第四章习题参考答案

合集下载

电路与电子技术基础第四章习题答案

电路与电子技术基础第四章习题答案
a b i (t ) iR(t) R + u(t) (a) 题图 4-3 i L (t ) L 0 -100V (b) 习题 4-4 电路及波形图 t 0 -10mA (c) t uL 10mA i
解:本题是求零输入响应,即在开关处于 a 时,主要是电感储能,当开关投向 b 后, 讨论由电感的储能所引起的响应。所以对图(a)t≥0 时的电路可列出 di L L + Ri L = 0 t≥0 dt 及 iL(0)=i(t)=10(mA) 其解为: i L (t ) = 10e

t≥0
i R (t ) = −i L (t ) = −10e −10 t (mA)
7
t≥0
其波形图见图(b)、图(c)所示。 4-5 电路如题图 4-4 所示,开关接在 a 端为时已久,在 t=0 时开关投向 b 端,求 3Ω电 1Ω a b 阻中的电流。 i (t ) 解:因为 u c (0) = 3 × 2 = 6(V ) (注意:当稳态以后电容为开路,所以流过 1 3A Ω和电容串联支路的电流为零, 因此电容两端的电 压就是并联支路 2Ω支路两端的电压) 当开关投向 b 时电流的初始值为
S 12Ω + 24V iL 4H 6Ω
题图 4-1
习题 4-2 电路
解:由于电路原已达稳态,电感两端电压为 0,合上开关 S 后,加在 6Ω电阻两端电压也为 0,该电阻中电流为 0,电路直接进入稳态,故电感电流为合上开关 S 前的稳态电流,即: iL(t)=24V/12Ω=2A。 用三要素公式可以得到同样的结果,电感电流初始值 iL(0+)=2A,稳态值 iL(∞)=2A,时间常 数τ=L/R=4/(12//6)=1s,所以:
当 t=0 时,开关打开,由于电感电流、电容电压均不跃变,有: i L (0 + ) = i L (0 − ) = 0.03( A) 1k u c (0 + ) = u c (0 − ) = 120(V ) 当 t≥0 时,根据基尔霍夫定律有

第四章 制造费用核算练习题参考答案

第四章  制造费用核算练习题参考答案

第四章制造费用核算练习题参考答案一、某企业基本生产车间生产A、B两种产品,两种产品的生产工时分别为2500小时和3500小时。

某月生产工人工资为9000元,是按生产工时分配的;该月制造费用为18000元。

要求:根据以上资料分别按生产工时比例和工人工资比例分配制造费用。

解:1、按生产工时分配制造费用分配表车间名称:一车间 200×年×月根据“制造费用分配表”编制会计分录,登记有关账户。

借:基本生产成本——A 7500——B 10500贷:制造费用 180002、按工人工资比例分配制造费用分配表车间名称:一车间 200×年×月根据“制造费用分配表”编制会计分录,登记有关账户。

借:基本生产成本——A 7500——B 10500贷:制造费用 18000二、某企业基本生产车间全年计划制造费用为170000元,全年各种产品计划产量,甲产品20000件,乙产品18000件,单件产品工时定额,甲产品4小时,乙产品为5小时。

1月份实际产量分别为甲产品1200件,乙产品1000件,1月份实际制造费用为10000元,本年度实际制造用为160000元,假定年末已分配制造费用为165000元,其中甲产品负担80000元,乙产品负担85000元。

要求:根据以上资料采用计划分配率法分配制造费用,年终对计划制造费用与实际制造费用差异进行调整,并编制有关分录。

解:甲产品计划产量定额工时=20000×4=80000(小时)乙产品计划产量定额工时=18000×5=90000(小时)制造费用计划分配率=170000/(90000+80000)=1 根据以上资料,编制1月份“制造费用分配表”,如表5—6所示。

表5—6 制造费用分配表200×年1月根据“制造费用分配表”编制会计分录,登记有关账户。

借:基本生产成本——甲 4800——乙 5000贷:制造费用 9800年末差额分配率=(160000-165000)/(80000+85000)=-0.0303甲产品应负担差额=80000×(-0.0303)=-2424 (元)乙产品应负担差额=85000×(-0.0303)=-2576(元)借:基本生产成本——甲——乙贷:制造费用。

(仅供参考)信号与系统第四章习题答案

(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ

sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2

sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =

汇编第四章 习题及参考答案

汇编第四章 习题及参考答案

第四章习题及参考答案1. 在8086CPU中,如果SS的内容设置为1A4BH,堆栈的长度为100H字节,问:SP寄存器的初始化值为多少?SP初始指向哪个主存物理地址?参考答案:SP寄存器的初始化值为:100HSP初始指向的主存物理地址是:1A5B0H2.分别指出下列指令源操作数与目的操作数的寻址方式:(1)MOV ES, AX(2)ADD DS:[12H],AL(3)SUB BX,1200H(4)SHR AX,1(5)AND -28H[BP][DI], AX(6)MOV CX,LAB1[BX](7)SBB AX, [BX](8) OR DX,-360H[SI](9) ADC VAR1,CX(10) XOR [DI],AX参考答案:(1)寄存器,寄存器(2)直接, 寄存器(3)寄存器,立即(4)寄存器,立即(5)基址变址,寄存器(6)寄存器,相对(7)寄存器,寄存器间接(8)寄存器,相对(9)直接,寄存器(10)寄存器间接,寄存器3.指出下列指令的语法是否错误,若错误请改正。

(1)MOV DS, 1234H(2)ADD AH,AL(3)SUB CS,AX(4)MOV BX,[BX][SI](5)ADC VAR1,[BP][DI](6) SBB [BX][BP],AX(7)PUSH 5678H(8)SHL [BP][SI],CL(9)ROR AX,2(10)NEG AX,BX(11)LEA CS,AX(12)MOV AL,BX(13)ADD DS:200H,AX(14)AND [BX][BP],AH(15)OR BH,-16H[BP](16)CLC AX(17)MUL AX,BX(18)DIV 12H参考答案:(1) 错误,立即数不能直接传送到段寄存器中(2) 正确(3) 错误,不能对CS直接操作(4) 正确(5) 错误,两个操作数不能同时都在存储器中(6) 错误, 基址变址寻址方式中不能两个寄存器都是基址寄存器(7) 错误,立即数不能作为源操作数直接压入堆栈(8) 错误,目的操作数没有明确指明是字还是字节(9) 错误,移位次数大于1时,需将其提前存入CL中(10) 错误,操作数个数错误(11) 错误,目的操作数只能是16位通用寄存器(12) 错误, 操作数位数不一致(13) 正确(14) 错误, 基址变址寻址方式中不能两个寄存器都是基址寄存器(15) 正确(16) 错误,操作数个数错误(17) 错误,操作数个数错误(18) 错误,源操作数不能是立即数4. MOV BX, 2345HMOV CX, 2HCLROL BX,0FFHAND BX,CMP BX,045H执行上述程序段后,(BX)= 14H , ZF= 0 . 5. XOR AX, AX5HMOV AL,9HMOV BL,BLADD AL,AAA执行上述程序段后,(AX)= 104H , CF= 1 .6. 假设(DS)=1234H,(SI)=124H,(12464)=30ABH,(12484H)=464H,有以下程序段:[SI]LEA SI,[SI]MOV AX,1200HMOV [SI+22H],[SI+20H]LDS SI,[SI]ADD AX,执行上述程序段后,(AX)= 6156H , (SI)= 464H .7. MOV AX, 0EF23H0B5A7HMOV BX,INC AXNEG AXDEC BXNEG BX执行上述程序段后,(AX)= 10DCH ,(BX)= 4A5AH .。

高分子化学-高化第四章答案

高分子化学-高化第四章答案

第四章离子聚合习题参考答案1.与自由基聚合相比,离子聚合活性中心有些什么特点?解答:离子聚合和自由基聚合的根本不同就是生长链末端所带活性中心不同。

离子聚合活性中心的特征在于:离子聚合生长链的活性中心带电荷,为了抵消其电荷,在活性中心近旁就要有一个带相反电荷的离子存在,称之为反离子,当活性中心与反离子之间得距离小于某一个临界值时被称作离子对。

活性中心和反离子的结合,可以是极性共价键、离子键、乃至自由离子等多种形式,彼此处于平衡状态:BA B+A B+A B AⅠ为极性共价物种,它通常是非活性的,一般可以忽略。

Ⅱ和Ⅲ为离子对,引发剂绝大多数以这种形式存在。

其中,Ⅱ称作紧密离子对,即反离子在整个时间里紧靠着活性中心。

Ⅲ称作松散离子对,即活性中心与反离子之间被溶剂分子隔开,或者说是被溶剂化。

Ⅳ为自由离子。

通常在一个聚合体系中,增长物种包括以上两种或两种以上的形式,它们彼此之间处于热力学平衡状态。

反离子及离子对的存在对整个链增长都有影响。

不仅影响单体的的聚合速度,聚合物的立体构型有时也受影响,条件适当时可以得到立体规整的聚合物。

2.适合阴离子聚合的单体主要有哪些,与适合自由基聚合的单体相比的些什么特点?解答:对能进行阴离子聚合的单体有一个基本要求:①适合阴离子聚合的单体主要有:(1)有较强吸电子取代基的烯类化合物主要有丙烯酸酯类、丙烯腈、偏二腈基乙烯、硝基乙烯等。

(2)有π-π共轭结构的化合物主要有苯乙烯、丁二烯、异戊二烯等。

这类单体由于共轭作用而使活性中心稳定。

(3)杂环化合物②与适合自由基聚合的单体相比的特点:(1)有足够的亲电结构,可以为亲核的引发剂引发形成活性中心,即要求有较强吸电子取代基的化合物。

如V Ac,由于电效应弱,不利于阴离子聚合。

(2)形成的阴离子活性中心应有足够的活性,以进行增长反应。

如二乙烯基苯,由于空间位阻大,可形成阴离子活性中心,但无法增长。

(3)不含易受阴离子进攻的结构,如甲基丙烯酸,其活泼氢可使活性中心失活。

计算机网络课后习题参考答案第四章

计算机网络课后习题参考答案第四章

{第四章网络层1.网络层向上提供的服务有哪两种是比较其优缺点。

网络层向运输层提供“面向连接”虚电路(Virtual Circuit)服务或“无连接”数据报服务前者预约了双方通信所需的一切网络资源。

优点是能提供服务质量的承诺。

即所传送的分组不出错、丢失、重复和失序(不按序列到达终点),也保证分组传送的时限,缺点是路由器复杂,网络成本高;后者无网络资源障碍,尽力而为,优缺点与前者互易2.网络互连有何实际意义进行网络互连时,有哪些共同的问题需要解决网络互联可扩大用户共享资源范围和更大的通信区域[进行网络互连时,需要解决共同的问题有:不同的寻址方案不同的最大分组长度不同的网络接入机制不同的超时控制不同的差错恢复方法不同的状态报告方法不同的路由选择技术,不同的用户接入控制不同的服务(面向连接服务和无连接服务)不同的管理与控制方式3.作为中间设备,转发器、网桥、路由器和网关有何区别中间设备又称为中间系统或中继(relay)系统。

物理层中继系统:转发器(repeater)。

数据链路层中继系统:网桥或桥接器(bridge)。

、网络层中继系统:路由器(router)。

网桥和路由器的混合物:桥路器(brouter)。

网络层以上的中继系统:网关(gateway)。

4.试简单说明下列协议的作用:IP、ARP、RARP和ICMP。

IP协议:实现网络互连。

使参与互连的性能各异的网络从用户看起来好像是一个统一的网络。

网际协议IP是TCP/IP体系中两个最主要的协议之一,与IP协议配套使用的还有四个协议。

ARP协议:是解决同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题。

RARP:是解决同一个局域网上的主机或路由器的硬件地址和IP地址的映射问题。

(ICMP:提供差错报告和询问报文,以提高IP数据交付成功的机会因特网组管理协议IGMP:用于探寻、转发本局域网内的组成员关系。

地址分为几类各如何表示IP地址的主要特点是什么分为ABCDE 5类;每一类地址都由两个固定长度的字段组成,其中一个字段是网络号 net-id,它标志主机(或路由器)所连接到的网络,而另一个字段则是主机号 host-id,它标志该主机(或路由器)。

高等代数第四章矩阵练习题参考答案

高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB =正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB =二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是B .A AB BA - B AB BA +C 2()ABD BABAD 为对称矩阵,B 为反对称矩阵,C 当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么 A 是对称矩阵. A T A A B T A A - C 2A D T A A - 3.以下结论不正确的是 C .(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是BA AB 的第j 行元素全等于零; B AB 的第j 列元素全等于零;C BA 的第j 行元素全等于零;D BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是D A 222()2A B A AB B +=++ B 22()()A B A B A B -=+-C 222()AB A B =D 22()()AE A E A E -=+- 6.下列命题正确的是B . A 若AB AC =,则B C = B 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = D 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则 B. (A)当m n >时,必有行列式0AB ≠; (B)当m n >时,必有行列式0AB = (C)当n m >时,必有行列式0AB ≠; (D)当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是 C(A)如果矩阵A 的行列式0A =,则0A =; (B)如果矩阵A 满足20A =,则0A =;(C)n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D)对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为 C .A 123,,ααα.B 122331,,αααααα+++.C 234,,ααα.D 12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此A,B 中向量组均为线性相关的,而D 显然为线性相关的,因此答案为C.由可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件 C 时,n I A -必是可逆矩阵(A) n A A = B A 是可逆矩阵 C 0n A = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是 D(A)1A = B 0A = C T A A = D 0A ≠12.,,A B C 均是n 阶矩阵,下列命题正确的是 A(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有C (A) ACB E = B BAC E = C BCA E = D CBA E =14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是 D (A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵; (C) 若*0A ≠,则A 是可逆矩阵; D*.AA A = 15.设A 是5阶方阵,且0A ≠,则*A = D(A)A B 2A C 3A D 4A16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为BA 1n jk ki k a A =∑ B 1n kj ki k a A =∑ C 1n jk ik k a A =∑ D 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则C(A)A 是B 的伴随 B B 是A 的伴随 C B 是A '的伴随 D 以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = C (A)**00A CB ⎡⎤=⎢⎥⎣⎦ B **00A A C B B ⎡⎤=⎢⎥⎣⎦ C **00B AC A B ⎡⎤=⎢⎥⎣⎦ D **0A B A C A B B ⎡⎤=⎢⎥⎣⎦ 利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是 C (A) A B + B A B - C AB D AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么 D21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个 C(A)对称阵 B 对角阵 C 数量矩阵 D A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素 C(A) 全为零 B 只有一个为零(C ) 至少有一个为零 D 可能有零,也可能没有零23.设1320A⎡⎤=⎢⎥⎣⎦,则1A-= D(A)121136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦B131136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦C131126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦D121136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24.设111222333a b cA a b ca b c⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c bAP a c ba c b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P= B(A)100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n≥阶矩阵1111a a aa a aA a a aa a a⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A的秩为1,则a必为A(A)1 B-1 C11n-D11n-矩阵A的任意两行成比例.26. 设,A B为两个n阶矩阵,现有四个命题:①若,A B为等价矩阵,则,A B的行向量组等价;②若,A B的行列式相等,即||||,A B=则,A B为等价矩阵;③若0Ax=与0Bx=均只有零解,则,A B为等价矩阵;④若,A B为相似矩阵,则0Ax=与0Bx=解空间的维数相同.以上命题中正确的是 DA ①, ③.B ②, ④.C ②,③. D③,④.当APPB1-=时,,A B为相似矩阵;相似矩阵的秩相等;齐次线性方程组基础解系所含解的个数即为其解空间的维数;三、填空题1.设A 为三阶方阵,*A 为A 的伴随矩阵,有2A =,则11()2*3A A --=11*||2A A A A --==,111()33A A --=,因此11111311()2*34(1)32A A A A A A ------=-=-=-=-. 2.设,AB 为4阶方阵,且3A =,则1(3)A --= 1/27 , 21BA B -= 9 ; 3.设A 是一个m n ⨯矩阵,B 是一个n s ⨯矩阵,那么是()'AB 一个s m ⨯阶矩阵,它的第i 行第j 列元素为1njk ki k a b =∑.4.n 阶矩阵A 可逆A 非退化 ||0A ≠⇔ A 与单位矩阵等价 ⇔ A 可以表示为一系列初等矩阵的乘积 .4.三阶对角矩阵000000a A b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 的伴随矩阵*A = 000000bc ac ab ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 5.设123023003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则*1()A -=16A . 6.设0,1,2,i a i n ≠=,矩阵12100000000000n na a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵为 111121100000000000n n a a a a -----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 7.设,A B 都是可逆矩阵,矩阵00A C B ⎡⎤=⎢⎥⎣⎦的逆矩阵为1100B A --⎡⎤⎢⎥⎣⎦.8.设121331,,342424A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则(2)B A C -= . 9.A 既是对称矩阵,又是反对称矩阵,则A 为 零 矩阵.10.设方阵111222333b x c A b x c b x c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111222333b y c B b y c b y c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且2,3A B =-=则行列式A B += 4 .11.设A 为m 阶方阵,B 为n 阶方阵,已知,A a B b ==,则行列式00A B=ab mn )1(-.将A 的各列依次与B 的各列交换,共需要交换mn 次,化为00A B12.设A 为n 阶方阵,且0A ≠,则 在A 等价关系下的标准形为 n 阶 单位矩阵 .13. 设12221311A a -⎛⎫⎪=- ⎪ ⎪⎝⎭a为某常数,B 为43⨯的非零矩阵,且0BA =,则矩阵B 的秩为 1 .由0BA =可得A 的各列为齐次线性方程组0Bx =的解,A 的前两列线性无关,因此0Bx =的基础解系至少有两个解,因此()1r B ≤.又B 为非零矩阵,因此()1r B ≥.即() 1.r B =四、解答下列各题 1.求解矩阵方程1 25461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;2 211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭; 3 142031121101X ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4 010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解:11254635462231321122108X -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 212111132212104328/352/3111X --⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭2.设033110123A ⎛⎫⎪= ⎪ ⎪-⎝⎭,2AB A B =+ ,求B 解:(2)A E B A -=.0332002332110020110123002121A E -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭.22A E -=,因此2A E -可逆.3..设1P AP -=Λ,其中1411P --⎛⎫= ⎪⎝⎭,1002-⎛⎫Λ= ⎪⎝⎭,求11A . 解:1,A P P -=Λ4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆. 证明:124A B B E -=-两边同左乘以A 得到24B AB A =-.因此有(2)4A E B A -=.由A 可逆可得2A E -,且111(2).4A E BA ---=5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.证明:()R A r =,因此矩阵A 可以经过一系列行初等变换化为后n r -行全为零.也即存在初等矩阵11,,,m P P P ,使得21m P P P A 后n r -行全为零. 21mP P P P =,则PA 的后n r -行全为零.由矩阵乘法运算可得1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关. 证明:由,m n AB E <=可得()()m r AB r A m =≤≤,因此()r A m =.因此A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是0.AB BA +=证明:当B A +时幂等阵时, 因此0.AB BA +=反之,当0.AB BA +=时有 B A +是幂等矩阵.。

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案第四章习题1.分析图4-1中所示的同步时序逻辑电路,要求:(1)写出驱动方程、输出方程、状态方程;(2)画出状态转换图,并说出电路功能。

CPY图4-12.由D触发器组成的时序逻辑电路如图4-2所示,在图中所示的CP脉冲及D作用下,画出Q0、Q1的波形。

设触发器的初始状态为Q0=0,Q1=0。

D图4-23.试分析图4-3所示同步时序逻辑电路,要求:写出驱动方程、状态方程,列出状态真值表,画出状态图。

CP图4-34.一同步时序逻辑电路如图4-4所示,设各触发器的起始状态均为0态。

(1)作出电路的状态转换表;(2)画出电路的状态图;(3)画出CP作用下Q0、Q1、Q2的波形图;(4)说明电路的逻辑功能。

图4-45.试画出如图4-5所示电路在CP波形作用下的输出波形Q1及Q0,并说明它的功能(假设初态Q0Q1=00)。

CPQ1Q0CP图4-56.分析如图4-6所示同步时序逻辑电路的功能,写出分析过程。

Y图4-67.分析图4-7所示电路的逻辑功能。

(1)写出驱动方程、状态方程;(2)作出状态转移表、状态转移图;(3)指出电路的逻辑功能,并说明能否自启动;(4)画出在时钟作用下的各触发器输出波形。

CP图4-78.时序逻辑电路分析。

电路如图4-8所示:(1)列出方程式、状态表;(2)画出状态图、时序图。

并说明电路的功能。

1C图4-89.试分析图4-9下面时序逻辑电路:(1)写出该电路的驱动方程,状态方程和输出方程;(2)画出Q1Q0的状态转换图;(3)根据状态图分析其功能;1B图4-910.分析如图4-10所示同步时序逻辑电路,具体要求:写出它的激励方程组、状态方程组和输出方程,画出状态图并描述功能。

1Z图4-1011.已知某同步时序逻辑电路如图4-11所示,试:(1)分析电路的状态转移图,并要求给出详细分析过程。

(2)电路逻辑功能是什么,能否自启动?(3)若计数脉冲f CP频率等于700Hz,从Q2端输出时的脉冲频率是多少?CP图4-1112.分析图4-12所示同步时序逻辑电路,写出它的激励方程组、状态方程组,并画出状态转换图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
'
3 ) 2
3 ' i (t ) i A (t ) iB (t ) 4 g1Vs cos(if t s l ) 2
可见混频器 B 的中频输出经过 90 度移相,在 M 处与 A 管中频同相迭加。 外镜频抑制: 2 端口设外镜像频率信号为 vi (t ) Vi cos[(2 L S )t i ] 1 端口本振信号为 v L (t ) VL cos( L t L )
D1、D2、D3、D4 管混出的中频电流为:
i1 (t ) g1Vi cos(if t L i i2 (t ) g1Vi cos(if t L i

2 2
) )
i3 (t ) g1Vi cos(if t L i ) i4 (t ) g1Vi cos(if t L i ) iA (t ) i1 (t ) i2 (t ) 2 g1Vi cos(if t L i ) 2 iB (t ) i3 (t ) i4 (t ) 2 g1Vi cos(if t L i )
混频器 B 的中频输出经过 90 度移相得到

3 ' iB (t )Байду номын сангаас 2 g1Vi cos(if t L i ) 2
在 M 处 i (t ) i A (t ) iB (t ) 0 所以在 S L 时,中频移相器应该加在 B 端口,才能保证外来信号混出的中频在 M 处同相迭加,外来镜像干扰混出的中频在 M 处反同相相抵消。 内镜频在射频口反相抵消: D1、D2、D3、D4 管混出的镜频电流为:
6.中频移相器应该加在 B 端口 vs (t ) Vs cos(s t s ) 设 2 端口信号电压
vL (t ) VL cos(Lt L ) 1 端口本振电压 加到 D1、D2、D3、D4 管上的信号及本振电压分别为:
因为信源角频率>本振角频率,可得 D1、D2、D3、D4 产生的中频电流分别为:
在射频输入口处 i i (t ) iiA (t ) iiB (t ) 0
'
'
ii1 (t ) giVi cos(it 2 L i ) ii 2 (t ) g iVi cos(it 2 L i / 2) ii 3 (t ) giVi cos(it 2 L i ) ii 4 (t ) giVi cos(it 2 L i / 2) iiA (t ) ii1 (t ) ii 2 (t ) giVi cos(it 2 L i ) g iVi cos(it 2 L i / 2) iiB (t ) ii 3 (t ) ii 4 (t ) g iVi cos(it 2 L i ) g iVi cos(it 2 L i / 2)
混频器 A 的中频输出为: 混频器 B 的中频输出为: iB (t ) iif 3 (t ) iif 4 (t ) 2 g1Vs cos(if t s L ) B 的中频输出经过移相器移相得到 iB (t ) 2 g1Vs cos(if t s l
相关文档
最新文档