开始尝试合成高分子材料,如合成橡胶和合成纤维。
2. 发展阶段(1945年-1980年):在二战后的这个阶段,高分子材料的研究和应用得到了极大的推动。
人们成功合成了许多新型高分子材料,如聚乙烯、聚丙烯、聚氯乙烯等。
这些材料具有良好的物理性能和化学稳定性,广泛应用于塑料制品、纺织品、电子产品等领域。
3. 现代阶段(1980年至今):在这个阶段,高分子材料的研究重点逐渐转向功能性高分子材料的开发。
人们开始研究和合成具有特殊功能的高分子材料,如高温耐磨材料、导电高分子材料、生物可降解材料等。
这些材料在航空航天、电子信息、医疗健康等领域有着广泛的应用前景。
四、高分子材料的主要应用领域1. 塑料制品:高分子材料是塑料制品的主要原料,广泛应用于日常生活中的各个方面,如食品包装、家居用品、汽车零部件等。
2. 纤维材料:高分子材料在纺织行业中有着重要的地位,用于制造各种纤维材料,如聚酯纤维、尼龙纤维等。
3. 电子产品:高分子材料在电子产品中的应用越来越广泛,如导电高分子材料用于制造柔性显示屏、电子纸等。
4. 医疗健康:高分子材料在医疗健康领域有着重要的应用,如生物可降解材料用于制造医用缝线、植入器械等。
五、高分子材料的未来发展趋势1. 功能性高分子材料的发展:随着科学技术的不断进步,人们对高分子材料的功能要求也越来越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子科学发展简史集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]高分子科学发展简史高分子科学是由高分子化学和高分子物理两个重要的分支组成的。
其中,高分子化学作为化学的一个分支学科,是在20世纪30年代才建立起来的一个较年轻的学科。
然而,人类对天然高分子物质的利用有着悠久的历史。
早在古代,人们的生活就已和天然高分子物质结成了息息相关的关系。
高分子物质支撑着人们的吃穿住各方面,在我国古代时,人们就已学会利用蚕丝来纺织丝绸;汉代,人们又利用天然高分子物质和竹材纤维发明了对文明有巨大失去作用的造纸术。
在那时,中国人已学会利用油漆,后来传至周边国家乃至世界。
之以后,许多天然的高分子物质日益成为生产不可缺少的原料,促使人们去研究和开发高分子物质。
这时,人们首先遇到了对天然橡胶以及天然纤维的利用和改进。
1530年,欧洲人恩希拉介绍了在、圭亚那等地区的人们利用粗糙的橡胶制作容器防晒布等日用品的情况。
然而,在将橡胶用于制造之前,人们面临着诸多的工艺难题,科学家们都在努力探寻这些难题的解决办法。
首先是黑立桑和马在1763年发现橡胶可溶于松节油和乙醚。
1823年,托希用石脑油处理橡胶乳液,得到了常温时发粘而遇冷则变脆的成品,但显然不能投入使用。
1826年,Faraday 指出天然橡胶的化学式是85H C ,每一个单元含有一个双键。
1832年-1850年,人们终于反复的试验,使天然橡胶经加工后有了人们想要的性能,这一工作主要是由德国人吕德斯和美国人古德意完成的。
同时,科学家们也在进行着对天然纤维素的改性试验。
1839年Simon发现苯乙烯液体加热后可变成聚苯乙烯固体。
1832年-1845年,通过勃莱孔诺和申拜思的努力,制得了,这一成果曾在一战时用为制作无烟。
之后,二硝酸纤维被他的同事制作模塑制品,但因其硬度太高而不易制造。
1872年,海得以梓脑作为增塑剂,用二硝酸纤维制成了柔韧的,后被广泛用于制作照相底片及等等。
1885年,法国人夏东奈将由棉花制成的硝化纤维用NH4HS进行脱硝处理,得到了人造丝。
这一成果在1889博览会展出之后,于当年建立了最早的人造丝工厂。
1892年,英国人和贝汶,在1844年制得的脱硝硝化纤维的基础上,用氢氧化纳和进行再处理,得到了粘胶纤维,其性能比夏东奈的人造丝更好。
1903年,制得了醋酸纤维。
在成功实现了对和的改性之后,人们转而注意到了高分子合成的试验,在一时期,科学家们通过努力,实现了对两种高分子化合中物的人工合成。
首先是,再者是合成橡胶。
1872年,就已提出来,苯酚和甲醛在酸的作用下,能够形成树脂状的物质。
克莱贝格在1891年,对这种树脂状物进行了浓盐酸处理,得到了一种多孔物质,该物质不能烧熔也难溶于水,遗憾的是由于无法结晶提纯,他不得不终止了实验。
直到1970年,美国人利用对反应的控制,得到了两种不同的,一种是可溶的树脂,叫作虫胶代用品,是第一步实验的产品;另一种是不溶也不熔的树脂,是实验第三步的产品。
如果在实验第三阶段时加入本粉,则可使产品提高韧性。
这样最早的合成塑料-酚醛树脂产生了,它被推广用作制造绝缘材料。
高分子化学----实验研究1909年,和库特尔首先提出了关于C5H8的热聚合专利。
1910年,海立斯和麦修斯用钠做试验,也得到了C5H8。
1912年,美国展出了用合成橡胶制成的,从而向世界宣布橡胶的人工合成实现了。
长期以来,人们对某些高分子物质的研究取得了一定的成果,但对其内部结构研究还较肤浅。
1913年,通过仄特和崔等人的研究,得出了淀粉的通式为(C6H10O5)n,而且知道淀粉的水解物都是葡萄糖,然而,直到1922年,霍厄塞仍然认为淀粉的具有橡胶的性质是由于它们的环状二聚体通过“部分价键”而聚集在一起的原因。
1906年,费歇尔提出它具有多肽结构,并合成了分子量接近1000的多肽。
1910年,不同意海立斯的环式,因为他认为天然橡胶分子是环状结构单元,靠“部分”价键结合成直链的见解是缺乏根据的。
他说,天然橡胶通过干馏并不能得到海立斯所说的环式结构单元,并且天然橡胶与溴反应后仍然保留着像胶,然而这时已经没有双键,更不可能有所谓“部分”价键。
1920年,有机毕克斯以《关于聚合反应》一文对以上的各种观点进行了反驳,他不同意把天然橡胶和纤维素的结构归结为多元的环的物理缔合方式,并明确提出,成为环状化合物和成为结构的长链高分子化合根本不是一回事。
毕克斯于1922年,将天然橡胶加氢,发现其“溶液”仍然具有性质。
基于以上的成果,他在1924年明确提出了天然橡胶分子是高分子量的大分子,并认为这些高分子量的大分子不管溶于何物,其胶体是与小分子缔合得来的胶体是不同的。
毕克斯的这种大分子的概念提出以后,在当时并没有立即接受,不少化学家仍然坚持环式结构的见解。
1926年,斯本先和研究指出,前人认为整个分子不含大于晶胞的观点是错误的,他们认为纤维素分子可以从一个晶胞长入另一个晶胞而成为直链形状。
1928年,施道丁格表示同意这个观点,并进一步提出,纤维素和橡胶分子的晶胞的大小或晶体的大小与线形高分子的长度无关,其依据是一个大分子可以通过好些晶胞从一个结晶区越过无定形区从而进入另一个结晶区。
这恰恰是对当时存在的环式结构说的一个有务指正。
1928年,迈耶和提出他们的观点,说橡胶分子的硫化就是使大分子间形成,区别了线形高分子与网状高分子。
1930年,施道丁格又进一步提出了高分子稀溶液的粘度和分子量之间的关系,从而引起了定量测定高分子分子量的兴起。
1932年,施丁格发表了一部关于高分子有机化合物的总结性论着,高分子化学建立了。
在此之后,高分子化学理论迅速发展,高分子工业也蓬勃兴起。
以后的40年间高分子化学及工业达到飞速发展阶段。
刺激了高分子化学和化学工业的发展,首先合成了橡胶,美国也加速发展高分子工业。
战后由于消费品的需求量增加,高分子化学的大规模地开展起来。
的高分子化学及高分子工业也是在战后,特别是1949年之后,才真正成长发展起来。
高分子化学的发展主要经历了天然高分子的利用与加工、天然高分子的改性、合成高分子的生产和高分子科学的建立四个时期。
从三十年代起随着合成高分子的发展而逐渐建立起来与高分子相关的反应动力学、化学热力学、、高分子物理、等分支学科,形成了一门系统的高分子科学。
而另一个重要分支——高分子物理,在过去的近一百年中取得了突飞猛进的发展。
如今高分子材料已经不再是金属、木、棉、麻、天然橡胶等传统材料的代用品,而是国民经济和国防建设中的基础材料之一。
国际上,随着“高分子化学”研究于19世纪后半页渐渐走上舞台,对这些高分子化合物的性质研究,结构研究,也渐渐引起了学者们的重视。
早在1882年,一些学者开始用沸点升高,冰点降低以及半渗透膜方法来测定硝酸纤维素酯,天然橡胶,淀粉等高分子的分子量。
当时认为这些分子是分子量为1000左右的大分子,是小分子结构单元彼此用次价键结合堆积而成。
19世纪20年代初,有人用X-射线衍射研究了纤维素纤维的结构,认为纤维素晶胞含4个C6H10O5基元,从而更进一步支持了“大分子是小分子结构单元间因次价键堆积而成”的学说。
Staudinger发表了“聚合反应”的论文,提出了高分子是由小分子经聚合反应而生成,并非因次价键堆积而致。
之后Staudinger 又证明了高分子是聚合物学说的正确。
至1930年,在德国胶体化学年会上,多数学者承认了聚合物学说。
此后的高分子结构,性质研究,才由小分子的物理化学研究,胶体研究,真正进入到高分子概念为主导的研究领域,从而形成了“高分子物理”学科。
初期的“高分子物理”研究,基于对高分子化合物分子量的测定,固体聚合物的性质,加工中聚合物熔体流动性质的兴趣,形成了三个主要研究领域,即高分子分子量的测定及高分子溶液的研究;高分子凝聚态的研究;高聚物流体研究。
自20世纪30年代至70年代“高分子物理”上述三个领域的研究工作不断深入,研究内容不断丰富,逐步形成了“高分子物理”研究领域的基本框架。
在这一时期上述三个研究领域的主要代表性工作是:1.分子量测定及溶液领域。
1930年出现了粘度法测分子量,1933年美国出现用超离心机法测分子量,1937年出现光散射法测分子量,1964年出现凝胶色谱法测分子量(GPC)。
1935年Flory发表了缩聚反应分子量分布统计研究的论文,1949年Flory提出了柔性链高分子由于链段的空间干扰而伸展的“扩张因子”概念及溶液中高分子和溶剂相互作用因素的“θ温度”,“θ溶剂”概念。
2.高分子凝聚态领域。
1936年出现了聚异丁烯玻璃化转变温度的研究工作;1942年出现了高分子结晶的研究工作,同期报道了等规立构的聚丙烯和聚苯乙烯链的重复周期分别为6.5和6.7,这是高分子结晶概念的开始;1949年Flory对高分子结晶用数学统计方法做了理论研究;1957年发现了聚乙烯折叠链形成的片晶,提出了高分子结晶的折叠链模型;1958年发现了聚氧乙烯的伸展链片晶;1964年发现了聚乙烯在近5万大气压下形成的伸展直链片晶。
3.高聚物流体研究领域。
20世纪20年代发现对淀粉溶液施压后压力停止时,淀粉溶液有“回弹力”现象,30年代开始出现对聚合物熔体粘弹现象的定量研究,1940年Flory发表了用分子量的观点来研究聚合物熔体的熔融粘度的工作,1953年出现了描述高分子在熔体中分子链运动方式的“珠簧模型”理论,(后来进一步完善,称为RBZ理论),1964年Flory提出了描述高分子链运动的“蛇形理论”。
1953年Flory在美国出版了“高分子化学原理”一书,对“高分子物理“研究起了奠基作用。
20世纪70年代以后的“高分子物理“研究工作,基本上仍是上述三个主要领域研究的深入和扩展。
主要的工作有:聚电解质的溶液性质和智能凝胶的研究,“硬链”高分子浓溶液的液晶性质,单链高分子的形态及凝聚态,高分子结晶形态及结晶过程,70年代初deGenne用标度理论研究高分子蛇型链的工作,着眼于聚合物结构形态演变情况而开展的聚合物亚稳态研究等。