一元二次函数解法 辅导讲义

合集下载

一元二次方程解法讲义

一元二次方程解法讲义

龙文教育学科教师辅导讲义说明:一些含有y x +、22y x +、xy 的二元二次方程组,除可以且代入法来解外,往往还可以利用根与系数的关系,将解二元二次方程组化为解一元二次方程的问题.有时,后者显得更为简便. 例3、关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x ,〔1〕求k 的取值范围;〔2〕是否存在实数k ,使方程的两实数根互为相反数?假设存在,求出k 的值;假设不存在,请说明理由。

例4、当k 取何值时,方程04234422=+-++-k m m x mx x 的根与m 均为有理数?例5、小明和小红一起做作业,在解一道一元二次方程〔二次项系数为1〕时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。

你知道原来的方程是什么吗?其正确解应该是多少?例6、b a ≠,0122=--a a ,0122=--b b ,求=+b a变式:假设0122=--a a ,0122=--b b ,那么ab b a +的值为 。

例7、βα,是方程012=--x x 的两个根,那么=+βα34 .测试题目:一、选择题1.解方程:3x 2+27=0得〔 〕.(A)x=±3 (B)x=-3 (C)无实数根 (D)方程的根有无数个2.方程〔2-3x 〕+〔3x-2〕2=0的解是〔 〕.(A),x 2=-1 (B) ,(C)x 1=x 2= (D) ,x 2=13.方程(x-1)2=4的根是( ).(A)3,-3 (B)3,-1 (C)2,-3 (D)3,-24.用配方法解方程:正确的选项是( ).(A) (B)(C),原方程无实数解 (D) 原方程无实数解用求根公式求解,先求a,b,c的值,正确的选项是( ). (A) a=1,b= (B)a=1,b=-,c=2(C)a=-1,b=- ,c=-2 (D)a=-1,b=,c=26.用公式法解方程:3x2-5x+1=0,正确的结果是〔〕.〔A〕〔B〕〔C〕〔D〕都不对二、填空7.方程9x2=25的根是___________...8.二次方程x2+(t-2)x-t=0有一个根是2,那么t=________,另一个根是_________.9.关于x的方程6x2-5(m-1)x+m2-2m-3=0有一个根是0,那么m的值为__________.10.关于x的方程(m2-m-2)x2+mx+n=0是一元二次方程的条件为___________.11.方程(x+2)(x-a)=0和方程x2+x-2=0有两个一样的解,那么a=________.三、用适当的方法解以下关于x和y的方程12.〔x+2〕〔x-2〕=1. 13.(3x-4)2=(4x-3)214.3x2-4x-4=0. 15.x2+x-1=0.16.x2+2x-1=0. 17.(2y+1)2+3(2y+1)+2=0.18.2x2- 19.x2-bx-2b2=0.20.a2x2+2abx+b2-4=0(a≠0). 21.〔b-c〕x2-〔c-a〕x+〔a-b〕=0〔a≠c〕22.用因式分解法、配方法、分式法解方程2x2+5x-3=0.〔A〕因式分解法〔B〕配方法〔C〕公式法23.解方程:〔1〕〔2〕24.解关于x的方程:x2-2x+1-k〔x2-1〕=025.|2m-3|=1,试解关于x的方程3mx〔x+1〕-5〔x+1〕〔x-1〕=x2。

第34讲一元二次不等式的解法精品PPT课件

第34讲一元二次不等式的解法精品PPT课件

有两个相异的
实根x1,x2 x1<x2
有两个相等实根 x1=x2
ax2+bx+c>0
的解集
{x|x>x2或x<x1}
{x|x≠
b 2a}
ax2+bx+c<0 的解集
{x|x1<x<x2}
没有实根 R
a<0如何画出上图相类似的结构图?
1定 .求义函 x域 y数 R 值 x2y 4域 x5 , 9 的 定义 . 如为果+域 3值呢域?呢?改
学习数学先认识自己,再发现就是初中如何学习一元二次方
程、函数、不等式的自己,而这个自己是不好的,于是突破自 己,成为那个就是要达到像高中一样的学习一元二次方程、函 数、不等式的自己,自动化化做这个最好的自己。
课件下载后可自由编辑,使用上如有不理 解之处可根据本节内容进行提问
Thank you for coming and listening,you can ask questions according to this section and this courseware can be downloaded and edited freely
一、请同学们自学教材,教材给人什么感觉? 答:其实不是教材编的不好,但给人感觉是乱。
二、因为文理相通: 你们在学习《》的时候,老师会告诉你一条线索就是 以贾宝玉、林黛玉的爱情为线索,以贾宝玉与薛宝钗的爱情为 线索。长篇小说是很长的,没有线索就会显的很乱。线索就是把许 多洒落在地下的珍珠,用一条线把它们串起来,形成一条美丽的珍 珠项链。那好,在《一元二次不等式及其解法》这一节中线索是什 么?
cx2 bxa0的解集.
2.设 aR,解 关 于 x的 不 等 式 x2ax40.

一元二次函数解法__辅导讲义

一元二次函数解法__辅导讲义

公式法(配方法)
2、公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑
能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)
3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为 一般形式再选取合理的方法。
6
x1Βιβλιοθήκη 2, x21. 3
(3)用公式法解:
49 . 36
解:移项,得 3x2 5x 2 0( 这里 a=3,b=-5,c=-2)
b2 4ac 52 4 3 (2) =49
x (5) 49 5 7
23
6
2
本先教育教案
x1
2, x2
1. 3
总结: 1、解一元二次方程的方法:
例题:x 2 -6x=-8
1
本先教育教案
练习:(1)3x 2 +6x-4=0
(2)2x 2 -5x+2=0
④公式法: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax 2 +bx+c=0(a≠0).
2.b 2 -4ac≥0. 例题:X2+2x-3=0
练习: -2m2+4=-3m
31
a2-a- =0
24
8y2-2y-15=0
△ 用三种方法解方程: 3x2 5x 2
(1)用因式分解法解:
解:移项,得 3x2-5x-2=0 ( 使方程右边为零)
方程左边因式分解,得(x-2)(3x+1)=0 (方程左边因式分解成 A`B=0 的形式)
即 x-2=0 或 3x+1=0(A=0 或 B=0)

一元二次不等式的解法公开课课件

一元二次不等式的解法公开课课件

利用一元二次函数图象解一 元二次不等式
其方法步骤是:
先求出Δ和相应方程的解, 再画出函数图象,根据图象 写出不等式的解。
若a<0时,先变形!
课后: (1) 作业 P21.习题1.5 1、3、5; (2) 归纳一元一次不等式的解集; (3) 预习 P20.~P21。
预习提纲 (1) 一元二次不等式能否可化为不等式组来解?
2x2-3x-2 < 0
1 x2 2
-2
3
利用一元二次函数图象解一 元二次不等式
其方法步骤是:
先求出Δ和相应方程的解, 再画出函数图象,根据图象 写出不等式的解。
若a<0时,先变形!
例2.解不等式 -3x2+6x > 2
略解: -3x2+6x > 2
3x2-6x+2 < 0
x |1
3 x 1 3
Δ>0 Δ=0 Δ<0
请同学们完成下表:
方程或不等式 (a>0)
Δ>0


Δ=0
{x|x=x1 或 ax2+bx+c=0、
x=x2}
{-b }
2a
ax2+bx+c >0
Δ<0 ф
ax2+bx+c <0
一元二次方程、不等式的解集
方程或不等式 (a>0)
Δ>0


Δ=0
ax2+bx+c=0、 {x|x=x1 或 x=x2}
新课 一、一元一次方程、一元一次不等式与一次函数的关系
1、作一元一次函数y=2x-7的图象。它的对应值表 与图像如下:
x 2 2.5 3 3.5 4 4.5 5
y -3 -2 -1 0 1 2 3

4.1一元二次函数4.2一元二次不等式及其解法课件(北师大版)

4.1一元二次函数4.2一元二次不等式及其解法课件(北师大版)

{x|x≠- }

R
[例1] 解不等式:
(1)2x2-3x-2>0;

2
解:(1)方程 2x -3x-2=0 的解是 x1=- ,x2=2.

2
画出一元二次函数 y=2x -3x-2 的图象[如图(1)],结合图象得不等式
2

2x -3x-2>0 的解集是{x|x<- ,或 x>2}.

(2)-3x2+6x-2>0;
(3)当Δ>0时,讨论相应一元二次方程两根的大小.
简记为“一a,二判(Δ),三大小(两根)”.
最后对系数中的参数进行完全分类,即将(-∞,+∞)分成若干个区间,根
据相应一元二次函数在各个区间的值,写出一元二次不等式的解集.
备用例题
[例题] 已知函数f(x)=x2-4ax,x∈R,a∈R.
(1)若f(x)<b的解集为(1,3),求a,b的值;
与系数的关系可知 a,b,c 之间的关系.
2
①如果不等式 ax +bx+c>0 的解集为{x|d<x<e},则说明 a<0,x1=d,x2=e 分别为方程
2




ax +bx+c=0 的两根,即 d+e=- ,d·e= ;若解集为{x|x<d,或 x>e},则说明 a>0,
2




x1=d,x2=e 分别为方程 ax +bx+c=0 的两根,即 d+e=- ,d·e= .
拓展探索素养培优
含参数的一元二次不等式的解法
[典例] 解关于x的不等式x2-ax-2a2<0.

一元二次辅导讲义(全面)

一元二次辅导讲义(全面)

杭州教育辅导讲义21xx的形式,然后利用根与系数的关系代入求值.要特别注意如下公式:(1)()2122122212xxxxxx-+=+;(2)21212111xxxxxx+=+;(3)()()212212214xxxxxx-+=-;(4)()()212132132313xxxxxxxx+-+=+;(5)()21221214xxxxxx-+=-;(6)()21221214xxxxxx-+±=-;(7)()2121221221xxxxxxxx++=+;(8)()21212212122xxxxxxxx+-+=+.五、实际应用:1、知识结构2、知识要点归纳由实际情景加工整理成抽象实际的问题,通过数学化变成数学问题.经过求解、检验、修正改进等进而产生的问题称为数学应用问题,数学应用题是经过加工的数学应用问题,是呈现在我们中学生面前的数学应用问题.从数学应用问题到数学应用题作了以下几个方面的“加工”.(1)加工“背景”:让背景材料为学生所熟悉的材料;让背景材料较为简洁.(2)加工“数学”:让“数学化”的过程较为简单,让各环节中使用的数学思想、方法和知识都是学生所能接受的.(3)加工“检验”:在问题中的检验和讨论“实际化”即检验数学结果是否合乎实际问题,有验证的意识就可以了.3解一元二次方程的数学应用题的一般步骤(1)找——找出题中的等量关系(2)设——设未知数(3)列——列出方程,即根据找出的等量关系列出含有未知数的等式(4)解——解出所列的方程(5)验——将方程的解代入方程中检验,回到实际问题中检验(6)答——作答下结论4、中考改革趋势一元二次方程的应用是中考数学重点考查的内容之一,它的试题背景与二元一次方程组的应用、简单分式方程的应用、一元一次方程的应用一样,随着改革的继续而更富有时代的气息,更宣于生活化,更贴近学生的实际.考点回放1考察一元二次方程概念1.下列方程不是整式方程的是()年我省森林覆盖率为家庭轿车将达到多少辆(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,求该小区最多可建两种车位各多少个试写出所有可能的方案.11.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台12..(2009年潍坊)要对一块长60米、宽40米的矩形荒地ABCD 进行绿化和硬化.(1)设计方案如图①所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的14,求P 、Q 两块绿地周围的硬化路面的宽. (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为1O 和2O ,且1O 到AB BC AD 、、的距离与2O 到CD BC AD 、、的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立若成立,求出圆的半径;若不成立,说明理由.24.已知m,n 是一元二次方程0719992=++x x 的两个根,求)82000)(61998(22++++n n m m 的值。

第二章 一元二次方程复习 讲义

第二章 一元二次方程复习 讲义

龙文教育学科教师辅导讲义学员姓名: 辅导课目:数学 年级:八年级 学科教师:汪老师 授课日期及时段课 题第二章 一元二次方程复习重点、难点、考点1、一元二次方程的基本概念2、一元二次方程的解法及应用学习目标1、理解一元二次方程的基本概念及其相应的应用2、一元二次方程的解法及其应用教学内容一、知识回顾:1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数。

2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (注意:用直接开平方的方法时要记得取正、负.)(2)配方法:关键化原方程为2()x m n +=的形式 (警告: 用配方法时二次项系数要化1.)(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是221,24(40)2b b ac x b ac a-±-=-≥.(注意:方程要先化成一般形式.)(4)因式分解法(主要有提取公因式、运用平方差公式、运用完全平方公式、十字相乘法):因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积; ③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.(注意:方程要先化成一般形式.)3.一元二次方程根的判别式: 24b ac ∆=-(1)一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根; ③当0∆<时,方程无实数根. (2)判定一元二次方程根的情况; (3)确定字母的值或取值范围。

知识点练习知识一:一元二次方程的概念1、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是 它的二次项系数是 ; 一次项系数是 ;常数项是 。

初三数学讲义——一元二次方程的解法

初三数学讲义——一元二次方程的解法

中国教育领军品牌
5 方程 x 2 mx (n 1) 0 的两个根是 2 和-4,那么 m = 思维提升: 1、若两数和为 4,两数积为 3,则这两数分别为 .
,n=
.
2 2、已知方程 2 x 2 3x 4 0 的两根为 x1 , x2 ,那么 x12 x2 =
. , m 的值是 . .
(7) 4 x2 12x 1 0
2 (8) (x 1 ) 6( x 1) 2 45 0
3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 ax2 bx c 0(a 0) 的求根公式:
x
b b 2 4ac 2 (b 4ac 0) 2a
2 2
一元二次方程(m-1)x +2mx+m+3=0 有两个不相等的实数根,求 m 的最大整数值.
2
7/8
中国教育领军品牌
8/8
4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程 最常用的方法。 分解因式法的步骤:把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因 式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
2 ( 7x 3 ) 16 0 (1) 25
教学内容 一、教材回归
一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。 2、一元二次方程的一般形式: ax2 bx c 0(a 0) ,它的特征是:等式左边加一个关于未知数 x 的二 次多项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项 系数;c 叫做常数项。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题一元二次方程的解法
重点、难点熟练掌握一元二次方程的解法
教学内容
一元二次方程的解法:
①因式分解法:
1.用因式分解法的条件是:方程左边能够分解,而右边等于零;
2.理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零.
→因式分解法解一元二次方程的一般步骤:
一移-----方程的右边=0;
二分-----方程的左边因式分解;
三化-----方程化为两个一元一次方程;
四解-----写出方程两个解;
例题:用因式分解法解方程:3(x-3)=(x-3)2
练习:(2x+3)2=24x (2x-1)(3x+4)=x-4 1.2y-0.04=9y2 (2x-1)2+3(2x-1)=0
②开平方法:方程的左边是完全平方式,右边是非负数x2=a(a》0)
例题:3x2-27=0;
练习:(x+1)2=4 (2x-3)2=7 x2+2x-3=0
③配方法:把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.
用配方法解一元二次方程的步骤:
1.变形:把二次项系数化为1
2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一次项系数一半的平方;
4.变形:方程左边分解因式,右边合并同类;
5.开方:根据平方根意义,方程两边开平方;
6.求解:解一元一次方程;
7.定解:写出原方程的解.
例题:x2-6x=-8
练习:(1)3x 2+6x-4=0 (2)2x 2-5x+2=0
④公式法:
用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程: ax 2+bx+c=0(a ≠0).
2.b 2-4ac ≥0.
例题:X 2+2x-3=0
练习: -2m 2+4=-3m
23a 2-a-4
1=0 8y 2-2y-15=0
△ 用三种方法解方程:2532=-x x (1)用因式分解法解:
解:移项,得 3x2-5x-2=0 ( 使方程右边为零)
方程左边因式分解,得(x-2)(3x+1)=0 (方程左边因式分解成A`B=0的形式)
即 x-2=0或3x+1=0(A=0或B=0)
31
,221-==∴x x
(2)用配方法解:
解:两边同时除以3,得: 32352=-x x 左右两边同时加上 2
)65( ,得:
.3625323625352+=+-x x 即 .3649652=⎪⎭⎫ ⎝
⎛-x 开平方,得:.36496
5±=-x .31,221-==∴x x
(3)用公式法解:
解:移项,得02532=--x x ( 这里a=3,b=-5,c=-2)
())2(34542
2-⨯⨯--=-∴ac b =49 6753249)5(±=⨯±--=∴x
()
.04a c b .2a 4a c b b x 22≥--±-=
.31,221-==∴x x
总结:
1、解一元二次方程的方法:
①因式分解法 (方程一边是0,另一边整式容易因式分解)
②开平方法 ( (x+m)2=a a ≥0 )
③公式法 (化方程为一般式)
④配方法 (二次项系数为1,而一次项系数为偶数)
ax 2+c=0 ---- 直接开平方法
ax 2+bx=0 ---- 因式分解法
ax 2+bx+c=0 ----- 因式分解法
公式法(配方法)
2、公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)
3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。

课后练习:
1.填上适当的数,使下列等式成立:
(1)x 2+2x+________=(x+__ )2; (2)x 2-6x+_____=(x-___)2;
(3)t 2-10t+________=(t-___)2; (4)y 2+____y+121=(y+___)2.
2.方程(x+1)2=9的解是_________.
3.在横线上填上适当的数或式,使下列等式成立:
(1)x 2+px+_____=(x+__)2; (2)x 2+b a
x+_____=(x+___)2. 4.解方程:
(1)x 2=121; (2)(x -3)2=16.
5.解下列方程:
(1)x 2-2x=1; (2)x 2+24=10x ;
(3)x (x+2)=323; (4)x 2+6x-91=0.。

相关文档
最新文档