大学物理-质点运动学(答案)
大学物理(吴百诗)习题答案1质点运动学

运动量1-1质点在xOy 平面内的运动方程为 x =3t ,y =2t 2+3。
求:(1)t =2s 时质点的位矢、速度和加速度;(2)从t =1s 到t =2s 这段时间内,质点位移的大小和方向;(3)1~0s 和2~1s 两时间段,质点的平均速度;(4)写出轨道方程。
解:(1) j t i t r )32(32,j t i tr v 43d d ,j t r a 4d d 22s 2 t 时,j i r116 ,j i v 83 ,j a 4(2) j i j i j i r r r 63)53()116(12 ,456322 r,与x 轴正向的夹角 4.6336arctan(3) j i j j i t r r v 2313)53(1011,j i j i t r r v 631632122 (4) 3x t ,39233222x x y 1-2一质点在xOy 平面内运动,初始时刻位于x =1m ,y =2m 处,它的速度为v x=10t , v y= t 2。
试求2秒时质点的位置矢量和加速度矢量。
解:t tx v x 10d d , t x t t x 01d 10d ,152t x 。
2d d t t y v y, t y t t y 022d d ,2313 t y j t i t r )231()15(32 , j t i t v 210 , j t i tva 210d ds 2 t 时, j i r31421 , j i a 4101-3一质点具有恒定加速度j i a46 ,在t =0时,其速度为零,位置矢量i r 100 ,求(1)任意时刻质点的速度和位置矢量;(2)质点的轨道方程。
解:质点作匀加速运动(1) j t i t t a v v 460 , j t i t t j i i t a t v r r2222002)310()46(211021(2) 22t y ,22y t ,2310y x ,)10(32x y1-4路灯距地面高度为H ,行人身高为h ,若人以匀速V 背向路灯行走,人头顶影子的移动速度v 为多少? 解:设x 轴方向水平向左,影子到灯杆距离为x ,人到灯杆距离为xxx x H h,x h H H x ,V h H H t x h H H t x v d d d d直线运动1-5一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =3+6x 2,若质点在原点处的速度为零,试求其在任意位置处的速度。
大学物理-质点运动学(答案)

第一章 力和运动(质点运动学)一. 选择题:[ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) 2 m .(E) 5 m.(1 2.5)22(21)122()x m =+⨯÷-+⨯÷=提示:[ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米,222l h x =+22dl dxlxdt dt= 22dx l dl x h dldt x dt x dt+==0dlv dt=- 220dx h x v i v i dt x +==-rr r2203v h dv dv dxa i dt dx dt x==⋅=-r rr r[ D ]3、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为1 4.5432.52-112t (s)v (m/s)v ϖxo(A) t r d d (B) tr d d ϖ(C) t rd d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x提示:22, dx dy dx dy v i j v dt dt dt dt ⎛⎫⎛⎫⎛⎫=+∴=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭r r v[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2R /T , 2R/T . (B) 0 , 2R /T(C) 0 , 0. (D) 2R /T , 0.提示:平均速度大小:0rv t∆==∆v r 平均速率:2s R v t T∆==∆π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i ϖ+2j ϖ. (B) 2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ.提示:2(2)B A B A v v v j i →→→=+=+-r r r r r地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o方向吹来,人感到风从哪个方向吹来(A)北偏东30 (B)北偏西60 (C) 北偏东60 (D) 北偏西30提示:根据v r 风对人=v r 风对地+v r地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理上册第一章 质点运动学 习题及答案

第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。
2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。
条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。
二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。
大学物理答案

(A) 匀加速运动,
(B) 匀减速运动,
(C) 变加速运动,
(D) 变减速运动,
(E) 匀速直线运动,
则
1 -11 一质点P 沿半径R =3.0 m的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a)图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.
分析 该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.
当杆长等于影长时,即s =h,则
解 将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为
(匀加速直线运动)
(匀速直线运动)
(匀减速直线运动)
根据上述结果即可作出质点的a-t 图[图(B)].
在匀变速直线运动中,有
由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为
解 (1) 如图(B)所示,在O′x′y′坐标系中,因 ,则质点P 的参数方程为
,
坐标变换后,在Oxy 坐标系中有
,
则质点P 的位矢方程为
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
大学物理学第四版1质点运动学习题答案

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d r v dt= ,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。
解:(1)由24(32)r t i t j =++ ,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)从0=t 到1=t s 的位移为:j i j j i r r r243)54()0()1(+=-+=-=∆(3)由d r v dt= ,有速度:82v t i j =+0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d rv dt = ,有:22v t i j =+ ,d v a dt= ,有:2a i = ;(2)而v v =,有速率:1222[(2)2]v t =+=∴t dv a dt==,利用222t n a a a =+有:n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为h ,求螺钉从天花板落到底板上所需的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理-质点运动学(答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 力和运动(质点运动学)一. 选择题:[ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m .(E) -5 m.(1 2.5)22(21)122()x m =+⨯÷-+⨯÷=提示:[ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米,222l h x =+22dl dxl xdt dt= 22dx l dl x h dldt x dtx dt+==0dlv dt=- 220dx h x v i v i dt x+==-2203v h dv dv dxa i dt dx dt x==⋅=-[ D ]3、一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为(A) t r d d (B) t r d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x1 4.5432.52-112t (s)v (m/s)vxo提示:22, dxdy dx dy v i j v dt dt dt dt ⎛⎫⎛⎫⎛⎫=+∴=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T (C) 0 , 0.提示:平均速度大小:0rv t ∆==∆ 平均速率:2s R v t T∆==∆π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i+2j .(B) -2i +2j . (C) -2i -2j . (D) 2i-2j .提示:2(2)B A B A v v v j i →→→=+=+-地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o 方向吹来,人感到风从哪个方向吹来?(A)北偏东30︒ (B)北偏西60︒ (C) 北偏东60︒ (D) 北偏西30︒提示:根据v 风对人=v 风对地+v 地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
二. 填空题1、已知质点的运动学方程为j t t i t t r)314()2125(32++-+= (SI)v 风对人v 地对人v 风对地当t = 2 s 时,加速度的大小为a 加速度a与x 轴正方向间夹角02222124t st sd r ai tji jdtarctg ==-==-+=-+⎛+ 提示:2、在半径为R 的圆周上运动的质点,其速率与时间关系为2ct =v (式中c为常量),则从t = 0到t 时刻质点走过的路程S (t ) =__313ct ______;t 时刻质点的切向加速度a t =___2ct _____;t 时刻质点的法向加速度a n=___24c t R_______。
3、灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为112M h vv i h h =- . 提示:坐标系如图,设人的坐标为x ,头的影子坐标为x M ,人向x 轴正向运动。
11M M dx h h v dxv i i idt h h dt h h ==⋅=--答:根据三角形的相似性,有4、一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度a t =____-0.5g_______,轨道的曲率半径ρ 2v g__________.提示:将g 进行分解。
5、一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是β =12t 2-6t (SI), 则质点的角速度ω =__4t 3-3t 2____(SI)______; 切向加速度 a t =___12t 2-6t _(SI)___________.提示:()2320012643t tdt t t dt t t ==-=-⎰⎰ωβ2126t a R t t==-β6、一质点从O 点出发以匀速率1 cm/s 作顺时针转向的圆周运动,圆的半径为1 m ,如图所示.当它走过2/3圆周时,走过的路程是___4π/3 (m )___,这段时间内的平均速度大小为___)(/)m s π______,方向是__与x 轴正方向逆时针成600_______.(m)3r 2cos30v t ∆⨯==∆平均速度大小三.计算题1、有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1)t 1=1s: x 1=2.5m; t 2=2s: x 2=2m ;∴ 21212 2.50.5(/)21x x v i i i m s t t --===--- xv(2),)69(2i t t i dtdx v -==)/(6)4629(22s m i i v s t-=⨯-⨯==∴时,(3)令0)69(2=-=i t t v, 得:s t 5.1'=. 此时x ’=3.375m;又t 1=1s 时, x 1=2.5m; t 2=2s 时, x 2=2m∴第二秒内的路程s=(x ’-x 1)+(x ’-x 2)=(3.375-2.5)+(3.375-2)=2.25m2、一正在行驶的汽船发动机关闭后得到一个与船速方向相反的大小与船速平方成正比的加速度:2kv a -=,其中k 为正的常数,设发动机关闭时船速为v o ,试证明在发动机关闭后时间t 内船行驶的距离为)1ln(1+=kt v kx o 。
解:已知:i kv a 2-=, 又dt v d a =2kv dtdv -=∴, 分离变量,得:kdt v dv-=2积分:,1,1,0000200tkv v v kt vkdt v dvt v v vv t +=-=--=⎰⎰又⎰⎰+=+=∴=xtdt t kv v dx tkv v dt dx dtdx v 00000,1,1,得:)1ln(10kt v kx +=3、物体作斜抛运动,初速度1020-⋅=s m v 与水平方向成45o 角,求: (1) 在最高点处的切向加速度、法向加速度;(2) 在2=t 秒时的切向加速度、法向加速度。
解:(1)最高点:)/10,(0,,2s m g g a g a e g a t n n ===∴=取为重力加速度(2)、)/(1021045sin ,/21045cos 0000s m t gt v v s m v v y x -=-===t t v v v y x2200100400222-+=+=222,2200100400)2(100t n t a g a tt t dtdv a -=-+-==22/24.9225,/83.32252s m a s m a s t n t =+==-==时,(註:本题也可用填空题4的方法做,即求出v与水平方向的夹角,然后再将g 分解为a t 和a n )。
4、质点沿半径为R 的圆周运动,加速度与速度的夹角ϕ保持不变,求该质点的速度随时间而变化的规律,已知初速为0v 。
解:Rv a dtdva a atg n t tn 2,,===ϕ ⎰⎰-=∴=+-==vv t tv Rtg Rtg v v Rtg t v v Rtg dt v dv Rtg v dt dv 0000022,11,,ϕϕϕϕϕ分离变量并积分:得:选做题:1、细杆OL 绕O 点以匀角速ω转动,并推动小环C 在固定的钢丝AB 上滑动。
图中的l 为已知,试利用ϕ或S 表示小环的速度与加速度。
解:如图建立坐标系,则222() cos 2cos dr ds ds d d ltg v i i i l i dt dt d dt d dv dv d a l tg idt d dt --===⋅=⋅===⋅=ϕϕωωϕϕϕϕωϕϕϕ2、一架飞机从A 处向北飞到B 处,然后又向南飞回到A 处,飞机相对于空气的速度为v ,而空气相对于地面的速度为B A u 、,之间的距离为l ,飞机相对于空气的速率v 保持不变。
x(1)如果空气是静止的(即u=0),试证来回飞行时间为t 0=2l/v(2) 如果空气的速度由东向西,试证来回飞行时间22021/v u t t -=;(3) 如果空气的速度的方向偏离南北方向某一角度θ,则来回飞行时间为⎪⎪⎭⎫ ⎝⎛--=2222231/sin 1v u vu t t θ。
解:根据+v v v →→→=机地机气气地求解。
(1)0v 0, v , 2lv v t v →→→=∴==∴=气地机地机气(2)如图所示,无论从A 飞到B ,还是从B 飞到A ,v →==机地22l t v →∴===机地(3)从A 飞到B 时,如右图所示:cos v u θ→=机地A B t →=;从B 飞到A 时,如下图所示:cos v u θ→=机地B A t →=2321A B B Au t t t t v →→⎛⎫∴=+=- ⎪⎝⎭Bv →机地v →机气v →气地Av →气地v →机气v →机地ABθ v →机地(大小为u )v →气地(大小为v )v →机气(大小为v →气地θ v →机地(大小为v →机气。